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ABSTRACT
The dissemination of information is a complex process that plays a

crucial role in real-world applications, especially when intertwined

with friend invitations and their ensuing responses. Traditional

diffusion models, however, often do not adequately capture this

invitation-aware diffusion (IAD), rendering inferior results. These
models typically focus on describing the social influence process,

i.e., how a user is informed by friends, but tend to overlook the

subsequent behavioral changes that invitations might precipitate.

To this end, we present the Independent Cascade with Invitation

(ICI) model, which incorporates both the social influence process

and multi-stage behavior conversions in IAD. We validate our de-

sign through an empirical study on in-game IAD. Furthermore, we

conduct extensive experiments to evaluate the effectiveness of our

proposal against 6 state-of-the-art models on 6 real-world datasets.

In particular, we demonstrate that our solution can outperform the

best competitor by up to 5× in cascade estimation and 17.2% in

diffusion prediction. We deploy our proposal in the seed selection

and friend ranking scenarios of Tencent’s online games, where it

achieves improvements of up to 170% and 20.3%, respectively.
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• Information systems → Social networks; Massively multi-
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1 INTRODUCTION
The invitation-aware diffusion (IAD) describes the process by which
information spreads from one user to another via an invitationmech-
anism, characterized by the behaviors of sending and accepting

invitations. IAD is ubiquitous in various real-world social platforms,

e.g., WeChat [38], Yahoo Messenger [15], LinkedIn [1], and Ten-

cent’s online gaming platforms [48]. In contrast to actions such as

liking or commenting on a stranger’s tweet, the invitation behav-

ior typically occurs between existing friends, thereby spreading

through established social relationships. For instance, online gaming

platforms often organize events to strengthen friendships [19, 28–

30, 34, 35, 48]. In these events, users are encouraged to invite their

friends to play together and the accepting friends can further invite

their friends, hence creating a cascade of invitations. Understanding

the mechanism of IAD is an important problem and underpins a

variety of applications, such as influence maximization [24], rumor

detection [33], diffusion prediction [14], network robustness verifi-

cation [32] and influencer pricing [21, 51]. However, previous works

about IAD [1, 15, 38] mainly focus on exploring the macroscopic

properties. For example, [15, 38] analyze the size and depth of the

diffusion tree starting from selected users (called seeds), while [1]

highlights that user homophily plays an important role in IAD.
In this work, we aim to design an IADmodel that captures the dis-

semination of invitation behaviors via social connections. Despite

the numerous diffusion models [2–4, 9, 10, 16–18, 27, 31] proposed

in recent decades, adapting them to encompass the invitation mech-

anism still poses challenges. The first lies in the unclear nature of

the social influence process of IAD, i.e., how users are activated (or

informed) by others. To explain, most existing model derive their

influence processes from two traditional ones: Independent Cas-

cade (IC) [16], which assumes that each individual is independently

influenced by their active friends, and Linear Threshold (LT) [18],
which suggests that a user is influenced only after a sufficient num-

ber of friends have been activated. Thus, a critical question arise:

does the social influence process of IAD conform to the patterns of

IC, LT, or neither? Secondly, the transition of invitation and accep-

tance behaviors further complicates the dynamics of IAD, rendering
existing models inadequate for capturing these processes.
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To address these challenges, this work presents an IAD model

called Independent Cascade with Invitation (ICI), which categorizes

active users into three roles: invitee, acceptor, and inviter, with tran-

sitions between these roles occurring progressively. Specifically,

an uninformed user has the chance to become an invitee based on

the independent inviting process. Then, the user may transition

from invitee to acceptor and subsequently to inviter with specific

transition probabilities. This contrasts with IC, which assumes that

users will accept and invite others unconditionally once influenced.

To validate the design of ICI, we conduct an empirical study focused

on the in-game IAD scenario. It not only confirms that the influence

process of IAD aligns with IC, but also reveals that deconstruct-

ing IC’s influence process into an independent inviting procedure

coupled with multi-stage behavior transitions is statistically close

to the dynamics observed in IAD. Furthermore, we integrate ICI
into four key applications namely cascade estimation [4, 26], target

recommendation [48], diffusion prediction [7, 14], and influence

maximization [24]. For each application, we offer detailed analyses

regarding the correctness and computational complexity, highlight-

ing ICI’s applicability across a spectrum of scenarios.

We experimentally evaluate the proposed ICI model against 6

representative competitors across 6 real-world datasets. In par-

ticular, we demonstrate that the proposed model outperforms all

competitors in terms of RMSE, AUC, and MAP scores while (i) esti-

mating the macroscopic features of diffusion [26] and (ii) predicting

the activation of each user [7] across all tested datasets. Further-

more, we deploy our solution to two real-world scenarios in online

gaming platforms of Tencent. Here, we leverage the model’s ability

to estimate the number of acceptors for two critical tasks: seed se-

lection and target friend recommendation, achieving improvements

of up to 170% and 20.3% in their respective evaluation metrics.

To summarize, we make the following contributions in this work:

• We devise an IAD model ICI, which has been validated through

an empirical study and applied in four applications.

• We conduct experiments to show the superiority of ICI over
competitors on cascade estimation and diffusion prediction tasks.

• We deploy ICI to seed selection and friend recommendation in

online games, achieving significant improvements.

2 PRELIMINARIES
This section introduces diffusion models and the in-game invitation-

aware diffusion (IAD), and then highlights the goal of this work.

2.1 Diffusion Models
Let G = (V, E) be a social network, where V is a set of nodes

representing users and E is a set of edges representing relationships.

We assume that each edge (𝑢, 𝑣) ∈ E is directed, indicating that 𝑣 is

a follower of and can be influenced by 𝑢. We call 𝑢 (resp. 𝑣) the in-

neighbor (resp. out-neighbor) of 𝑣 (resp.𝑢) and useN𝑖𝑛
𝑢 (resp.N𝑜𝑢𝑡

𝑢 )

to denote the set of in-neighbors (resp. out-neighbors) of 𝑢. Given

a G and a set S of chosen users (called seeds), a diffusion model

assumes that each 𝑢 ∈ V has two possible states, inactive or active,

and captures the diffusion of a given item from S in a stochastic

manner. Initially, seeds are in active states, and subsequently, active

users attempt to influence their inactive out-neighbors through an

influence process. Most of existing models [2–4, 9, 10, 16–18, 27, 31,

42] extend the Independent Cascade (IC) [16] and Linear Threshold
(LT) [18] models, whose influence processes are as follows.

ICmodel. Given a G and an S, IC introduces the influence proba-

bility 𝑝𝑢,𝑣 for each edge (𝑢, 𝑣) ∈ E, which indicates the likelihood

that 𝑣 is successfully activated by the in-neighbor 𝑢. A diffusion

instance of the IC model first tags each node in S to be active

and leaves the rest inactive at step 0. At the following step 𝑡 > 0,

each user 𝑢 activated at step 𝑡 − 1 has one chance to independently

activate the inactive out-neighbor 𝑣 with probability 𝑝𝑢,𝑣 .

LTmodel. Unlike IC, the influence process of LT follows the intu-

ition that an inactive user will switch to be active when a sufficient

number of his/her in-neighbors have been activated. Formally, given

a G and an S, LT assumes that each edge (𝑢, 𝑣) ∈ E is associated

with an edge weight 𝑤𝑢,𝑣 satisfying
∑
𝑢∈N𝑖𝑛

𝑣
𝑤𝑢,𝑣 ≤ 1. In LT, the

threshold 𝜃𝑣 ∈ [0, 1] is uniformly sampled and assigned to each

user 𝑣 ∈ V . For any step 𝑡 > 0, an inactive user 𝑣 is activated

if 𝜙 (𝑣, 𝑡) ≥ 𝜃𝑣 , where 𝜙 (𝑣, 𝑡) is 𝑣 ’s threshold function and is the

summation of𝑤𝑢,𝑣 w.r.t. 𝑣 ’s in-neighbor 𝑢 activated before step 𝑡 .

During a diffusion instance of IC or LT, once a node is activated,
it remains active in all subsequent steps. The instance terminates if

no more users can be activated, and the influence spread 𝜎G (S) is
defined as the expected number of active users from S.

2.2 In-Game Invitation-Aware Diffusion
Event description. On Tencent’s online gaming platforms, the

service provider regularly conducts friendship-enhancing events

to foster interactions among friends. Before an event, the service

provider selects a setV𝑠 of source users and a setV𝑡 of target users
based on historical activeness and the event requirement. For each

source user 𝑢 ∈ V𝑠 , a limited number of target friends are selected

from V𝑡 ∩ N𝑜𝑢𝑡
𝑢 in terms of specific recommendation strategies.

As the event begins, each source user, upon their login, receives

detailed information about the event and a list of recommended

target friends they are encouraged to invite. Upon receiving an

invitation from a source user 𝑢, a target user 𝑣 is notified and

decides whether to accept the invitation. If 𝑣 accepts and interacts

with 𝑢, both users are rewarded with the event’s incentives. Due to

the intersection betweenV𝑠 andV𝑡 , if the target is also designated
as a source user, it can invite its own target friends, thereby further

propagating the event within G. To summarize, the propagation of

this event encompasses two primary elements: (i) a social influence

process through inviting relationships and (ii) two stand-alone user

behaviors, namely source invitation and target acceptance.
Dataset cleaning. The logs of a friendship-enhancing event con-
sist of two parts: (i) an invitation dataset with tuples (𝑢, 𝑣,𝑇𝑢,𝑣),
representing that the source user𝑢 ∈ V invited the friend 𝑣 ∈ 𝑁𝑜𝑢𝑡𝑢

at timestamp𝑇𝑢,𝑣 , and (ii) an acceptance dataset with tuples (𝑣,𝑇𝑣),
representing that the target 𝑣 accepted the invitation from one of

the source friend and engaged in this event at timestamp 𝑇𝑣 . For

a better understanding of event dynamics, we clean the logs by

retaining only the earliest timestamp for each distinct invitation

relationship and each accepting invitee in the datasets. Addition-

ally, we find that the invitation behavior is cascading on the social

network, and hence construct the diffusion trees from the invita-

tion dataset. In particular, each tree is initialized to the invitation

relationships, starting from the seed inviter who spontaneously
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Figure 1: A running example of ICI (uninformed nodes: light grey, invitees: yellow, acceptors: orange, inviters: red).

engages in the event without receiving any friends’ invitations.

Subsequently, we add the directed edge (𝑣,𝑤) to the tree if (i) there
exists an edge (𝑢, 𝑣) on the tree satisfying 𝑇𝑢,𝑣 < 𝑇𝑣,𝑤 and (ii) the

tree is still acyclic after insertion.

2.3 Problem Formulation
We aim to devise an IADmodel that captures the invitation dissemi-

nation via social connections of the given G. Moreover, we assume

that the IADmodel is a progressive and single-item model. In partic-

ular, the progressive model means that an active (or informed) node

will not be deactivated at the later step. The single-item model de-

scribes the propagation of a single item, as the friendship-enhancing

event is unique on the platform in a specific period.

3 PROPOSED MODEL
As per the above-said description of IAD, we elaborate on the pro-

posed model: Independent Cascade with Invitation (ICI), followed by
conducting an empirical study to justify the design choices in ICI.

3.1 Formulation

User roles.We first define the following user roles to distinguish

the components in the IAD. In particular, the uninformed is the user

who has not received the invitation about the event (i.e., inactive

user). Moreover, the active user is classified into three roles: (i)

invitee, the user who has received the event invitation from friends;

(ii) acceptor, the invitee who has accepted the invitation; (iii) inviter,
the acceptor who has sent the invitation to friends.

Diffusion procedure. Given a social network G, a seed set S, and
constants 𝛽 and 𝛾 , a diffusion instance of the ICI model unfolds in

the discrete steps, where the inviting process and further behavior

conversions are independent. In particular, seed users are set to

inviters, and other users remain uninformed at step 0. For any step

𝑡 > 0, denote V (𝑡−1)
𝑟 as the set of users who become inviters at

step 𝑡 − 1. For an uninformed user 𝑣 at step 𝑡 − 1, the role transition

at step 𝑡 is illustrated as follows:

(1) Each friend inviter 𝑢 ∈ V (𝑡−1)
𝑟 ∩ N𝑖𝑛

𝑣 has one chance to inde-

pendently invite 𝑣 with probability 𝑝𝑢,𝑣 . If there exists a friend

inviter 𝑢 successfully invites 𝑣 , then 𝑣 will become an invitee.

(2) If 𝑣 successfully becomes the invitee, then 𝑣 will become an

acceptor with probability 𝛽 , or remain an invitee.

(3) If 𝑣 successfully becomes the acceptor, then 𝑣 will turn into an

inviter with probability 𝛾 , or still act as the acceptor.

A diffusion instance repeats these at each step until no new inviters

exist. Notably, for each active user, the roles invitee, acceptor, and

inviter are in ontological priority, e.g., an inviter is also an acceptor.

In addition, ICI will degrade to IC when 𝛽 = 𝛾 = 1.

Running example. Figure 1 illustrates a diffusion instance of ICI.
Given an undirected graph with nodes 𝑣1, 𝑣2, . . . , 𝑣5, we first pick 𝑣1
as the seed (inviter) at step 0 (Figure 1(a)). At step 1, 𝑣1 successfully

sends invitations to friends 𝑣3, 𝑣4, 𝑣5 (Figure 1(b)). After being in-

vited, all invitees flip the coin with a head probability of 𝛽 . Among

them, 𝑣3 and 𝑣5 achieve heads and become acceptors (Figure 1(c)).

Subsequently, the same coin-flip operation occurs for each acceptor

with a success probability of 𝛾 , which results in 𝑣3 becoming a new

inviter (Figure 1(d)) and inviting 𝑣2 (Figure 1(e)).

Model outputs. We focus on the acceptor role in ICI as it can
reflect the user engagement w.r.t. the information and is para-

mount to many real-world applications, such as signing up to join

LinkedIn [1] or logging in to play with others [48]. In light of the

live-edge graph in [24], we define the invitation snapshot of G,
reflecting the edge status and the user roles when an instance stops.

Definition 3.1 (Invitation Snapshot). Given a G = (V, E, 𝑝), an
invitation snapshot L = (V𝑟 ,V𝑎,V𝑙 , E𝑙 ) is a subgraph of G, where

V𝑙 = V is the node set associated with an acceptor set V𝑎 ⊆ V𝑙
and an inviter set V𝑟 ⊆ V𝑎 , and E𝑙 ⊆ E is the set of inviting

relationships. The sampling procedure of L ∈ Ω is as follows:

(1) Include each edge (𝑢, 𝑣) ∈ E into E𝑙 with 𝑝𝑢,𝑣 probability, i.e.,

Pr(E𝑙 ) =
∏

(𝑢,𝑣) ∈E𝑙

𝑝𝑢,𝑣 ·
∏

(𝑢,𝑣) ∈E\E𝑙

(1 − 𝑝𝑢,𝑣) .

(2) Add each invitee 𝑣 ∈ V𝑒 = {𝑣 : (𝑢, 𝑣) ∈ E𝑙 } to V𝑎 with 𝛽

probability, i.e., Pr(V𝑎) = 𝛽 |V𝑎 | · (1 − 𝛽) |V𝑒 |− |V𝑎 |
.

(3) Add each acceptor 𝑣 ∈ V𝑎 toV𝑟 with𝛾 probability, i.e.,Pr(V𝑟 ) =
𝛾 |V𝑟 | · (1 − 𝛾) |V𝑎 |− |V𝑟 |

.

As each step is independent, the probability of sampling an L is

Pr(L) = Pr(E𝑙 ) · Pr(V𝑎) · Pr(V𝑟 ) . (1)

Additionally, we define a reachable set ΓL (S) as the set of accep-
tors directly invited by S or reachable from S by a path of inviters

in L, Based on Definition 3.1 and the principle of deferred deci-

sions [36], we introduce two outputs for applications in Section 4.

Definition 3.2 (Accepting Spread). Given a G = (V, E, 𝑝), a seed
set S, and ICI with constants 𝛽 and 𝛾 , let L ∈ Ω be any invitation

snapshot in Definition 3.1. The accepting spread from S under ICI
is defined as the expected number of acceptors in L:

𝜎G (S, 𝛽, 𝛾) = EL∼Ω
[
|ΓL (S)|

]
=

∑
L∈Ω

Pr(L) · |ΓL (S)|.

Definition 3.3 (Accepting Probability). Given a G = (V, E, 𝑝),
a seed set S, and ICI with 𝛽 and 𝛾 , let L ∈ Ω be any invitation

snapshot in Definition 3.1 and I(·) be an indicator function. The ac-

cepting probability of 𝑣 is 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) = EL∼Ω
[
I
(
𝑣 ∈ ΓL (S)

) ]
.
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3.2 Justifications
To justify the design of ICI, we collect the logs in a friendship-

enhancing event TXG-A of Tencent’s role-playing game, where

users are from different isolated servers and only connected to oth-

ers on the same server. Hence, IAD only happens among users on

each stand-alone server. After preprocessing, TXG-A returns 20.4

thousand invitation tuples and 12.8 thousand acceptance tuples. In

the sequel, we first show the existence of IAD and behavior conver-

sions related to invitation and acceptance. Next, we elucidate the

rationale for choosing IC as the base model. At last, we explain the

reason for separating IC’s influence process into the independent

inviting procedure and two stand-alone states. Notably, similar

outcomes can be observed in other gaming datasets of Section 6.

Figure 2(a) displays the distribution of diffusion tree depths orig-

inating from all seed inviters in TXG-A. It reveals that the depth
of the diffusion tree adheres to an exponential distribution, with

only about 12% of diffusion trees exceeding a depth of three. A

similar trend has been observed in other real-world diffusion sce-

narios [8, 15, 38]. In Figure 2(b), we report the distributions of

conversion rates for acceptance and invitation behaviors within

servers. Specifically, the conversion rate for the acceptance (resp.

invitation) behavior signifies the proportion of acceptors among all

invitees (resp. inviters among all acceptors) within each server. As

shown in Figure 2(b), the conversion rates that a user transitions

into an acceptor and further into an inviter tend to concentrate

around 0.9 and 0.6, respectively. This observation highlights the

presence of multi-stage behavior conversion, indicating that once

informed, a user is likely to accept an invitation and subsequently

engage as an inviter with certain probabilities.

Figure 2(c) reports the distribution of the number of invitations

invitees receive and the number of invitations they receive after ac-

cepting. Specifically, we find that a user can receive invitations from

multiple distinct friends, with about 11% of invitees being invited

by more than two distinct friends. Furthermore, users continue

to receive invitations from other friends even after accepting the

invitation from one friend. Notably, among users invited more than

once, 76% experience repeated invitations twice or three times after

acceptance. This phenomenon can be explained by the fact that, in

the context of the friendship-enhancing event, two source users are

permitted to invite a common friend from their recommendation

lists. Consequently, a target user may receive multiple inviting no-

tifications from different friends. This observation suggests that the

invitation procedure resembles the influence process of IC. Specifi-
cally, each user can be independently invited by friends who have

become inviters. It is worth noting that we provide a quantitative

comparison between the ground-truth and model-predicted diffu-

sions in Section 6, demonstrating that the IC-predicted diffusion

aligns more closely with the ground-truth than LT.
Unlike the IC model, which consolidates the inviting procedure

and acceptance behavior into the influence probability of each edge,

the ICI model differentiates these processes by positing that the

transition from invitee to acceptor does not depend on the number

of invitations received. To justify this distinction, we introduce the

notation 𝑎𝑟 (𝑠, 𝑡), representing the actual acceptance rate after being
invited 𝑡 times in server 𝑠 on TXG-A, and compute 𝑎𝑟 (𝑠, 𝑡) for each
server 𝑠 and 𝑡 > 0. Subsequently, we leverage 𝑎𝑟 (𝑠, 1) and different
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Figure 2: The histograms on TXG-A: (a) the depth of each dif-
fusion tree; (b) the conversion rate from the acceptor to the
inviter (cyan) and from the invitee to the acceptor (red); (c)
the number of invitations invitees receive (cyan) and invi-
tees receive after accepting (red).

assumptions to predict 𝑎𝑟 (𝑠, 𝑡) when 𝑡 > 1. Specifically, we denote

𝑎𝑟 𝑖 (𝑠, 𝑡) as the acceptance rate predicted under the IC assumption,

where the acceptance rate increases with the number of invitations

received, i.e., 𝑎𝑟 𝑖 (𝑠, 𝑡) = 1 − (1 − 𝑎𝑟 (𝑠, 1))𝑡 . In contrast, under the

ICI assumption, the acceptance behavior remains unaffected by

the number of invitations, resulting in a predicted acceptance rate

𝑎𝑟𝑜 (𝑠, 𝑡) = 𝑎𝑟 (𝑠, 1). We compare the absolute errors of IC-predicted
rate |𝑎𝑟 (𝑠, 2) − 𝑎𝑟 𝑖 (𝑠, 2) | and ICI-predicted rate |𝑎𝑟 (𝑠, 2) − 𝑎𝑟𝑜 (𝑠, 2) |
in each server 𝑠 , finding that the average absolute errors are 0.130

and 0.088, respectively. This indicates that the conversion assump-

tion in ICI aligns more closely with the online gaming scenario.

Furthermore, we conduct a two-sample t-test, yielding a one-sided

p-value of 0.016, signifying that the smaller error of ICI is statisti-
cally significant. Additionally, we evaluate this assumption through

a sensitivity analysis, as elaborated in Section 6. Similar findings

have also been reported by a recent study [47].

4 APPLICATIONS
This section outlines the utilization of ICI in various applications.

Section 4.1 and Section 4.2 introduce the utilization of accepting

spread (Definition 3.2) and accepting probability (Definition 3.3) for

macroscopic and microscopic tasks, respectively. At last, we aim

to apply the ICI model to the well-studied influence maximization

problem. Following IC, we define the graph asG = (V, E, 𝑝), where
the inviting probability 𝑝𝑢,𝑣 is associated with each edge (𝑢, 𝑣) ∈ E.
For ease of exposition, we defer all proofs to Appendix A.

4.1 Macroscopic Tasks
Problem 1 (Cascade Estimation [4, 26]). Given a social network

G and a seed set S, the cascade estimation problem aims to predict
the size and growth of the diffusion tree starting from S.

Problem 2 (Target Recommendation [48]). Given a social net-
work G, a budget 𝑘 , a source set V𝑠 and a target set V𝑡 , the objective
of target recommendation is to select at most 𝑘 target neighbors from
V𝑡 ∩N𝑜𝑢𝑡

𝑢 for each source user 𝑢 ∈ V𝑠 , such that the likelihood that
the user engagement among all returned pairs is maximized.

Due to the #P-hardness [12] of evaluating 𝜎G (·), we leverage
the Monte-Carlo (MC) simulation to estimate the accepting spread,

which simulates the discrete propagation step of ICI starting from
S and takes the average number of acceptors in 𝑟 trials as the

estimation. Initially, the estimation 𝜎̂G (S, 𝛽, 𝛾) is set to 0. For each

of 𝑟 trials, at step 𝑡 = 0, MC simulation adds the seeds in S to
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the invitee set V𝑒 , acceptor set V𝑎 , and inviter set V (0)
𝑟 . At the

following step 𝑡 , each user 𝑢 ∈ V (𝑡−1)
𝑟 that became an inviter

at 𝑡 − 1 flips a coin with the head probability 𝑝𝑢,𝑣 to invite each

uninformed friend 𝑣 ∈ N𝑜𝑢𝑡
𝑢 \V𝑒 and 𝑣 will be marked as an invitee

if the result is head. The new invitee 𝑣 will have the probability 𝛽 to

be an acceptor and be included in V𝑎 . After becoming an acceptor,

𝑣 will further have the probability 𝛾 to become an inviter and be

included into V (𝑡 )
𝑟 . This trial terminates at step 𝑡 if V (𝑡 ) = ∅, and

the estimated spread 𝜎̂G (S, 𝛽, 𝛾) receives an increment of |V𝑎 |/𝑟 .
The following theorem shows the correctness and time complexity.

Theorem 4.1. Given a G = (V, E, 𝑝), a set S, and ICI with 𝛽 and
𝛾 , 𝜎̂G (S, 𝛽, 𝛾) derived by MC simulation is an unbiased estimator. For

any error 𝜖 and failure probability 𝑝 𝑓 , by setting 𝑟 =
3 |V | ·ln (2/𝑝𝑓 )

|S | ·𝜖2 ,

Pr
[
|𝜎̂G (S, 𝛽, 𝛾) − 𝜎G (S, 𝛽, 𝛾) | ≤ 𝜖 · 𝜎G (S, 𝛽, 𝛾)

]
≥ 1 − 𝑝 𝑓

and the worst-case time complexity of MC simulation is 𝑂 (𝑟 · |E |).
By MC simulation, the size and growth of the diffusion tree in

Problem 1 can be estimated by the overall accepting spread and the

number of acceptors at each step, respectively. Regarding Problem 2,

inspired from the prior work [11], we take the estimated single

accepting spread 𝜎̂G ({𝑢}, 𝛽, 𝛾) as the influence centrality of each

user 𝑢, and select the friends with top 𝑘 largest single accepting

spread to recommend.

4.2 Microscopic Task
Problem 3 (Diffusion Prediction [7, 14]). Given a social net-

work G and a seed set S, the diffusion prediction problem aims to
identify the users in G that are directly or indirectly influenced by S.

Solving Problem 3 by MC simulation resembles the above-said

solution. However, MC simulation has two distinctions for diffusion

prediction. In particular, we initialize the estimation 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)
as 1 for each seed 𝑣 ∈ S and 0 for all other 𝑣 ∈ V\S. During
each iteration of the 𝑟 simulation trials, if a user 𝑣 becomes a new

acceptor, the estimated value 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) increments by 1/𝑟 . The
following theorem shows the correctness and time complexity.

Theorem 4.2. Given a G = (V, E, 𝑝), a set S, and ICI with 𝛽

and 𝛾 , for any 𝑣 ∈ V , 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) derived by MC simulation
is an unbiased estimator. For any error 𝜖 , threshold 𝛿 , and failure

probability 𝑝 𝑓 , by setting 𝑟 =
3 ln (2· |V |/𝑝𝑓 )

𝛿 ·𝜖2 ,

Pr
[
|𝑎𝑝G (𝑣,S, 𝛽, 𝛾) − 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) | ≤ 𝜖 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)

]
≥ 1−𝑝 𝑓

for each 𝑣 ∈ V with 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) ≥ 𝛿 and the worst-case time
complexity of MC simulation is 𝑂 (𝑟 · |E |).

It is worth noting that Problems 1–3 can be efficiently solved

by MC simulation by setting 𝑟 = 1, 000–10, 000 [7, 24], which is

sufficient for these tasks. In addition, the whole MC simulation pro-

cedure is only invoked once for Problems 1 and 3. As for Problem 2,

the simulation can be parallelly invoked from target users.

4.3 Influence Maximization
Problem 4 (Influence Maximization [24]). Given a social net-

work G, an integer 𝑘 , and a diffusion model M, the influence max-
imization problem asks for a seed set S with cardinality |S| = 𝑘 to
maximize the overall influence spread 𝜎G (S) under M.

The crux of taking ICI (resp. accepting spread) as the input model

M (resp. the objective function) of Problem 4 is showing that the

accepting spread is monotone and submodular. Specifically, denote

the set function on nodes of G as 𝑓 : 2
|V | → R, which is (i)

monotone if 𝑓 (S) ≤ 𝑓 (T ) for any S ⊆ T ; and is (ii) submodular
if 𝑓 (S ∪ {𝑣}) − 𝑓 (S) ≥ 𝑓 (T ∪ {𝑣}) − 𝑓 (T ) for any S ⊆ T and

𝑣 ∈ V\T . The following theorem shows that the accepting spread

also satisfies monotonicity and submodularity.

Theorem 4.3. Given a social network G = (V, E, 𝑝) and ICI
with constants 𝛽 and 𝛾 , the accepting spread function on any seed set
S ⊆ V is monotone and submodular.

In light of Theorem 4.3 and the fact that ICI is orthogonal to
influence maximization, a plethora of existing approximation solu-

tions [25, 43, 44, 50] can be applied to select a size-𝑘 seed set S such

that 𝜎G (S, 𝛽, 𝛾) is (1 − 1/𝑒 − 𝜖)-approximate. Considering that the

worst-case complexity by MC simulation reaches𝑂 (𝑟 ·𝑘 · |V| · |E |),
state-of-the-art solutions [5, 43, 44] estimate the spread based on

random Reverse-Reachable (RR) sets. To construct an RR set 𝑅L (𝑣)
under ICI, we first sample a snapshot L as per Definition 3.1, and

then check whether the node 𝑣 is an acceptor. If 𝑣 ∈ V𝑎 , we
will include 𝑣 and all nodes directly pointing or reachable to 𝑣

via a path of inviters into 𝑅L (𝑣), otherwise 𝑅L (𝑣) = ∅. In prac-

tice, we do not need to materialize L, and can employ a breadth-

first search starting from 𝑣 instead. By definition, for fixed 𝑣 and

S, we can obtain that 𝑅L (𝑣) = {𝑢 : 𝑣 ∈ ΓL ({𝑢})} and Pr[𝑣 ∈
ΓL (S)] = Pr[S ∩ 𝑅L (𝑣) ≠ ∅] . We call 𝑅L (𝑣) a random RR set

where 𝑣 is randomly selected from V and denote RG as a set

of random RR sets. Based on the proof in Borgs et al. [5], given

a G = (V, E, 𝑝) and an RG , we can derive that |V| · ΛR (S)
|RG | is

an unbiased estimator of 𝜎G (S, 𝛽, 𝛾), where ΛR (S) is the num-

ber of random RR set 𝑅L (𝑣) ∈ RG satisfying S ∩ 𝑅L (𝑣) ≠ ∅.
Motivated by this connection, we can leverage existing solutions

based on OPIM-C [43] to return a seed set satisfying (1 − 1/𝑒 − 𝜖)-
approximate with the probability at least 1 − 𝑝 𝑓 in the expected

time of 𝑂

(
𝑘 ln |V| + 1

𝜖2
ln

1

𝑝𝑓
· ( |V| + |E|)

)
.

5 RELATEDWORK
In this part, we illustrate how other typical diffusion models CT-
IC [10, 17, 31], IC-N [9], LT-C [4] and F-TM [2] extending IC and LT,
and justify their differences from ours. We skip other variants [3,

27, 42] as the required features are unavailable in our problem,

rendering them degraded to IC or LT. Other related work focuses

on learning-based models for specific downstream tasks, such as

inferring influence probabilities from known diffusion trees [2, 3, 6,

7, 14, 17, 39] and predicting the next-activated user by sequential

models [23, 40, 45, 46], which are outside the scope of this study.

CT-IC model. Continuous-Time IC (CT-IC) [10, 17, 31] extends
IC by introducing time delays in information transmission. Once

activated, users start to communicate with inactive neighbors using

an independent meeting probability. If a meeting occurs at the step

before the deadline 𝜏 , CT-IC follows the influence process of IC,
providing one opportunity for user 𝑢 to activate 𝑣 . The spread in

CT-IC is the expected number of active users before 𝜏 .

IC-N model. IC with Negative Opinions (IC-N) [9] introduces
opinion diversity by distinguishing between positive and negative
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Table 1: Dataset statistics (𝑲 =103, 𝑴=106).

Dataset |V | |E | |S | Spread Type

TXG-A 153.0𝐾 2.3𝑀 10.3𝐾 12.8𝐾 Invitation

TXG-B 155.5𝐾 2.5𝑀 4.9𝐾 12.6𝐾 Invitation

TXG-C 155.9𝐾 2.5𝑀 4.4𝐾 11.0𝐾 Invitation

TXG-D 133.9𝐾 2.1𝑀 12.2𝐾 76.4𝐾 Invitation

Diggs 279.6𝐾 1.5𝑀 0.6𝐾 8.1𝐾 Vote

Twitter 456.6𝐾 12.5𝑀 27.0𝐾 38.7𝐾 Retweet

active states. Each seed in S is initially activated and becomes

positive with probability 𝑞 or negative otherwise. Subsequently,

when a user 𝑣 is activated by an in-neighbor 𝑢, 𝑣 is converted as

follows: (i) 𝑣 becomes negative if 𝑢 is negative; (ii) otherwise, 𝑣

becomes positive with probability 𝑞 and negative otherwise. IC-N’s
spread is measured by the expected number of positive active users.

LT-C model. In LT with Colors (LT-C), user ratings for a prod-

uct lead to three active states: adopted, promoted, and inhibited.

After randomly assigning seeds to these states, LT-C follows LT’s
influence process, but the threshold function for an inactive user 𝑣

combines active in-neighbor 𝑢’s rating and edge weight𝑤𝑢,𝑣 . Upon

activation, a user either (i) becomes adopted with a probability or

(ii) serves as a message bridge, with a chance of (ii-a) becoming

promoted with a probability or (ii-b) becoming inhibited otherwise.

LT-C defines the spread as the expected number of adopted users.

F-TMmodel. F-TM [2] also follows the influence process in LT but

integrates more information into the threshold function, including

the edge weight, user’s positive feeling w.r.t. each feature of the

given item, and internal resistance to being influenced. At last, the

threshold function is wrapped into a logistic function.

Remarks. In contrast to ICI, none of the prior IC-based models

considers inviter and adopter states. Among LT-basedmodels, while

LT-C distinguishes between awareness and adoption, it is still inad-

equate in capturing IAD due to the mismatch of influence process.

6 EXPERIMENTS
In this part, we first introduce the experimental settings and then

evaluate the performance of the proposed model on cascade esti-

mation and diffusion prediction tasks. All of our experiments are

conducted on an in-house cluster consisting of hundreds of ma-

chines, each of which runs CentOS, and has 16GB memory and 12

Intel Xeon Processor E5-2670 CPU cores. For reproducibility, the

source code is available at: https://github.com/jeremyzhangsq/ICI.

6.1 Experiments Setup
Datasets.We use four friendship-enhancing events from Tencent’s

online games and preprocess the logs of invitation relationships

and user behaviors as explained in Section 2.2. Furthermore, we

take the snapshot of G before the release time as the input graph,

since G for a particular online game evolves when new users are

registered, or friendships are modified. Notice that all datasets

have been anonymized to avoid any leakage of private information.

Besides the dataset about invitation diffusion, we also choose two

other types of diffusion datasets Diggs [20] and Twitter [13]. In
particular, the Diggs contains the diffusion of vote behaviors w.r.t

a given story on the platform, and the Twitter dataset records the
diffusion of retweet behaviors on Twitter about the announcement

Table 2: The RMSE of estimating overall spreads (×103).

Model TXG-A TXG-B TXG-C TXG-D Diggs Twitter
IC 40.6 32.7 32.7 39.7 40.9 13.2

CT-IC 20.9 8.3 8.1 22.9 30.8 42.0

IC-N 23.4 14.8 14.9 23.8 22.0 76.7
LT 97.1 100.0 101.7 88.6 59.6 227.4

LT-C 69.6 71.9 73.6 63.2 42.7 161.1

F-TM 103.1 112.0 113.4 92.2 120.6 241.6

ICI 11.2 1.7 2.1 13.4 7.2 37.1

ICI IC CT-IC IC-N LT LT-C F-TM
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Figure 3: The RMSE of estimating spreads in each hop.

of the discovery of a new particle. For public datasets, we preserve

the behaviors on the social connections and treat the user who

first posted the story or tweet as the seed. The dataset statistics,

including the graph, seeds, and actual spread, are shown in Table 1.

Models and parameter settings. We compare the proposed ICI
model with six representative diffusion models as mentioned in

Section 5: (i) IC-based models: IC [16], CT-IC [10, 17, 31], IC-N [9];

(ii) LT-based models: LT [18], LT-C [4] and F-TM [2]. Recall that

LT-C and F-TM require extra information about user ratings and

feelings for the product, respectively, which are not available in the

provided datasets and are set to 1 for a fair comparison. Moreover,

we follow the basic setting in [4, 24, 44, 50] and assign 1/|N𝑖𝑛
𝑣 | to

each edge (𝑢, 𝑣) as the edge probability and weight for IC-based
and LT-based models, respectively. For other parameters, we fol-

low the default parameter settings for all competitors, and set the

conversion constants in ICI to 𝛽 = 0.9 and 𝛾 = 0.6 as explored

in Section 3.2. Notice that this setting is derived from TXG-A, the
results of which may overstate ICI’s actual capabilities.

6.2 Cascade Estimation
In this section, we evaluate the performance of ICI and the competi-

tors on the cascade estimation task (Problem 1). Given the actual

seed set S, we conduct 1,000 Monte-Carlo simulations [7] to es-

timate the spread for each model. After that, we follow the prior

work [4] and compute the Root Mean Square Error (RMSE) between

the model-predicted spread and the ground-truth spread. Regarding

the model-predicted spread, ICI employs the accepting spread in

Definition 3.2, and each competitor utilizes the specific spread func-

tion as explained in Section 5. We report the average RMSE after

https://github.com/jeremyzhangsq/ICI
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Table 3: The AUC (%) and MAP (%) of different models in diffusion prediction (the best is bold and the second best is italic).

Model IC CT-IC IC-N LT LT-C F-TM IC+ ICI

TXG-A
AUC 82.11±0.08 79.30±0.10 82.36±0.10 78.29±0.03 77.77±0.07 77.32±0.17 82.58±0.12 83.36±0.06
MAP 20.07±0.13 18.35±0.08 20.34±0.12 16.51±0.23 16.15±0.19 18.99±0.19 20.69±0.05 20.71±0.12

TXG-B
AUC 81.96±0.05 80.76±0.05 83.06±0.11 74.17±0.04 73.98±0.10 75.95±0.17 83.30±0.15 84.43±0.10
MAP 19.48±0.06 20.13±0.06 21.05±0.11 12.41±0.12 12.37±0.14 16.10±0.24 21.54±0.18 22.05±0.15

TXG-C
AUC 82.26±0.09 81.23±0.07 83.35±0.13 73.56±0.06 73.28±0.07 75.06±0.17 83.56±0.13 84.90±0.08
MAP 18.82±0.12 19.42±0.08 20.43±0.16 11.10±0.21 10.89±0.09 13.83±0.20 20.81±0.11 21.41±0.09

TXG-D
AUC 78.20±0.04 74.30±0.11 78.47±0.08 78.12±0.04 77.11±0.08 75.57±0.21 78.35±0.06 78.98±0.07
MAP 20.04±0.04 16.43±0.06 20.03±0.03 20.03±0.08 19.14±0.18 20.01±0.14 20.08±0.04 20.11±0.02

Diggs
AUC 86.65±0.03 82.03±0.04 87.58±0.06 87.82±0.02 87.83±0.03 90.18±0.05 88.06±0.03 89.67±0.06
MAP 10.19±0.02 7.25±0.01 11.52±0.12 11.85±0.08 12.02±0.06 26.21±0.14 12.23±0.03 15.95±0.22

Twitter
AUC 70.39±0.04 72.37±0.04 72.88±0.03 69.91±0.03 69.29±0.05 68.80±0.06 76.62±0.04 77.97±0.04
MAP 15.97±0.03 19.12±0.04 18.27±0.06 14.35±0.04 14.59±0.06 15.40±0.04 21.17±0.03 22.40±0.05

(a) ICI (b) IC-N

Figure 4: The diffusion visualization on a server of TXG-D
(seed: pink, true positive: orange, false positive: red).

10 repeated trials and skip the standard derivation as it is always

three orders of magnitude smaller than the average.

Spread estimation. We first report the RMSE of each model in

predicting the overall spread starting from S. As shown in Table 2,

the proposed ICI model outperforms all competitors on the invita-

tion and other types of diffusion datasets. In particular, the RMSE

score of ICI is up to 5 × better than that of the best competitor

CT-IC. Furthermore, we find that the IC-based models perform

much better than the LT-based models in each invitation diffusion

dataset, coherent to the observation illustrated in Section 3.2.

Growth estimation. We next evaluate the performance of each

model in predicting the spread growth. Akin to the actual diffusions,

the diffusion predicted by each model can also be preprocessed into

a diffusion tree, as described in Section 2.2. We compare the RMSE

between the number of predicted and true active users in each

hop 𝑡 , in which the active users have the same shortest distance 𝑡

from the seed set S. As reported in Figure 3, ICI has the best RMSE

in most hops of each dataset. This is because the multi-stage role

transitionmakes spread converge faster than competitors as the hop

increases. Notice that the RMSE of CT-IC dramatically decreases

from hop 1 to 2, as the activation process of CT-IC is postponed

by the communication probability. We also find that F-TM has a

similar trend of RMSE as ICI, but the RMSE in the smaller hop is

always worse than ICI. To explain, the logistic format threshold

function makes numerous users infected at the earlier step and

leaves almost no reachable inactive users at the later step.

6.3 Diffusion Prediction
In this part, we evaluate the performance of different models in the

micro-level diffusion prediction task (Problem 3). Given a social

network G and an actual seed set S, let 𝑦𝑢 ∈ {0, 1} be the label of

Table 4: Performance of varying 𝜷 on TXG-D.

AUC (%) MAP (%)
𝛽 0.3 0.6 0.9 0.3 0.6 0.9

IC+ 75.86 78.09 78.35 17.96 19.60 20.09

ICI 78.99 79.00 78.98 20.10 20.06 20.11

𝑢 ∈ V , where 𝑦𝑢 = 1 if 𝑢 is directly or indirectly infected by any

user in S and 𝑦𝑢 = 0 otherwise, and let 𝑦𝑢 ∈ [0, 1] be the activation
likelihood of 𝑢, which is the number of activitions of 𝑢 over 1,000

simulations. Following previous works [3, 6, 7, 14], we repeat each

approach 10 times and report the Area Under Curve (AUC) and

Mean Average Precision (MAP).

Overall evaluation. We first report the average and the standard

deviation of AUC and MAP scores for the proposal and all competi-

tors. In Table 3, the proposed ICI outperforms all competitors on

TXG-A, TXG-B, TXG-C, TXG-D, and Twitter, and is the second-best

approach on Diggs in terms of both evaluation metrics. For exam-

ple, ICI is 6.3% and 22.4% better than the best competitor CT-IC
on TXG-D in terms of AUC and MAP, respectively. In addition,

ICI improves the best competitor IC-N (resp. CT-IC) by 7.0% (resp.

17.2%) on Twitter in terms of AUC (resp. MAP), demonstrating that

our proposal is effective in capturing various types of diffusion.

Case study.We next conduct a case study to compare the diffusion

visualization induced by ICI and the leading competitor IC-N. We

randomly select a server on TXG-D with 33 seeds as the test graph.

We conducted 1,000 simulations, starting from the seeds, under

both models. We use the state-of-the-art solution PPRviz [49] to

visualize the diffusion trees generated by both models, where true

(resp. false) positive infected nodes are marked in orange (resp. red).

Figure 4 shows that both models produce a similar number of true

positives. However, IC-N produced 30.3% more false positives than

ICI, highlighting ICI’s higher precision in diffusion prediction.

Ablation study. At last, we justify the effectiveness of the user

roles defined in ICI. For the fair comparison, we extend the conven-

tional ICmodel by involving the conversion rates into the influence

probability, i.e., assigning 𝑝𝑢,𝑣 = 𝛽 ·𝛾/|N𝑖𝑛
𝑣 | to each edge (𝑢, 𝑣) ∈ E,

and call this variant the IC+model. The only difference between ICI
and IC+ is that the IC+merges the operations in the role transitions

of ICI into the social influence process. As reported in Table 3, we

find that the new variant can outperform all competitors on all

datasets except for Diggs due to utilizing the information of behav-

ior conversion. However, the IC+ model is still beaten by ICI in all
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Table 5: Performance of seed selection in Game X.

Model ICI IC Degree

Spread 2286 1923 843

Invite Rate 46.20% 39.64% 32.44%

cases. For example, the MAP score of ICI is 30.5% better than that of

the IC+model on Diggs. In addition, to validate the design choice of

the independent acceptor role, we evaluate the performance of ICI
and IC+ by varying 𝛽 . As reported in Table 4, as 𝛽 decreases, ICI
and IC+ become more distinguishable, and the effectiveness of ICI
grows more significant. Specifically, when 𝛽 = 0.3, ICI improves

IC+ by 4.1% and 10.7% in terms of AUC and MAP, respectively,

underscoring the necessity of having the stand-alone probability 𝛽 .

7 DEPLOYMENT
We have deployed the proposed ICI model for the seed selection

and target recommendation scenarios in several online games of

Tencent, as illustrated in the sequel. The system setting for the

online deployment follows that in Section 6. Due to the network

effect, we follow [41] and partition all users into communities with

high connectivity and profile homophily. We then conduct the

online A/B testing that randomly assigns the live traffic in the

same communities to a treatment group. Each approach is initially

computed based on the graph instance ahead of the event and is

then updated daily by using the latest graph snapshot.

7.1 Seed Selection
Tencent’s online gaming platforms often organize viral marketing

events, where a set of influential players (called seeds) are selected

and treated as initial lucky users with a virtual incentive. Each lucky

user 𝑢 can invite its friend 𝑣 following the invitation mechanism

introduced in Section 2.2. 𝑣 will also become a lucky user after

accepting the invitation and playing with𝑢. This leads to the spread

of the luck privilege throughout the social network. Accordingly,

the seed selection is paramount to the effectiveness of the event.

We deploy (i) the degree centrality, (ii) the proposed ICI model,

and (iii) the competing IC model to separately select 𝑘 = 5000

seeds for a viral marketing event on Tencent’s battle royale game

X with 227 million quarter-active users and 4 billion relationships.

Specifically, the solution degree centrality is a well-adopted baseline

for various Tencent’s viral marketing events [22], by which the

users with top-𝑘 largest degree centrality are selected as seeds.

Regarding the diffusionmodel ICI (resp. IC), we follow the influence

maximization (Problem 4) and greedily select𝑘 seeds by the state-of-

the-art solution OPIM-C [43], such that the spreads of selected seeds

under ICI (resp. IC) are maximized. We evaluate each approach

by (i) spread, the number of lucky users excluding seeds, and (ii)

invite rate, the fraction of lucky users who invite friends. The

higher spread and invite rate indicates better quality. As reported in

Figure 5, the approaches based on influence maximization are better

than the degree centrality in both evaluationmetrics, demonstrating

the usefulness of the influence maximization problem in real-world

viral marketing. Furthermore, ICI outperforms competitors in both

metrics. Notably, ICI improves IC (resp. degree) by 15.6% (resp.

170%) in terms of spread, and improves IC (resp. degree) by 15%

(resp. 37.5%) in terms of invite rate.

Table 6: Performance of target recommendation in Game Y.

Month Measure ICI IC Intimacy

Aug.
Invite Rate 9.60% 6.24% 7.98%
Pay Rate 35.15% 32.91% 26.71%

Sep.
Invite Rate 17.89% 16.85% 16.15%

Pay Rate 30.91% 24.53% 29.80%

7.2 Target Recommendation
Recall in Section 2.3 that a user can only invite the target friend from

a recommendation list with a limited size of 𝑘 during the friendship-

enhancing event. Therefore, judiciously recommending 𝑘 target

friends for each user is pivotal to the event’s performance, which

motivates the target recommendation task (Problem 2). We deploy

(i) Intimacy [34, 48], (ii) ICI and (iii) IC to a monthly friendship-

enhancing event on a Tencent’s role-playing game Ywith 2.5million

monthly active users and 6.5 million relationships. Specifically, In-

timacy is the well-adopted score in the target recommendation,

which records the number of historical activities/interactions be-

tween friends, e.g., co-playing and gifting. Following the explana-

tion in Section 4.1, we estimate the spread starting from 𝑣 under a

diffusion model (i.e., ICI or IC) for each target 𝑣 ∈ V𝑡 , and take it as
the influence centrality score of 𝑣 . We sort each score in descending

order and select the top-𝑘 target nodes to recommend. We evaluate

the effectiveness of each treatment group by the click rate and pay

rate. In particular, the click rate is the fraction of acceptors that

invite friends, and the pay rate is the fraction of invitees that pay for

this event. The higher rates indicate better quality. Table 6 reports

the performance of each solution in August and September. Most

notably, the treatment group ICI outperforms all competitors on

both metrics and two monthly events. In August, ICI improves the

best competitor Intimacy (resp. IC model) by 20.3% (resp. 6.8%) in

terms of invite rate (resp. pay rate). In addition, ICI improves the

best competitor IC (resp. Intimacy) by 6.2% (resp. 3.7%) on invite

rate (resp. pay rate) in September.

8 CONCLUSIONS AND FUTUREWORK
In this work, we introduce a diffusion model, ICI, to capture the

information dissemination process in the friend invitation scenario

and evaluate its performance through extensive experiments on

six different types of diffusion datasets. Our results show that ICI
outperforms six state-of-the-art methods in terms of effectiveness in

both cascade estimation and diffusion prediction. Additionally, the

deployment of ICI in seed selection and friend ranking scenarios

results in significant improvement. In future work, it would be

interesting to learn personalized parameters 𝛽 and 𝛾 for each user

to enhance performance in other tasks, such as diffusion prediction.
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A PROOFS
Proof of Theorem 4.1. Let 𝑍𝑖 be the fraction of acceptors over

all users in the 𝑖-th simulation, i.e., |V𝑎 |/|V|, then we can de-

rive that 𝑍𝑖 ∈ [0, 1], E[𝑍𝑖 ] = 𝜎G (S, 𝛽, 𝛾)/|V|, and 𝜎̂G (S, 𝛽, 𝛾) =
|V |
𝑟

∑𝑟
𝑖=1 𝑍𝑖 . Let 𝑍 =

∑𝑟
𝑖=1 𝑍𝑖 , then

E[𝜎̂G (S, 𝛽, 𝛾)] = E
[
|V |
𝑟 · 𝑍

]
=

|V |
𝑟

∑𝑟
𝑖=1 E[𝑍𝑖 ] = 𝜎G (S, 𝛽, 𝛾)

and 𝜎̂G (S, 𝛽, 𝛾) is an unbiased estimator of 𝜎G (S, 𝛽, 𝛾).

Lemma A.1 (Chernoff’s Ineqality [36]). Let 𝑍1, 𝑍2, . . . , 𝑍𝑟
be independent random variables with 𝑍𝑖 ∈ [0, 1] (∀1 ≤ 𝑖 ≤ 𝑟 ) and
𝑍 =

∑𝑟
𝑖=1 𝑍𝑖 . For any 0 < 𝜖 < 1,

Pr [|𝑍 − E[𝑍 ] | ≥ 𝜖 · E[𝑍 ]] ≤ 2 exp

(
−𝜖

2 ·E[𝑍 ]
3

)
.
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According to Lemma A.1, we can obtain that

Pr
[
|𝜎̂G (S, 𝛽, 𝛾) − 𝜎G (S, 𝛽, 𝛾) | ≥ 𝜖 · 𝜎G (S, 𝛽, 𝛾)

]
=Pr

[
| 𝑟
|V | · 𝜎̂G (S, 𝛽, 𝛾) −

𝑟
|V | · 𝜎G (S, 𝛽, 𝛾) | ≥

𝑟
|V | · 𝜖 · 𝜎G (S, 𝛽, 𝛾)

]
=Pr [|𝑍 − E[𝑍 ] | ≥ 𝜖 · E[𝑍 ]] ≤ 2 exp

(
−𝜖

2 ·𝑟 ·𝜎G (S,𝛽,𝛾 )
3· |V |

)
.

Based on the above and setting 𝑟 =
3 |V | ·ln (2/𝑝𝑓 )

|S | ·𝜖2 , we have

Pr
[
|𝜎̂G (S, 𝛽, 𝛾) − 𝜎G (S, 𝛽, 𝛾) | ≤ 𝜖 · 𝜎G (S, 𝛽, 𝛾)

]
=1 − Pr

[
|𝜎̂G (S, 𝛽, 𝛾) − 𝜎G (S, 𝛽, 𝛾) | ≥ 𝜖 · 𝜎G (S, 𝛽, 𝛾)

]
≥ 1 − 𝑝 𝑓 .

As each of 𝑟 simulations costs𝑂 ( |E |) time, the worst-case complex-

ity of MC simulation is 𝑂 (𝑟 · |E |).
Proof of Theorem 4.2. For a fixed node 𝑣 ∈ V , let 𝑍𝑖 ∈ {0, 1},
where 𝑍𝑖 = 1 if 𝑣 becomes an acceptor starting from S in the 𝑖-th

simulation and 𝑍𝑖 = 0 otherwise, then we can derive that E[𝑍𝑖 ] =
𝑎𝑝G (𝑣,S, 𝛽, 𝛾), and 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) =

∑𝑟
𝑖=1 𝑍𝑖/𝑟 . Let 𝑍 =

∑𝑟
𝑖=1 𝑍𝑖 ,

then

E[𝑎𝑝G (𝑣,S, 𝛽, 𝛾)] = E [𝑍/𝑟 ] = 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)

and 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) is an unbiased estimator of 𝑎𝑝G (𝑣,S, 𝛽, 𝛾). Ac-
cording to Chernoff’s inequality (Lemma A.1), we can obtain that

Pr
[
|𝑎𝑝G (𝑣,S, 𝛽, 𝛾) − 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) | ≥ 𝜖 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)

]
=Pr

[
|𝑟 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) − 𝑟 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) | ≥ 𝜖 · 𝑟 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)

]
=Pr [|𝑍 − E[𝑍 ] | ≥ 𝜖 · E[𝑍 ]] ≤ 2 exp

(
−𝜖

2 ·𝑟 ·𝑎𝑝G (𝑣,S,𝛽,𝛾 )
3

)
.

For each 𝑣 with 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) ≥ 𝛿 , based on the above and setting

𝑟 =
3 ln (2· |V |/𝑝𝑓 )

𝛿 ·𝜖2 , we have

Pr
[
|𝑎𝑝G (𝑣,S, 𝛽, 𝛾) − 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) | > 𝜖 · 𝑎𝑝G (𝑣,S, 𝛽, 𝛾)

]
<

𝑝 𝑓

|V| .

By union bound, |𝑎𝑝G (𝑣,S, 𝛽, 𝛾)−𝑎𝑝G (𝑣,S, 𝛽, 𝛾) | ≤ 𝜖 ·𝑎𝑝G (𝑣,S, 𝛽, 𝛾)
holds for each 𝑣 ∈ V of 𝑎𝑝G (𝑣,S, 𝛽, 𝛾) ≥ 𝛿 with probability at least

1−𝑝 𝑓 . Analogously, each of 𝑟 simulation costs𝑂 ( |E |) time, leading

the worst-case complexity to 𝑂 (𝑟 · |E |).
Proof of Theorem 4.3. For a fixed snapshot L, we first prove

that |ΓL (S)| is monotone and submodular. In particular, given any

S ⊆ T , each 𝑣 ∈ ΓL (S) is also reachable from S’s superset T , i.e.,

𝑣 ∈ ΓL (T ), hence |ΓL (S)| ≤ |ΓL (T )| and the monotonicity holds.

Given any S ⊆ T and 𝑣 ∈ V\T , each 𝑢 ∈ ΓL (T ∪ {𝑣})\ΓL (T ) is
the node that is not reachable from T but is reachable from 𝑣 . Since

S is the subset of T , 𝑢 ∈ ΓL (T ∪ {𝑣})\ΓL (T ) is also not reachable
from S, i.e., ΓL (T ∪ {𝑣})\ΓL (T ) ⊆ ΓL (S ∪ {𝑣})\ΓL (S). In other

words, |ΓL (S ∪ {𝑣}) | − |ΓL (S)| ≥ |ΓL (T ∪ {𝑣}) | − |ΓL (T )| and
the submodularity holds. Based on Eq. (1) and the fact that any non-

negative linear combination of monotone and submodular functions

is also monotone and submodular [37], the proof completes.
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