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ABSTRACT

Network embedding has been intensively studied in the literature

and widely used in various applications, such as link prediction

and node classification. While previous work focus on the design

of new algorithms or are tailored for various problem settings, the

discussion of initialization strategies in the learning process is often

missed. In this work, we address this important issue of initializa-

tion for network embedding that could dramatically improve the

performance of the algorithms on both effectiveness and efficiency.

Specifically, we first exploit the graph partition technique that di-

vides the graph into several disjoint subsets, and then construct an

abstract graph based on the partitions. We obtain the initialization

of the embedding for each node in the graph by computing the net-

work embedding on the abstract graph, which is much smaller than

the input graph, and then propagating the embedding among the

nodes in the input graph. With extensive experiments on various

datasets, we demonstrate that our initialization technique signifi-

cantly improves the performance of the state-of-the-art algorithms

on the evaluations of link prediction and node classification by up to

7.76% and 8.74% respectively. Besides, we show that the technique

of initialization reduces the running time of the state-of-the-arts

by at least 20%.

CCS CONCEPTS

• Computing methodologies → Machine learning; Learning

latent representations; • Information systems → Social net-

works;
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learning
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1 INTRODUCTION

Graphs are so ubiquitous that most of data can be naturally modeled

as graphs, not to mention the social networks. Network embedding

[3, 5, 7, 9, 11, 29] is an intensively studied and widely used tech-

nique, which assigns each node in the graph a fixed-length vector

that preserves the structure of graph and is helpful in various tasks,

such as link prediction and node classification. As such, network

embedding alleviates the difficult issue of feature engineering on

the graph. The solutions to network embedding can be roughly clas-

sified into two categories, namely random walk based approaches

[10, 21] and matrix based approaches [4, 27].

However, the problem of network embedding is non-convex [6]

rendering the previous approaches rely on the stochastic gradient

descent (SGD) technique for optimization, which would incur the

issue of stuckness in the local minima. Therefore, the initialization

strategies in the learning of network embedding, that takes into

account the structure of the input graph, would dramatically affect

the performance of the network embedding algorithms.

The previous approaches [6] for the initialization in the compu-

tation of network embedding take two steps: First, they coarsen

the edges or the star structures of the input graph G which pro-

duces a smaller graph д; Then, they exploit the existing algorithms

[4, 10, 21, 27] to computeд’s network embedding, which are directly

used as the initialization in the learning ofG’s network embedding.

However, there exist some issues that would make these approaches

deficient. Firstly, the coarsening method considers only the local

structure, which might not reflect the overall structure of the in-

put graph. For example, an edge playing the role of bridge [24] in

the graph could be coarsened, rendering the communities incident

to the bridge even difficult to be separated from each other. Sec-

ondly, since a node v in G might be pertinent to multiple nodes

in д, the direct inheritance of the embedding from one node in д
would result in the missing of v’s important structural features

inG. Thirdly, there exist several hyperparameters in the existing
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Figure 1: A graph G with 4 partitions, each of which is colored differently, and the abstract graph Ga of G.

algorithms [4, 10, 21, 27], which would highly degrade their per-

formance without careful configuration. However, the previous

approaches do not provide any effective solution about the tuning

of hyperparameters.

To address the aforementioned issues in the previous approaches,

we propose a graph partition based algorithm, dubbed as GPA,

which first divides the input graph G into several disjoint subsets

by the graph partition algorithm [14] that minimizes the edge cut

between subsets. Based on that, we collapse the subgraph induced

on each partition as an abstract node and the cutting edges as the

weighted edges to construct an abstract graph Ga , which is of size

much smaller thanG and represents the sketch ofG . Afterwards, we
compute the network embedding ofGa by a modified version of the

existing network embedding algorithm [21]. Note that, it is highly

costly to tune the hyperparameters of the network embedding al-

gorithm on the fly, due to the huge search space and expensive

evaluation cost. To alleviate this issue, we devise an approach that

learns a regression model for the hyperparameter configurations

in a preprocessing step and computes a suitable configuration in

linear time. Finally, the initial embedding of each node inG is com-

puted by propagating Ga ’s embedding among the nodes in G. In
the experiments, we demonstrate that the performance of GPA out-

performs the state-of-the-arts on various tasks, i.e., link prediction

and node classification. Besides, we show that the initialization

strategies of GPA lead to the speedup of the running time of the

baseline algorithms.

In summary, the contributions of the present work are the fol-

lowings.

• Wedevise the GPA algorithm as an effective technique for the

initialization of network embedding algorithms. Specifically,

GPA considers the structure of the input graph by exploiting

the graph partition algorithm to construct the sketch of a

graph and minimize the size of edge cut.

• We develop the algorithm to generate the abstract graph,

which is a weighted graph and is much smaller than the

input graph. We also devise the algorithm to compute the

network embedding on the weighted graph, which is not

discussed in the previous approaches.

• We propose an efficient algorithm that produces the initial

embedding of each node in the input graph from the embed-

ding of the abstract graph, and smooths the initialization via

a propagation process.

• We develop the hyperparameter learning algorithm that ad-

dresses the issue of hyperparameter tuning for the network

embedding on the abstract graph, which improves the per-

formance of the proposed algorithm.

• We demonstrate in various experiments where GPA outper-

forms the state-of-the-arts by up to 8.74% performance gain

on effectiveness and reduces the running time by at least

20%.

Paper organization. Section 2 explains the definitions and no-

tations used in the paper. Section 3 provides an overview of our

solution, as well as the details of the algorithms that address the

goal in this paper. After that, we demonstrate the superior perfor-

mance of our algorithms compared with the baseline methods over

several graphs. Finally, we discuss the related work in Section 5

and conclude the paper in Section 6.

2 PRELIMINARIES

Consider a graph G = (V ,E), where V is the set of nodes and E is

the set of edges. We say that a node v ∈ V is a neighbor of the other

node u ∈ V if there exists an edge (u,v) ∈ E. We denote N (v) as
the set of neighbors of v in V , i.e., N (v) ⊆ V .

A partitioning of G, denoted by P = {V1,V2, · · · ,Vk }, divides V
into k disjoint subsets where k is a user-defined number, such that

we have (i) Vi ∩Vj = ∅ where 1 ≤ i < j ≤ k , and (ii) ∪V ′ ∈PV ′ = V .

An abstract graph Ga = (Va ,Ea ) of G is constructed on the

partitioning P ofG. In particular, each subset in P is represented

as an abstract node ua in Va . In other words, there is a bijective

function b that maps each partition V ′ ∈ P to an abstract node

ua ∈ Va , i.e., b(V ′) = ua . Besides, there is a surjective function p
that maps each nodev ∈ V to an abstract node ua ∈ Va , denoted by
p(v) = ua . In addition, we construct a weighted edge (ua ,u ′a ) ∈ Ea
for any two abstract nodes ua and u ′a in Va if and only if there

exist two nodes v and v ′ in V such that we have (i) p(v) = ua , (ii)
p(v ′) = u ′a , and (iii) (v,v ′) ∈ E. The weight of (ua ,u ′a ), denoted by

w(ua ,u ′a ), is computed as the number of such edges (v,v ′). That is,
a weighted edge in Ga represents the edges in G that connect the

corresponding partitions.

Example 1. Figure 1(a) shows a graph G with 12 nodes and 16

edges. Assume that we partition G into 4 subsets, each of which is

colored differently. Then, the nodes with the same color are collapsed as

an abstract node. Therefore, there are 4 abstract nodes in the abstract

graph Ga of G, as shown in Figure 1(b). Besides, there is an edge of

weight 2 between the yellow abstract node and the gray abstract node

in Ga , since there exist 2 edges, each of which connects a yellow node

and a gray node in G. �
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Figure 2: The computing framework of GPA.

Given the graph G = (V ,E), the network embedding of G maps

each nodev ∈ V to ad-dimensional vector f (v), where f : V → Rd
and d is a user-defined parameter satisfying d 
 |V |. In general,

network embedding should preserve the structure ofG . In the other

words, network embedding minimizes∑
v,u ∈V

(
Av,u − θ (f (v), f (u)))2 (1)

whereA ∈ R |V |× |V | could be the matrix of connections, such as the

adjacency matrix of G, i.e., Av,u is 1 if (v,u) ∈ E otherwise 0, and

θ is a similarity function that maps f (v) and f (u) to a real value in

R.

As aforementioned, most of the algorithms for network embed-

ding ultimately exploit the technique of stochastic gradient descent

(SGD) for optimization, which would suffer from the issue of stuck-

ing in the local minima. Therefore, the initialization, that takes into

account the structure of the input graph, could play an important

role in the learning of network embedding that largely enhances

its performance.

Goal. Given a graph G = (V ,E), we are to compute for each node

v ∈ V a coarse embedding f (v), which preserves the sketching

structure of G and can be used as the initialization for the network

embedding algorithms.

3 METHODOLOGIES

A naive approach for the initialization of network embedding is

by random, which assigns random numbers in R for the initial

embedding of each node in the graph. However, this approach

disregards the structure of the input graph, rendering it unsuitable

for network embedding. Instead, we propose the graph partition

based algorithm (GPA) that depicts the sketch of the input graph

G = (V ,E) using the partitioning ofG , which are then processed as

the initial embedding of each node in V .

Specifically, GPA takes two phases in its computing framework,

namely the preprocessing phase and the initialization phase, as

shown in Figure 2.

In the initialization phase, GPA first computes a partitioning P
ofG by the graph partitioning algorithm, which produces k disjoint

subsets ofV , where k is a user-defined number and will be discussed

in Section 3.1. Then, we construct an abstract graph Ga = (Va ,Ea )
based on the partitioning of G, as aforementioned. Note that, the

size of Ga is k , which should be much smaller than the size of G,
i.e., |Va | = k 
 |V |.

After that, we compute the network embedding fa of the ab-

stract graph Ga , which is a weighted graph, by a modified version

of random walk based algorithm [21]. Finally, each node in G in-

herits the embedding of its corresponding abstract node inGa , and

then performs the embedding fusion among its neighbors via a

propagation process. Once the propagation is converged, we obtain

the initial embedding of each node, which will be taken as input by

the network embedding algorithms on G.
On the other hand, in the preprocessing phase, we build a regres-

sion model that learns the configuration of hyperparameters for

the network embedding algorithm on the abstract graph. As such,

given an abstract graph, we are able to identify a suitable set of

hyperparameters by inspecting the regression model with a linear

time cost.

In what follows, we will elaborate the details of each step.

3.1 Abstract Graph Construction

To construct the abstract graph Ga = (Va ,Ea ) of G = (V ,E), we
first obtain a partitioning P ofG , denoted by P = {V1,V2, · · · ,Vk }
where k is a user-defined number. The goal of graph partition is

(k, ϵ)-balanced where 0 < ϵ < 1, such that it satisfies the constraint

max
1≤i≤k

|Vi | ≤ (1 + ϵ)
⌈ |V |
k

⌉
,

and also minimizes the size of edge-cut, i.e.,
⋃

1≤i, j≤k
{(v,u) ∈ E | v ∈ Vi ,u ∈ Vj }.

However, the (k, ϵ)-balanced graph partition is NP-hard [2]. To

address this issue, we resort to the METIS algorithm [14] for graph

partitioning, which is widely adopted in practice and incurs a run-

ning time complexity of O(|V | + |E | + k logk) [13].
Based on P, we construct the abstract graphGa ofG by (i) creat-

ing an abstract node va for each partition V ′ ∈ P, i.e., b(V ′) = va ,
and (ii) connecting two abstract nodes va and ua with an ab-

stract edge (va ,ua ) of a weight w(va ,ua ) if and only if there ex-

ist w(va ,ua ) > 0 edges (v,u) ∈ E such that v ∈ b−1(va ) and
u ∈ b−1(ua ). Hence, the number of abstract nodes in Ga is k , i.e.,
the number of partitions ofG . Besides, the number of abstract edges

of Ga is bounded by the size of edge cut.

One crucial issue remaining is how to decide k . On one hand,

if k is small, then one abstract node would be pertinent to a lot of

nodes in the input graph G. As such, the initial embedding of each

node in G inherited from the corresponding abstract node would

lose the power of effectiveness. On the other hand, if k is large,

then the abstract graph Ga would be large too. Therefore, it would

be highly expensive to compute the network embedding on Ga ,
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Algorithm 1: Build-Alias(S)

Input: The set S of elements e with the transition probability

P(e).
Output: The alias probability Pa (e) and the alias A(e) for all

e ∈ S .
1 Let Pa (e) = |S | · P(e) and A(e) = e;

2 Let Sl = {e ∈ S |Pa (e) > 1} and Ss = {e ∈ S |Pa (e) < 1};
3 while Sl is not empty do

4 Select any elements x ∈ Ss and y ∈ Sl ;

5 Let A(x) = y and remove x from Ss ;

6 Decrease Pa (y) by 1 − Pa (x);
7 if Pa (y) ≤ 1 then

8 Remove y from Sl ;

9 If Pa (y) < 1, then add y into Ss ;

10 return Pa (e) and A(e) for all e ∈ S .

which increases the overall cost of the initialization phase. To strike

a good balance, we set k = �
√
|V |�, which is a sufficiently large

number but much smaller than |V |, that works well in practice.

3.2 Abstract Graph Embedding

To compute the network embedding fa of the abstract graph Ga ,

which is a weighted graph, we cannot directly exploit the previous

network embedding techniques [10, 21–23] as they are tailored for

the un-weighted graphs.

In order to remedy this issue, we adopt the random walk based

algorithm, i.e., DeepWalk [21], with a slight modification to accom-

modate the network embedding learning on the abstract graph Ga .

Note that, there are two phases of computation in the random walk

based algorithms: First, it generates a number of random walks

from each node in G; Then, it computes the embedding of each

node by word2vec [19], which takes as input the random walks.

There are some hyperparameters in the random walk based algo-

rithms, namely the number of random walks and the length of a

random walk, which would be configured by the hyperparameter

learning module, as explained in the later section. While the sec-

ond phase remains the same, the modification mainly happens in

the first phase where the generation of random walks follows the

distribution of weights on the abstract edges.

In particular, when generating the randomwalks onGa , the tran-

sition probability of an edge (ua ,va ) ∈ Ea , denoted by P(ua ,va ), is
calculated as the fraction of the weightw(ua ,va ) among the total

weights of the edges incident toua , i.e., P(ua ,va ) = w (ua,va )∑
v
′
a ∈N (ua )w (ua,v ′

a ) .
Therefore, for each edge (ua ,va ) ∈ Ea , we have (i) 0 < P(ua ,va ) ≤
1, and (ii)

∑
v ′
a ∈N (ua ) P(ua ,v ′

a ) = 1. In the generation of the random

walk with the ending node ua , we extend the walk by selecting a

node va ∈ N (ua ) with the transition probability P(ua ,va ).
To make the selection of nodes in random walk efficiently, we

resort to the alias method [26] with a preprocessing step, as il-

lustrated in Algorithm 1. Specifically, the alias method builds for

each element e ∈ S an alias probability Pa (e) ∈ [0, 1] and an alias

A(e) ∈ S . To explain, for each element e ∈ S , the algorithm first

enlarges the transition probability P(e) by |S | times, and sets the

Algorithm 2: Propagate(G, fa , δ )

Input: The graph G = (V ,E), the embeddings fa of G’s
abstract graph, and the threshold δ .

Output: The set fi of initial embedding of each node v ∈ V .

1 Let fi (v) = fa (p(v)) for each node v ∈ V ;

2 do

3 for each node v ∈ V do

4 Let fnbr (v) = 1
|N (v) |

∑
u ∈N (v) fi (u);

5 Compute f ′i (v) = 1
2 (fi (v) + fnbr (v));

6 Let Δ = 1
|V |

∑
v ∈V ‖ f ′i (v) − fi (v)‖;

7 For each node v ∈ V , let fi (v) = f ′i (v);
8 while Δ > δ ;

9 return fi .

initial alias probability Pa (e) = P(e) · |S | and the initial alias of e as
itself (Line 1). Then, the algorithm works iteratively where each

iteration selects two distinct elements x and y where Pa (x) < 1 and

Pa (y) > 1, and then assigns y as the alias of x and decreases Pa (y)
by 1−Pa (x). The algorithm terminates when there are no elements

y with Pa (y) > 1 (Lines 2-9). After that, to select an element from S ,
the alias method first randomly selects an element e ∈ S with the

probability 1
|S | , and then chooses e with the probability Pa (e) or

A(e) with the probability 1− Pa (e). As a result, the time complexity

of the preprocessing step and selecting an element is O(|S |) and
O(1) respectively.

3.3 Embedding Propagation

To compute the initial network embedding of G from the network

embedding fa of the abstract graph Ga , a naive approach is to let

the initial embedding of each node v equal the embedding of the

corresponding abstract node p(v). However, this approach would

suffer from the issue where the nodes pertinent to the same abstract

node have the same initial embeddings, rendering this approach

ineffective.

In order to address this issue, we devise an iterative approach

where each node updates its own embedding based on the embed-

dings of its neighbors until the convergence is met. Specifically, in

each iteration, each node v ∈ V first aggregates the embeddings

of v’s neighbors, which results in the average embedding fnbr (v).
Then, we update v’s embedding as the aggregation of fnbr and

its own embedding fi (v). The rationale is that the embedding of a

node should be close to the ones of its neighbors in the graph.

Algorithm 2 illustrates the procedure of embedding propagation.

Consider a graph G = (V ,E), the abstract graph Ga of G, and the

network embedding fa of Ga . At the beginning, for each node

v ∈ V , we let the initial embedding fi (v) of v be the embedding

fa (p(v)) of its abstract node p(v) inGa (Line 1). Then, the algorithm

works in several iterations. In each iteration, the updating of the

embedding of each node v ∈ V can be achieved in a two-layer

computing framework. In the first layer, we compute the average

embedding fnbr among its neighbors (Line 4), i.e.,

fnbr (v) =
1

|N (v)|
∑

u ∈N (v)
fi (u).
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Figure 3: The generation of training data for hyperparameter learning.

Table 1: Hybrid features for hyperparameter learning.

Category Feature

hyperparameters
the number of random walks

the length of a random walk

graph statistics

the number of nodes of Ga

the number of edges of Ga

the density of Ga

the diameter of Ga

the average degree of Ga

the maximum degree of Ga

the average edge weight of Ga

the maximum edge weight of Ga

Then, we employ another layer to calculate the updated embedding

f ′i (v) of v as the average of fi (v) and fnbr (v), i.e.,

f ′i (v) =
1

2
(fi (v) + fnbr (v)).

After that, for all nodes v ∈ V , we compute the average difference

between the updated embedding f ′i (v) and the previous embedding

fi (v) on their Euclidean distance (Line 6), denoted by

Δ =
1

|V |
∑
v ∈V

‖ f ′i (v) − fi (v)‖.

Now, we can update the embedding fi (v) of v as f ′i (v), i.e., fi (v) =
f ′i (v), which completes this iteration. If the average difference Δ
is not more than a user-defined threshold δ , we terminate this

procedure and return fi as the result. Otherwise, we continue up-
dating the embedding of each node v ∈ V until convergence is

met, i.e., Δ ≤ δ . Note that, δ is usually set as a value propor-

tional to 1
|V | . Consequently, the time complexity of one iteration

is O(∑v ∈V |N (v)|) = O(|E |), as each node needs to inspect the

embeddings of its neighbors once.

3.4 Hyperparameter Learning

There is one crucial issue remaining in the network embedding

learning on the abstract graph Ga which is the configuration of

hyperparameters in the random walk based algorithm, i.e., the num-

ber of random walks and the length of a random walk. A naive

approach is to configure the hyperparameters with random values.

However, this approach would severely degrade the performance

of the network embedding algorithm. Alternatively, one might pro-

pose the solution that exploits the existing optimization techniques

[1], such as grid search, to tune the hyperparameters on the fly. Nev-

ertheless, this approach would greatly increase the running time

of the network embedding algorithm, as the optimization could be

costly.

To cope with this issue, we utilize a preprocessing phase which

trains a regression model that takes into account both the hyperpa-

rameters and the statistics of the abstracts graphs. As such, given an

abstract graph Ga , we are able to infer from the model the suitable

hyperparameters for Ga with a slight cost, as explained shortly.

Table 1 shows the hybrid features for hyperparameter learning,

which consists of two features from the category of hyperparame-

ters and eight features from the category of graph statistics.

As illustrated in Figure 3, to generate the training data with

the hybrid features, we first construct a setH of hyperparameter

combinations and a set S of graph statistics for each abstract graph

Ga . Specifically, we enumerate the possible values for each hyper-

parameter by heuristic to produce the setH . Besides, to generate

S, we first exploit the random graph generation technique [15] to

generate a set G of random abstract graphs. And then, we utilize

the graph mining tool, SNAP [16], to calculate the statistics of each

graph in G, which results in the set S. After that, for each hyper-

parameter combination H ∈ H and each graph statistics S ∈ S, we
concatenate H and S to generate one data point with the hybrid

features. That is, the total number of data points will be |H | · |G|.
All data points with the hybrid features together form the hybrid

matrix, denoted by X .

For each row in the hybrid matrix X , which is generated from a

hyperparameter combination H and the statistics S of an abstract

graph Ga , we compute the network embedding fa on Ga with

hyperparameters in H . Then, we evaluate fa on Equation 1 with a

slight modification where θ is an Euclidean distance function and

Av,u isw(v,u) if (v,u) ∈ Ea otherwise 0. As such, for all the data

points in X , we obtain a vector of the evaluation scores, denoted

by Y .
Hence, our goal is to find a vectorw , such that we have

X ·wT = Y .

As a result, the objective is

min
w1,w2, ...,wα

∑

1≤i≤β
(
∑

1≤j≤α
xi j ·w j − yi )2

where α is the number of dimensions of X and β is the number

of data points in X . Solving the above formula by stochastic gra-

dient descent, we are able to identify the vector w that largely

approximates to the optimal solution.
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Table 2: Datasets.

Dataset Category #Nodes #Edges #Labels

Enron1 email 36,692 183,831 0

GRQC2 collaboration 5,242 14,496 0

Blog3 social 10,312 333,983 39

Wiki4 word 4,777 184,812 40

Once obtained the regression model, i.e., w , we can compute

a suitable configuration of hyperparameters for a given abstract

graphGa efficiently. To explain, we first produce the graph statistics

S of Ga by utilizing SNAP. Then, we inspect each hyperparameter

combination H ∈ H , and generate a data point x with the hybrid

features by concatenating H and S . Hence, we can calculate the

score of the data point x asy = x ·wT . In the end, we choose the hy-

perparameter combinationH ∈ H with the highest score. Note that,

the time complexity of identifying the suitable hyperparameters is

O(|H |).

4 EXPERIMENTAL EVALUATIONS

In this section, we demonstrate that the proposed graph partition

based algorithm, dubbed as GPA, outperforms the state-of-the-

art, i.e., HARP [6], as well as the randomized method, denoted

by Random, on various datasets and over different tasks, such as

link prediction and node classification. In particular, we apply the

initialization techniques of GPA, HARP and Random to the widely-

used network embedding algorithms, i.e., node2vec [10], DeepWalk

[21], and LINE [23]. Note that, (i) the original versions of network

embedding algorithms adopt Random as its initialization method,

and (ii) for each algorithm, we set the embedding vector sized = 128

and their other hyperparameters as the recommended ones in all

experiments.

Our algorithms are implemented in Scala and C++, and all ex-

periments are conducted on a machine with 8 GB memory and an

Intel Core i5 CPU (2.3 GHz), which is installed with the macOS. For

each set of experiments, we perform each algorithm 10 times and

report the average reading.

Following the previous work [10, 16], we evaluate the perfor-

mance of the proposed algorithms against 4 datasets from various

categories in our experiments, as shown in Table 2.

4.1 Evaluations on Link Prediction

In the first set of experiments, we evaluate the performance of

network embedding with the initialization, provided by GPA, on

the task of link prediction. Specifically, we compare GPA against

HARP and Random on the graphs: Enron, GRQC, Blog, and Wiki.

To generate the testing and training sets for the task of link

prediction on each graphG = (V ,E), we first randomly select �α |E |�
number of edges from E, denoted by Es , where 0 < α < 1. Then,

we remove Es from E, resulting in the residual set Er of edges,

i.e., Er = E \ Es . After that, we compute the largest connected

component C of the graph induced on the edges in Er . Finally, we

1http://www.cs.cmu.edu/∼enron
2http://snap.stanford.edu/data/ca-GrQc.html
3http://socialcomputing.asu.edu/datasets/BlogCatalog
4www.mattmahoney.net/dc/textdata

produce the training set consisting of the edges in Er whose nodes

are in C , and generate the testing set that contains two parts: (i)

The positive samples, i.e., the set of the edges of Es whose nodes
are both in C , and (ii) the negative samples, i.e., the set of random

pairs of nodes u and v in C where (u,v) is not an edge in E. Note
that, in the experiments, we set α = 10% and the size of testing

set as 2|Es |, i.e., the number of positive samples equals the number

of negative samples. Additionally, due to practical considerations,

for each node v appearing in Es , the number of positive samples

incident to v should be equal to the number of negative samples

incident to v .
For each graph G = (V ,E), we compute the embedding of each

node inV by running the network embedding with the initialization

techniques on the training set, and then calculate the similarity of

all pairs of nodes in the testing set. For each node v , we predict the
top t nodes that are the most similar to v , where t is the number

of positive samples incident to v in Es . We adopt two kinds of

similarity measures: Cosine similarity and Euclidean similarity.

Given two vectors x andy of the same length, the Cosine similarity

ofx andy is
x ·y

‖x ‖ ‖y ‖ , and the Euclidean similarity of them is ‖x−y‖.
In the end, we calculate the accuracy as the fraction of positive

samples in the most similar |Es | pairs of nodes in the testing set.

Table 3 shows the accuracy of node2vec, DeepWalk, and LINE

with the initialization techniques, i.e., GPA, HARP, and Random,

for link prediction by Cosine similarity and Euclidean similarity on

the datasets Enron, GRQC, Blog, and Wiki respectively. As we can

see, GPA outperforms HARP on all datasets and in terms of both

similarity measures, and the results of HARP is slightly better than

the ones of Random. In particular, on the Enron dataset using the

Euclidean similarity, GPA is better than HARP on LINE by 7.8%,

on node2vec by 2.6%, and on DeepWalk by 2.5%. This is due to

that GPA exploits several effective strategies that overcome the

shortage of HARP and lead to a better initialization for the network

embedding algorithms.

4.2 Evaluations on Node Classification

In node classification, we evaluate the performance of GPA, HARP

and Random on the datasets, i.e., Blog and Wiki, whose nodes are

associated with labels. We run the embedding algorithm with the

initialization techniques on each graph to obtain the embedding

of nodes, which are then input to a multi-class logistic regression

classifier utilizing one-vs-rest technique and L2 regularization. We

randomly split the set of nodes equally to generate the training

and testing sets respectively. Following the previous work [10], we

measure the performance of GPA, HARP, and Random in micro-F1

score and macro-F1 score.

Table 4 presents the micro-F1 score and macro-F1 score of all

the algorithms on the datasets Blog and Wiki. Observe that GPA

consistently outperforms HARP in all settings, and HARP is slightly

better than Random. In particular, regarding the method of LINE,

the relative performance gain on Blog of GPA compared to HARP

is 8.76% in micro-F1 score and 2.62% in macro-F1 score. Besides, on

Wiki, DeepWalk with GPA gives us 4.41% gain in micro-F1 score

and 2.46% gain in macro-F1 score. This again demonstrates the

superiority of our graph partition based approach that provides

effective initialization for network embedding.
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Table 3: Precisions in the task of link prediction evaluated by Cosine similarity and Euclidean similarity.

Algorithm Initialization
Cosine Similarity Euclidean Similarity

Enron GRQC Blog Wiki Enron GRQC Blog Wiki

node2vec

GPA 0.9579 0.9933 0.9816 0.9325 0.9665 0.9947 0.9887 0.9438

HARP 0.9209 0.9621 0.9708 0.9210 0.9418 0.9846 0.9618 0.9258

Random 0.9136 0.9533 0.9631 0.9117 0.9309 0.9817 0.9587 0.9217

DeepWalk

GPA 0.9702 0.9937 0.9820 0.9315 0.9691 0.9958 0.9879 0.9411

HARP 0.9352 0.9625 0.9717 0.9178 0.9449 0.9842 0.9658 0.9354

Random 0.9218 0.9430 0.9535 0.9024 0.9355 0.9764 0.9517 0.9276

LINE

GPA 0.7849 0.9852 0.9436 0.8175 0.5790 0.9665 0.9274 0.8356

HARP 0.7484 0.9526 0.9298 0.7849 0.5372 0.9471 0.9016 0.8126

Random 0.7414 0.9411 0.9127 0.7658 0.5237 0.9392 0.8836 0.8028

Table 4: F1 scores in the task of node classification.

Algorithm Initialization
Micro-F1 score Macro-F1 score

Blog Wiki Blog Wiki

node2vec

GPA 0.3174 0.6310 0.2395 0.5830

HARP 0.3028 0.6192 0.2281 0.5631

Random 0.2916 0.6033 0.2195 0.5587

DeepWalk

GPA 0.3399 0.6295 0.2563 0.5616

HARP 0.3191 0.6029 0.2387 0.5481

Random 0.3106 0.5967 0.2315 0.5380

LINE

GPA 0.3070 0.4987 0.2082 0.4282

HARP 0.2823 0.4798 0.2029 0.4165

Random 0.2799 0.4687 0.1982 0.4091

4.3 Evaluations on Efficiency

In this experiment, we evaluate the efficiency of GPA by comparing

with HARP on all datasets. Figure 4 reports the running time of

GPA and HARP that take as input the whole graph in each dataset.

GPA is much faster than HARP on all datasets with at least 20%

performance gain. In particular, GPA reduces the running time by

33.33% compared to HARP on the Enron dataset. This is because

HARP computes the initial embedding of each node in a hierarchical

manner that requires several iterations of computation, while GPA

reduces the input graph to the abstract graph of size �√n� whose
embeddings are then propagated among the nodes in the input

graph with a linear cost, where n is the number of nodes in the

input graph.

5 RELATEDWORK

Network embedding or graph representation learning has been

intensively studied in the literature (see [3, 5, 7, 9, 11, 29] and the

references therein). Most of these approaches [10, 12, 21–23] exploit

negative sampling or skip-gram models, which turn out to be the

non-convex problem [6, 8] and usually solved by stochastic gradient

descent (SGD). However, few of them takes into account the effect

of the initial embedding of each node in the network that would

dramatically impact the performance of the algorithms.

Besides HARP [6], introduced in Section 1, MILE [17] also adopts

the hierarchical computing framework, almost the same as HARP,

but differs from HARP in that it aims to compute the final network

embedding for the input graph.

On the other hand, Mishkin et al. [20] discussed the importance

of initialization in the training of deep neural networks. However,

their approach does not consider the graph data, and can not be ap-

plied to network embedding. The other line of research on network

embedding is for different problem setting or datasets [18, 25, 28],

making them unsuitable for solving the problem of this paper.

6 CONCLUSIONS

In this paper, we studied the issue of initialization for network

embedding that would significantly affect the performance of net-

work embedding algorithms. To address this issue, we proposed

the algorithm GPA that constructs the abstract graph sketching

the input graph by well partitioning the input graph. We devel-

oped a weighted network embedding algorithm to compute the

embedding of nodes in the abstract graph. After that, the network

embedding of the abstract graph will be propagated among the

nodes of the input graph, which leads to the initial embedding of

the input graph. Besides, to make the weighted network embed-

ding algorithm efficient, we devised a regression model to address

the issue of hyperparameter tuning in the weighted network em-

bedding algorithm. Finally, we demonstrated the effectiveness and

efficiency of GPA against the state-of-the-arts on various datasets.

In particular, GPA achieves the performance gains of up to 7.76%

and 8.74% on link prediction and node classification respectively,

and reduces the running time by at least 20%.
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Figure 4: The running time of the initialization techniques.
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