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Given a social network G with n nodes and m edges, a positive integer k , and a cascade model C, the in-

fluence maximization (IM) problem asks for k nodes in G such that the expected number of nodes influ-
enced by the k nodes under cascade model C is maximized. The state-of-the-art approximate solutions run in
O (k (n +m) logn/ϵ2) expected time while returning a (1− 1/e − ϵ ) approximate solution with at least 1− 1/n
probability. A key phase of these IM algorithms is the random reverse reachable (RR) set generation, and this
phase significantly affects the efficiency and scalability of the state-of-the-art IM algorithms.

In this article, we present a study on this key phase and propose an efficient random RR set generation
algorithm under IC model. With the new algorithm, we show that the expected running time of existing IM
algorithms under IC model can be improved to O (k · n logn/ϵ2), when for any node v , the total weight of
its incoming edges is no larger than a constant. For the general IC model where the weights are skewed, we
present a sampling algorithm SKIP. To the best of our knowledge, it is the first index-free algorithm that
achieves the optimal time complexity of the sorted subset sampling problem.

Moreover, existing approximate IM algorithms suffer from scalability issues in high influence networks
where the size of random RR sets is usually quite large. We tackle this challenging issue by reducing the
average size of random RR sets without sacrificing the approximation guarantee. The proposed solution is
orders of magnitude faster than states of the art as shown in our experiment.

Besides, we investigate the issues of forward propagation and derive its time complexity with our proposed
subset sampling techniques. We also present a heuristic condition to indicate when the forward propagation
approach should be utilized to estimate the expected influence of a given seed set.
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1 INTRODUCTION

In social networks, cascade models the word-of-mouth effect that users adopt certain products, take
up some opinions or receive certain information due to the influence of their friends. Given a social
network G with n nodes and m edges, a positive integer k , and a cascade model C, the influence

maximization (IM) problem asks for k nodes in G that can infect the largest number of nodes in
cascade model C. IM finds important applications in viral marketing, a marketing strategy that a
company provides their product freely to a few influential users on social networks, in the hope
that they will recommend the product to their friends.

Kempe et al. [30] present the first seminal work on IM and show that finding k users which
maximize the influence are NP-hard. They consider two popular cascade models, the Independent-

Cascade (IC) model and Linear-Threshold (LT) model, and provide a general greedy algorithm
that provides (1− 1/e −ϵ )-approximate solutions for both cascade models. However, the proposed
solution requires Ω(k · m · n · poly (1/ϵ )) running time and is prohibitively expensive on large
social networks. A plethora of research works then study how to improve the efficiency of the IM
problem. Most algorithms rely on heuristics to identify those highly influential nodes but fail to
provide the desired approximation guarantee.

To tackle this challenging issue, Borgs et al. [9] make a theoretical breakthrough that reduces
the time complexity to O (k (m + n) log2 n/ϵ3), which is almost linear to the graph size, while still
providing (1 − 1/e − ϵ )-approximation under the IC model. They further prove a lower bound
Ω(m + n) for the expected running time on general graphs under the IC model. The key idea of
their proposed solution is to generate a sufficiently large number of random reverse reachable

(RR) sets, and then apply the greedy algorithm to select the k nodes. A line of follow-up research
work then focuses on how to reduce the number of random RR sets to achieve better efficiency
while providing the same approximation guarantee. The representatives include [42, 46–48]. Tang
et al. [48] present TIM/TIM+, which reduces the time complexity to O (k (m + n)ϵ−2 logn), and fur-
ther show that the idea of RR sets can be applied to both IC and LT model. Later, Tang et al. [47]
propose IMM, Nguyen et al. [42] develop SSA and D-SSA, and Tang et al. propose OPIM-C [46]
to further improve the empirical efficiency by reducing the number of random RR sets generated
without improving the time complexity. This line of RR-set-based solutions is shown to provide su-
perb efficiency on large-scale social networks under several popular cascade models. For instance,
on Twitter network with 1.5 billion edges, OPIM-C can return an approximate answer within
10 seconds. However, these IM algorithms, using RR set as the backbone, suffer from scalability
issues in high influence networks as evidenced by existing empirical studies [7]. How to tackle
this challenge is still an open problem.

Motivated by this, in this article, we present an in-depth study on the random RR set generation,
the key phase for all existing RR-set-based solutions. Instead of trying to reduce the number of
RR sets, we consider from a totally different perspective, by reducing the computational cost of
generating a random RR set. We improve the efficiency of RR set generation by effective subset
sampling and show that our new RR set generation algorithm improves over the existing RR set
generation algorithm by up to an order of magnitude. With the new algorithm, we show that
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the expected running time of existing IM algorithms under IC model can be improved to O (k ·
n logn/ϵ2),1 when for any nodev , the total weight of its incoming edges is no larger than a constant.
We further show that without modifying the existing RR set generation algorithm under LT model,
the time complexity can be improved to O (k · n logn/ϵ2) as well.

Moreover, in high influence networks, the size of a random RR set tends to be extremely large,
and it takes prohibitive computational and memory costs. For instance, in the pandemic, messages
about COVID-19 are easily get propagated across the social network, resulting in a phenomenon
called Infodemic. In such scenarios, even if we apply our new algorithm to generate the random RR
sets, it is still too expensive since the size of a random RR set is too large. To remedy this deficiency,
we propose a non-trivial two-phase solution that significantly reduces the average size of random
RR sets, making our solution practical for high influence networks. The main idea is that we first
select a set B of b nodes as the seeds and then select the remaining k−b nodes. When we select the
remaining k −b nodes, the RR set generation process can immediately stop when any node in B is
reached. Thus, the average size of the random RR sets can be reduced. The main challenge is how
to retain the approximation guarantee with this idea. We show that our proposed solution still
provides the same theoretical result as existing solutions. Experimental results demonstrate that
with our solution, the average size of random RR sets can be reduced by up to 700×. Our solution
is further up to two orders of magnitude faster than alternatives.

Though the RR-set-based solution is highly efficient to find out a seed set for the IM problem,
unfortunately, it provides limited propagating information. For instance, given a seed set obtained
by RR-set-based solutions, we have no idea about which nodes will be influenced with a probability
higher than a certain threshold. Such a query is sensible on its own. In viral marketing, after
providing products to influential users, a company has the motivation to further distribute coupons
to those who are more likely to purchase the products, in hope of improving its sales performance.
To tackle this issue, if we still insist to apply the RR-set-based solution, then we need to generate
a large number of RR sets from each target node, which incurs prohibitive computational costs.
However, another solution is to conduct many simulations starting from the obtained seed set S ,
each of which follows the definition of the influence propagation process. Then for node v , the
fraction of the simulations in which v is finally activated is an estimator for the probability that v
is influenced with respect to seed set S . In contrast to the RR-set-based approach, such simulations
are referred to as forward propagations. From the aforementioned example, it is showen that the
forward propagation could be a powerful tool in some scenarios, deserving our full attention. In
this article, we develop non-trivial results about this problem.

This manuscript is a journal extension to our previous conference article [26]. We summarize
the main differences from our conference version as follows:

— For the general IC model where the weights are skewed, the index-based solution for the
subset sampling problem might suffer from cache efficiency issues as it requires a two-
dimensional index structure. In Section 4, we propose a sampling algorithm, dubbed as SKIP,
which achieves the optimal time complexity of the index-free sorted subset sampling prob-
lem [11]. To our best knowledge, this is the first index-free algorithm that achieves the op-
timal time complexity. Our experimental results demonstrate that it further achieves better
practical performance than existing solutions.

— In Section 6.1, we prove that with a constraint that the total weight of the incoming edges
for any node v ∈ V is bounded by a constant number, the cost of a forward propagation
with our subset sampling technique is bounded by O (IC (S )), where IC (S ) is the expected

1The lower bound in [9] only applies to general IC model.
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influence of the seed set S . It is optimal since it costs at least O (1) to sample an influenced
node. Furthermore, experimental evaluations show its practical efficiency.

— Since a forward propagation is bounded byO (IC (S )) if the given seed set has a low expected
influence, it is possible to reap some benefits from using the forward propagation approach
when estimating influence of a given seed set. In Section 6.2, we first prove that it takes
O (davд ) to sample a random RR set on undirected graphs under the WC model, where davд

is the average degree. With this bound on hand, we further develop a heuristic condition to
indicate when the forward propagation approach should be used. Experimental evaluations
show that for those seed sets satisfying the proposed condition, the forward propagation
estimator does provide a much better practical performance in terms of influence estimation.

The rest of this manuscript is organized as follows. Section 2 reviews the definition of the
IM problem and existing solutions. Section 3 presents our Subset Sampling with Influence

Maximization (SUBSIM ) framework for WC and Uniform IC model. Section 4 extends SUB-
SIM to the general IC model with index-based and index-free solutions. Section 5 handles the
highly influential scenarios where existing RR-set-based solutions suffer from scalability issues.
Section 6 focuses on the forward propagation issues. Section 7 reviews related work, and Section 8
shows the experimental evaluations.

2 PRELIMINARIES

2.1 Problem Definition

Let G = (V ,E) be a directed graph G with n nodes and m edges representing a social network
where each node v ∈ V represents a user and each edge (u,v ) ∈ E represents the relationship,
e.g., friendship, between u and v . If (u,v ) ∈ E, we say that u is the in-neighbor of v and v is the
out-neighbor of u. Assume that each edge e = (u,v ) is associated with a weight p (u,v ) ∈ [0, 1],
denoted as the propagation probability. Given a set S of nodes in G, we consider the following
discrete-time stochastic cascade process C which applies to both the IC and LT model:

— At timestamp 0, all the nodes in set S are activated and the remaining nodes are inactive. A
node activated will remain activated in subsequent timestamps.

— If a node is activated at timestamp i , it has a chance to activate its out-neighbors at timestamp
i+1 according to some probability distribution (depending on the cascade model), after which
it cannot activate any node.

— The influence propagation terminates when none of the activated nodes can activate other
nodes.

Let IC (S ) be the number of activated nodes inG for an instanceC of above stochastic propagationC.
We denote set S as the seed set and IC (S ) as the influence of S in stochastic propagation instanceC ,
and denote IC (S ) = EC ∈C[IC (S )] as the expected influence of S under the cascade process C. Table
1 lists the notations used frequently in this article.

Definition 1 (Influence Maximization). Given a graphG, a cascade model C, and an integer k , the
influence maximization problem asks for a size-k seed set Sk with the largest expected influence,
i.e., Sk = arg maxS ′: |S ′ |=k IC (S ′).

Cascade Models. We focus on two widely adopted diffusion models: the IC model and LT model.
Both models share the same discrete-time cascade process as mentioned in Section 2.1 and the main
difference lies in how the inactive nodes get activated:

— IC model. Suppose nodeu gets activated at timestamp i , thenu has a single chance to activate
its inactive out-neighbor v with probability p (u,v ) at timestamp i + 1.
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Table 1. Frequently Used Notations

Notation Description

G (V ,E) a social network with node set V and edge set E
n,m n = |V |, andm = |E |
IN (v ),OUT (v ) the set of in-neighbours and out-neighbours of node v ,

respectively
din (v ),dout (v ) din (v ) = |IN (v ) |, and dout (v ) = |OUT (v ) |, respectively
davд the average degree of an undirected graph
IC (S ) the expected influence of S
OPTk the maximal IC (S ) for any size-k seed set
So

k
an optimal seed set with IC (So

k
) = OPTk

S∗
k

the size-k seed set returned by a certain algorithm
R a random RR set
R a set of random RR sets, that is, R = {R1,R2, . . .}
ΛR (S ) the coverage of a seed set S with respect to R
I
−
C

(S ) a lower bound of the expected influence of S
I
+
C

(So
k

) an upper bound of the expected influence of So
k

— LT model. In the LT model, it assumes that for each node v : (i) the sum of the propagation
probability of its incoming edges is no more than 1, and (ii) a probability λv is selected
uniformly at random from [0, 1]. If v is inactive at timestamp i , then it becomes activated at
timestamp i + 1 if and only if

∑
u ∈A p (u,v ) ≥ λv , where A is the set of activated in-neighbor

of v at timestamp i .

2.2 Existing Solutions

As mentioned in Section 1, most existing scalable IM methods utilize a sampling technique called
Reverse Influence Sampling (RIS), proposed by Borgs et al. [9]. This technique is based on the
concept of random RR set. A random RR set R is constructed in two steps: (i) randomly select a
node v ∈ V ; (ii) reversely sample the set R of nodes that can activate v , such that for each node
u ∈ V , the probability that it appears in R equals the probability that u can activate v . This set R is
denoted as a RR set of v , and node v is the target node of the RR set R.

Under the IC model, we can generate a random RR set as follows: Generate a directed graph д
by removing each edge e with probability 1−p (e ) independently, and denote G as the distribution
of д. Given an instance д of distribution G and a node v , the RR set R for v in д is the set of nodes
in д that can reachv . R is a random RR set ifv is sampled uniformly at random fromV . Intuitively,
if a set S is highly influential, then there is a high chance that some nodes in S appear in the RR
set of a randomly generated node v . Borgs et al. [9] establish the following connection between
the expected influence of S and a random RR sample.

Lemma 1. Let S ⊆ V be a seed set and R be a random RR set generated with diffusion model C,

then

IC[S] = n · Pr[S ∩ R � ∅].

Lemma 1 indicates that we can estimate the expected influence of an arbitrary seed set S using
random RR sets. We say S covers an RR set R if S ∩ R � ∅. Assume that we generate a set R of
random RR sets. Define the coverage ΛR (S ) of a seed S with respect to R as the number of RR sets
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ALGORITHM 1: Max-Coverage-Greedy(R,k )

1 S∗
k
= ∅;

2 for i = 1 to k do

3 v ← arg maxv ′ ∈V (ΛR (S∗
k
∪ {v ′})) − ΛR (S∗

k
);

4 S∗
k
← S∗

k
∪ {v};

5 return S∗
k

;

in R that is covered by S . Then, n · ΛR (S )/|R | provides an unbiased estimation of the expected
influence of S .

Borgs et al.’s solution. With Lemma 1, Borgs et al. [9] propose a two-step method for IM. Firstly,
a sufficiently large set R of random RR sets is generated. Given a node v and the set R, define the
marginal coverage of v w.r.t a set S as

ΛR (v |S ) = ΛR ({v} ∪ S ) − ΛR (S ).

Then, in the second phase of their solution, it simply applies the standard greedy algorithm as
shown in Algorithm 1 that iteratively selects the node with the maximum marginal coverage with
respect to the set of selected nodes in previous iterations. Denote this set as S∗

k
and return S∗

k
as

the solution. Let Ŝo
k

be the size-k seed set that covers the largest number of RR sets in R and So
k

be

the optimal seed that provides the highest expected influence. Then obviously, ΛR (Ŝo
k

) ≥ ΛR (So
k

).
Then, the greedy algorithm guarantees that

ΛR (S∗k ) ≥ (1 − 1/e )ΛR (Ŝo
k ) ≥ (1 − 1/e )ΛR (So

k ).

Borgs et al. show that S∗
k

provides a (1 − 1/e − ϵ )-approximate solution with a probability of at

least 1 − 1/n if O (k (m + n)ϵ−3 log2 n) edges are examined in the RR set generation.

TIM+ and IMM. Tang et al. [48] present an improved algorithm TIM+ , which runs in O (k · (n +
m)ϵ−2 · logn) time. The main idea is to use Chernoff bound to decide if the number of RR sets,
instead of the number of edges examined, is sufficient to provide an approximation guarantee.
Later, Tang et al. [47] present IMM that uses a martingale-based technique to allow the random
RR set to have some weak dependencies without affecting the concentration bound. They apply
below two martingale-based concentration bounds tailed for IM.

Lemma 2 ([47]). Given a fixed number θ of random RR sets and a seed set S , for any λ > 0,

Pr

[
ΛR (S ) − IC (S ) · θ

n
≥ λ

]
≤ exp ��− λ2

2IC (S ) · θ
n
+ 2

3λ
�� ,

Pr

[
ΛR (S ) − IC (S ) · θ

n
≤ −λ

]
≤ exp ��− λ2

2IC (S ) · θ
n

�� .
As shown in [47], IMM offers the same guarantee as that of TIM+, but gains better practical per-
formance since it reduces the number of RR set samples and thus the query time.

SSA and D-SSA. All previous methods are pessimistic about the seed set selected in the greedy
algorithm and thus apply the union bound on the possible

(
n
k

)
size-k seeds for the case when the

seed set selected does not provide an approximation guarantee. Thus, the final time complexity
will depend on k and the larger k it is, the more RR sets are required to provide the approximation
ratio. Nguyen et al. [42] propose SSA and D-SSA to alleviate the (empirical) dependency on k by
being optimistic about the seeds selected by Algorithm 1 and then use a validation phase to verify
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ALGORITHM 2: RR set-Generation-IC(G )

1 Randomly sample a node v ∈ V and set R as {v};
2 Add v to queue Q and mark v as activated ;

3 while Q is not empty do

4 Let u be the top element of Q . Pop it from Q ;

5 for each in-neighbor w of u do

6 if w is inactivated and rand () ≤ p (w,u) then

7 Add w to R;

8 Add w queue Q and mark w as activated;

9 return R;

if the chosen seed is good or not. They claim that they provide the same theoretical result as
IMM, but Huang et al. [28] show that the theoretical analysis of SSA and D-SSA contains loopholes
that invalidate the claimed time complexity and approximation guarantee. Huang et al. further
present SSA-Fix to reassure the (1 − 1/e − ϵ )-approximation guarantee with 1 − 1/n probability
and pinpoint that it is unclear how to provide efficiency and approximation guarantee for D-SSA.
Nguyen et al. [39] further present D-SSA-Fix to restore the (1− 1/e − ϵ )-approximation guarantee,
but the efficiency guarantee of D-SSA-Fix is still unclear, as pointed out in [28, 46].

SKIS. A singular RR set is an RR set that includes only one node (i.e., the target node of the RR set).
Nguyen et al. [40] propose a sketching framework, SKIS, which uses the importance influence
sampling method to generate a collection of only non-singular RR sets for influence estimation.
However, such a strategy might not significantly improve the practical performance, since the
generation of a singular RR set does not take much computational cost. To explain, it can stop
immediately after all the incoming edges of the target node have been blocked, and thus the ex-
pected cost of a random singular RR set is only the average in-degree of the graph. Besides, when
we apply the greedy algorithm to get a potential seed set, the SKIS-based solution has to utilize
the max heap method so as to find out the node with the largest marginal influence which is
float data type in each iteration. In contrast, for the RR-set-based solution, a more efficient imple-
mentation of the inverted list and lazy update for the greedy algorithm can be used to find out the
node with the largest marginal coverage which is an integer data type. This issue also degrades
the practical performance of the SKIS-based solution.

OPIM-C. The latest RR-set-based solution for IM is the OPIM-C algorithm [46]. OPIM-C shares
a similar spirit as SSA/D-SSA in that they are both optimistic about the selected seed set by the
greedy algorithm. In OPIM-C, they first sample a set R1 of RR sets to select the seed set S∗

k
and

derive the upper bound I+
C

(So
k

) of IC (So
k

). Next, they sample another set R2 of random RR sets with
|R2 | = |R1 | and derive a lower bound I−

C
(S∗

k
) of IC (S∗

k
). The algorithm terminates as soon as

I
−
C

(S∗k )/I+
C

(So
k ) > (1 − 1/e − ϵ ),

i.e., when the algorithm provides a (1 − 1/e − ϵ )-approximate solution. In OPIM-C, the au-
thors present strategies to provide a tighter upper bound I+

C
(So

k
) of IC (So

k
). With tighter bounds,

the number of RR set samples can be reduced, thus improving the running time. By applying
Lemma 2, Tang et al. [46] derive the lower bound I−

C
(S∗

k
) as follows:

I
−
C

(S∗k ) = �����
√

ΛR2 (S∗
k

) +
2ηl

9
−

√
ηl

2
��

2

− ηl

18
�	� ·

n

θ2
, (1)
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whereηl = ln(1/δl ) andδl is the probability that the above lower bound fails. By applying Lemma 2,
the upper bound I+

C
(So

k
) is given as follows:

I
+
C

(So
k ) =

(√
Λu
R1

(So
k

) +
ηu

2
+

√
ηu

2

)2

· n
θ1
, (2)

where ηu = ln(1/δu ) and δu is the probability that the above upper bound fails; Λu
R1

(So
k

), an upper
bound of the coverage of So

k
with respect to R1, is derived as follows. Though the optimal seed

set So
k

is unknown, the upper bound Λu
R1

(So
k

) can be obtained from the construction of S∗
k

due to
the submodular property of coverage function Λ(·). Let S∗i be the set that contains the first i nodes
selected by running the greedy algorithm andmaxMC (S∗i , l ) be the set of l nodes with the l largest
marginal coverage in R1 with respect to S∗i . Then,

Λu
R1

(So
k ) = min

0≤i≤k

���ΛR1 (S∗i ) +
∑

v ∈max MC (S∗i ,k )

ΛR1 (v |S∗i )�	� .
2.3 RR Set Generation

Most of the above solutions (except SKIS) focus on reducing the number of random RR sets and are
identical in how random RR sets are generated. Instead of first generating the graph д by flipping a
coin for each edge that incursO (m) cost, the existing RR set generation algorithm for IC model, as
shown in Algorithm 2, starts a traversal from v following the reverse directions of its edges. Such
an approach only examines the in-coming edges of nodes in R, and thus significantly reduces the
running cost for generating an RR set. We refer readers to [46] on how to generate a random RR
set under LT model. According to [9, 48], a random RR set can be constructed in O ( m

n
· IC (v∗))

expected time, where IC (v∗) is the expected influence of a node v∗ sampled from V where each v
is sampled with a probability of din (v )/m.

Among existing solutions, SKIS is the only work that improves the efficiency of the IM problem
by optimizing the RR set generation phase: it pre-computes the influence contribution of the sin-
gular RR sets for each node v in advance, and thus when estimating the influence of a seed set,
what SKIS needs to do is to sample the non-singular RR sets via importance sampling, accelerat-
ing the RR set generation. However, the generation for the non-singular RR sets is still the same
as existing solutions, limiting its effectiveness. In addition, as we mentioned in Section 2.2, SKIS
disallows the efficient implementation of the greedy algorithm, which also degrades the overall
performance of the SKIS-based solutions.

In this article, we will present a theoretical study on the RR set generation phase to improve
the efficiency of the IM problem. Our proposed solution is from an orthogonal perspective against
SKIS and it can be applied to any RR set, no matter whether the RR set is non-singular or not.

3 SUBSIM

This section presents our SUBSIM framework for IM. We present an efficient RR set generation
scheme under WC and Uniform IC model in Section 3.1 and show improved theoretical results
on IM algorithms with this new scheme in Section 3.2. We extend our SUBSIM to the general IC
model in Section 4.

3.1 A New RR set Generation Scheme

In the existing RR set generation algorithm (Algorithm 2), an expensive step is that when a
node gets activated, it examines all of its in-neighbors and tries to activate each of them once
(Algorithm 2 Line 6). In particular, it generates a random number for each incoming edge to
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ALGORITHM 3: SUBSIM(G )

1 Randomly sample a node v ∈ V and set R as {v};
2 Add v to queue Q and mark v as activated;

3 while Q is not empty do

4 Let u be the top element of Q . Pop it from Q ;

5 Let u[i] (i = 1, 2, . . .) be the ith in-neighbor of u;

6 p ← 1
din (u ) under WC;

7 i ← log(rand ())/ log(1 − p)�;
8 while i ≤ din (u) do

9 w ← u[i];

10 if w is not activated then

11 Add w to R;

12 Add w to queue Q and mark w as activated;

13 i += log(rand ())/ log(1 − p)�;
14 return R;

determine if each of its in-coming neighbors will be activated or not. That is actually why the
time complexity of existing IM algorithms depends on the average degree, i.e., m/n. With subset
sampling, we show that the expected cost to sample an edge e under the IC model can be reduced
to O (p (e )).
Connection with Subset Sampling. We make a connection between subset sampling with the
selection of in-neighbors. Given a set S = {x1,x2,x3, . . . ,xh } of h elements, and each with a weight
0 ≤ p (xi ) ≤ 1. Denote μ as the sum of all the weights, i.e., μ =

∑h
i=1 p (xi ). The independent

subset sampling problem asks to sample a random subset X such that each element xi in S will be
independently added to set R with probability p (xi ). The problem of activating the in-neighbors of
a nodev can be directly mapped to the subset sampling problem. We first consider the case where
all weights are equal and denote this weight as p, which covers the scenarios of WC, where the
weights of the incoming edges of the same node v are 1/din (v ), and Uniform IC where all edges
have the same weight p.

When the probabilities are the same, the subset sampling can be effectively solved with geomet-
ric distribution sampling. In particular, we are interested in the event that we successfully sample
the first element from S after X trials. The probability distribution of X follows the geometric
distribution G(p) and the probability is given as follows:

Pr[X = i] = (1 − p)i−1 · p,

where i = 1, 2, 3, . . . . If i > h, it indicates that no element is sampled from set S . Notice that
in distribution G(p), all trials are assumed to be independent, and therefore it still guarantees
that the sampling of each in-neighbor should be independent. This leads to our RR set generation
algorithm for WC and Uniform IC model as shown in Algorithm 3. The main difference from
Algorithm 2 is Lines 7 and 13, where the algorithm jumps to skip nodes that are not sampled,
saving computational costs. Assume that an h′ ≤ h is sampled from distribution G(p), the first
h′ − 1 elements are skipped and it directly jumps to the h′-position, sampling element xh′ . Then,
it continues to sample the first element from the remaining h − h′ nodes. This process is repeated
until the sampledh′ is larger than the number of remaining elements. Note that there exist constant
time solutions [31] to sample from distribution G(p): Given a U generated uniformly at random
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from (0, 1), we can sample h′ from G(p) as

h′ = logU / log(1 − p)� .
To explain, h′ = i if and only ifU ∈ [(1−p)i , (1−p)i−1), which has a probability of (1−p)i−1− (1−
p)i = (1 − p)i−1 · p, i.e., following distribution G(p). Therefore, the expected cost of the sampling
phase only depends on the number of times we do geometric sampling.

Lemma 3. Given a set S of h elements each to be sampled independently with probability p, then

the expected cost for sampling a subset R is O (1 + μ ), where μ = h · p.

Proof. Based on the new sampling strategy, each record is sampled with probability p. For all h
records, the probability to sample each edge is h ·p. Since we need to generate at least one random
number, the cost is O (1 + h · p) = O (1 + μ ). �

Given the above results, new bounds can be derived for IM.

3.2 Influence Maximization: A New Bound

With SUBSIM for the RR set generation, we show that the time complexity of existing IM algo-
rithms can be tightened. We first analyze the running cost of SUBSIM for the RR set generation.
The running cost can be bounded by the number of edges examined during the RR set generation.
Denote θ (x ) as a function depending only on x , and then we give the following lemma to bound
the running cost of SUBSIM.

Lemma 4. If θ is a concave function and for any node v ,
∑

(u,v )∈E p (u,v ) ≤ θ (din (v )), the cost

to generate a random RR set under WC and Uniform IC model can be bounded by θ (m/n) · IC ({v∗}),
where v∗ is sampled from a distribution where node v has

θ (din (v ))∑
w∈V θ (din (w )) probability to be sampled.

Proof. We first consider the cost to generate an RR set with a fixed target nodev . Let Pr[v
R−→ u]

denote the probability that u is included in the RR set, i.e., u is activated in the reverse stochastic

traverse fromv ; let Pr[v
R−→ (w,u)] indicate the probability that (w,u) is examined. Then, (w,u) is

examined if and only if these two events both happen: (a) u is activated in the reverse stochastic
traverse from v ; (b) edge (w,u) is selected by geometric sampling. With the fact that the expected
cost to examine (w,u) is actually p (w,u) under geometric sampling, we can derive the expected

cost E[v
R−→ (w,u)] of edge (w,u) to be

E

[
v

R−→ (w,u)
]
= Pr

[
v

R−→ (w,u)
]
= Pr

[
v

R−→ u
]
· p (w,u).

The expected cost to generate an RR set with respect to target node v , denoted as E[CR (v )], is

E[CR (v )] = E

⎡⎢⎢⎢⎢⎢⎣
∑

(w,u )∈E

v
R−→ (w,u)

⎤⎥⎥⎥⎥⎥⎦ =
∑

(w,u )∈E

E

[
v

R−→ (w,u)
]

(by linearity of expectation)

=
∑

(w,u )∈E

Pr
[
v

R−→ (w,u)
]
=

∑
(w,u )∈E

Pr
[
v

R−→ u
]
· p (w,u)

=
∑
u ∈V

Pr
[
v

R−→ u
]
·

∑
(w,u )∈E

p (w,u) ≤
∑
u ∈V

θ (din (u)) · Pr
[
v

R−→ u
]
.

Now consider the cost of a random RR set, denoted as ER .

ER =
1

n

∑
v ∈V
E[CR (v )] ≤

1

n

∑
v ∈V

∑
u ∈V

θ (din (u)) · Pr
[
v

R−→ u
]
.
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Further observe that Pr[v
R−→ u] is equal to the probability that u can influence v , denoted as

Pr[u → v]. Let θ (V ) =
∑

w ∈V θ (din (w )). Then, we can derive that:

ER ≤
θ (V )

n

∑
v ∈V

∑
u ∈V

θ (din (u))

θ (V )
· Pr[u → v]

=
θ (V )

n

∑
u ∈V

θ (din (u))

θ (V )

∑
v ∈V

Pr[u → v].

Notice that
∑

v ∈V Pr[u → v] indicates the expected influence of node u. Further let node v∗ be

a node sampled from a distribution where each node v is sampled with probability θ (din (v ))
θ (V ) . We

can further derive that:

ER ≤
θ (V )

n

∑
u ∈V

θ (din (u))

θ (V )
IC ({u})

=
θ (V )

n
· IC ({v∗}) ≤ θ (m/n) · IC ({v∗}),

(3)

where the last inequality is due to the concavity of the function θ . This finishes the proof. �

Theorem 1. If θ is a concave function and for any node v ,
∑

(u,v )∈E p (u,v ) ≤ θ (din (v )), the time

complexity of IM algorithms under WC and Uniform IC model to provide a (1− 1/e −ϵ )-approximate

solution with 1 − 1/n probability can be bounded by O (k · θ (m/n) · n · logn/ϵ2).

Proof. Note from [47] that, the number of RR sets can be bounded byO (
k ·n ·log n

OPTk ·ϵ 2 ), whereOPTk is

the largest expected influence among all seed sets with size no more than k . Then, since IC ({v∗}) ≤
OPTk , we know that ER = O (θ (m/n) ·OPTk ). Combining them together, we have:

O

(
k · n · logn

OPTk · ϵ2
· ER

)
= O (k · θ (m/n) · n · logn/ϵ2).

This finishes the proof. �

With Theorem 1, we immediately have the following conclusions for three useful cases.

— Case 1: θ (x ) = O (1). WC model falls into this case, and the time complexity becomesO (k ·
n · logn/ϵ2), improving over existing solutions by O (m/n).

— Case 2: θ (x ) = O (log(x )). The time complexity becomesO (k · log(m/n) ·n · logn/ϵ2), which
still improves over existing solutions by O (m/n/ log(m/n)).

— Case 3: θ (x ) = O (p · x ). Uniform IC falls into this case, and the time complexity becomes
O (p · k · (m + n) · logn/ϵ2), improving over existing solutions by O (p).

Extensions to LT model. Notice that under LT model, the cost to sample an edge is also propor-
tional to its weight [46, 47], and it naturally holds that

∑
u ∈I N (v ) p (u,v ) ≤ 1, where IN (v ) is the set

of the in-neighbors of v . By following the proof of Lemma 4 and Theorem 1, it can be derived that
the time complexity of existing IM algorithms under LT model can be reduced toO (k ·n · logn ·ϵ−2).

4 EXTENSION TO GENERAL IC MODEL

In Section 3.1, we only discuss WC and Uniform IC, where the weights of the incoming edges
of the same node are equal. However, in practice, the weights might be skewed, e.g., following
exponential distribution, Weibull distribution [47], or by learning from data [22, 23]. In this section,
we discuss how to handle the general IC model.

The rest of this section is organized as follows. In Section 4.1, we propose an algorithm, Index-

based Subset Sampling (ISS), which achieves the same time complexity as the WC and Uniform
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ALGORITHM 4: ISS

1 Input: Buckets Bk (0 ≤ k ≤ L) and probability table T ;

2 Output: A subset S sampled from probability distribution {pi };
3 K ← ∅;
4 k ← aliasSampling(T [0, :]);

5 while k ≤ L do

6 K ← K ∪ {k };
7 k ← aliasSampling(T [k + 1, :]); � the (k + 1)-th row of T

8 S ← ∅;
9 for k ∈ K do

10 p ← 2−k ;

11 r ← rand ((1 − p) |Bk | , 1.0); � random number from ((1 − p) |Bk | , 1.0)

12 i ← log(r )/ log(1 − p)�; � i ∈ {1, . . . , |Bk |}
13 do

14 if rand() < pi/p then

15 S ← S ∪ {xi };
16 i ← i + log(rand ())/ log(1 − p)�; � geometric distribution sampling

17 while i <= |Bk |;
18 return S;

19 Preprocessing:

20 L ← log2 h�;
21 Divide the set X of elements xi into L buckets: Bk = {pi |2−k ≥ pi ≥ 2−k−1 |} where 0 ≤ k ≤ L − 1 and

BL = {pi |2−L ≥ pi };
22 Create the probability table T where T [i, j] stores the probability that Bi is the current sample bucket

and Bj is the next bucket that will be sampled;

IC cases, at a cost of additional preprocessing indices. In Sections 4.2 and 4.3, we present two
index-free online solutions for the sorted subset sampling problem. In particular, in Section 4.2 we
review a bucket-based solution proposed in [11]. For ease of explanation, we name it BUCKET. In
Section 4.3, we present the algorithm SKIP, of which the time complexity achieves the asymptoti-
cally tight bound of the sorted subset sampling problem.

4.1 ISS Algorithm

In this subsection, we provide an index-based solution ISS to handle the general IC model. We still
map the selection of in-neighbors to subset sampling and have the following lemma from [11] to
bound its expected cost.

Lemma 5. Given a set S = {x1,x2, . . . ,xh } of h elements where xi is independently sampled with

pi probability, the expected running time to sample a subset X can be bounded byO (1+ μ ) withO (h)
preprocessing time, where μ =

∑h
i=1 pi .

The main idea of Lemma 5 is to first divide the probability into different buckets such that pi

falls into a bucket Bk if 2−k ≥ pi ≥ 2−k−1 (respectively, 2−k ≥ pi ), where 0 ≤ k ≤ log2 h� − 1
(respectively, k = log2 h�). Then, in each bucket Bk , we first treat all probability in the bucket
to be 2−k , and then apply geometric sampling to sample a position h′. When h′ ≤ |Bk |, we skip
h′ − 1 elements (like Algorithm 3) and try to sample the h′th element in Bk . However, we further
generate a random variableU and successfully sample the h′th element only ifU is no larger than
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ALGORITHM 5: BUCKET

1 Input: A set X of elements {xi } with probability {pi } in decending order.

2 Output: A subset S sampled from probability distribution {pi }.
3 S ← ∅; h ← |X |; L ← �logβ h�;
4 for k = 0 to L do

5 p ← pβ k ;

6 i ← βk + log(rand ())/ log(1 − p)� − 1;

7 while i < min(βk+1,h + 1) do

8 if rand() < pi/p then

9 S ← S ∪ {xi };
10 i ← i + log(rand ())/ log(1 − p)�;

11 return S;

ph′/2−k where ph′ is the probability of the h′th element in Bk . By this strategy, the h′th element is
still guaranteed to be sampled with 2−k · ph′/2−k = ph′ probability. For each bucket, the expected
sampling cost increases by at most twice (For the last bucket, it increases to at most 1/h). Therefore,
the total expected cost can be bounded by O (1 + μ + logh), where the logh term comes from
sampling in O (logh) buckets.

Next, we show how to further reduce the logh term. Firstly, we calculate the probability to
do at least one geometric sampling from each bucket. Since each bucket Bk includes at least one
geometric sampling can be calculated as p ′

k
= 1− (1−2−k ) |Bk | . This can be calculated withO (logh)

time as it includesO (logh) bucket. Then, the problem becomes a new subset set sampling problem,
where we are independently sampling each bucket Bk with probabilityp ′

k
. To avoid testing for each

bucket, an L × L table can be maintained whereT [i, j] records the probability that Bi is the current
sampled bucket and Bj (i < j) is the next bucket after i that will be sampled. We can calculate the
probability of table T in O (L2) = O (log2 h) time. Also, given a current position i , we can sample
according to the probabilityT [i, i + 1],T [i, i + 2], · · ·T [i,h] in O (1) time using alias sampling [50].
Then, we can sample the buckets first with O (1 + μ ) time, and sample within each bucket next.
The total cost to sample in each bucket can be bounded by O (1 + μ ) time. Hence, the total cost to
sample a subset X from set S can be bounded by O (1 + μ ). Algorithm 4 shows the pseudocode of
the above-mentioned algorithm.

By Lemma 5 and Theorem 1, we have the following theorem.

Theorem 2. If θ is a concave function and for any node v ,
∑

(u,v )∈E p (u,v ) ≤ θ (din (v )), the time

complexity of IM algorithms under general IC model can be bounded by O (k · θ (m/n) · n · logn/ϵ2)
so as to provide a (1 − 1/e − ϵ )-approximate solution with 1 − 1/n probability.

However, to achieve O (1 + μ ) expected running time, ISS requires the two-dimensional index
structure, which is quite complicated. It may suffer from cache efficiency issues, especially for those
low-degree nodes, thus giving an undesirable practical performance. To tackle this deficiency, we
present index-free subset sampling solutions in the following subsections, which only require the
incoming edges to be sorted in descending order of their probabilities.

4.2 BUCKET Algorithm

In this subsection, we review the algorithm BUCKET (Algorithm 5) proposed in [11], and show its
time complexity if we are granted additional prior knowledge. This outcome will play a key role
in deriving the time complexity of our algorithm SKIP. That is why we include it here.
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ALGORITHM 6: SKIP

1 Input: A set X of elements xi with probability {pi } in descending order

2 Output: A subset S sampled from probability distribution {pi }
3 S ← ∅;
4 i ← 1;

5 while i ≤ h do

6 j ← i + �log(rand ())/ log(1 − pi )�;
7 if j > h then

8 return S ;

9 if rand () ≤ pj/pi then

10 S ← S ∪ {x j };
11 i ← j + 1;

According to [11], if the elements x1,x2, . . . ,xh of set X are sorted in descending order of their
probabilities (p1,p2, . . . ,ph , respectively), subset sampling could be efficiently conducted based on
a bucketing technique. Specfically, we do bucketing by their sorted positions such that elements
whose positions fall into the range [βk , βk+1] belong to bucket Bk . Then, we exploit geometric
distribution sampling with rejection (similar to ISS) to sample all the buckets. Note from [11] that,
the total expected cost to sample from all buckets is bound toO (1+ βμ + logβ h), where the logβ h
term comes from the number of buckets. The asymptotically tight bound of the sorted subset
sampling problem is as follows:

Lemma 6. [11] There exists an online algorithm for sorted subset sampling with expected timeO (μ )

if μ ≥ 1
2 logh, and O (1 + log h

log((log h)/μ ) ) otherwise. The bound is asymptotically tight for any fixed μ.

If we have knowledge of the value μ =
∑h

i=1 pi , it is possible for BUCKET to achieve the asymp-
totically tight bound, by assigning β with a suitable value. If μ ≥ 1

2 logh, the setting β = 2 yields
a time complexity of O (1 + βμ + logβ h) = O (μ ). Otherwise, we minimize the time complexity by
solving the following equation,

1 + βμ = logβ h. (4)

It turn out to be β = Θ(
log h

μ
/ log (

log h

μ
)). Then, by plugging in β , we obtain a time complexity of

O (1 + βμ + logβ h) = O (1 + log h

log((log h)/μ ) ).
Hence, the actual time complexity of BUCKET depends on β , which should be decided according

to the probability summation μ of the input sequence. However, the requirement of prior knowl-
edge of μ is not always met, imposing many limitation on its application scenarios. If there exists
no prior knowledge of μ, one common implementation is β = 2. As a result, BUCKET fails to
achieve the asymptotically tight time complexity if μ is not Θ(logh).

4.3 SKIP Algorithm

In this subsection, we present our solution SKIP, of which the time complexity is asymptotically
tight. The name SKIP comes from the activity Stone Skipping since our algorithm acts in a similar
manner: landing and immediately bouncing at a nearby place.

Its pseudocode is shown in Algorithm 6. Similar to BUCKET, it also utilizes the geometric distri-
bution sampling (Line 6) to get the potentially sampled elements, and then uses rejection (Lines 9–
10) to guarantee the correctness of sampling probability. The crux of SKIP is that it keeps updat-
ing the success probability of geometric distribution with the probability of the currently visiting
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element. To explain, if we arrive at position i − 1 in the current sampling trial (no matter whether
the element xi−1 are finally sampled or rejected), then the success probability of the next sampling
trial is pi , the probability of the element xi (see pi in Line 6). Intuitively, this strategy is more effi-
cient since SKIP adjusts the success probability in a timely fashion: following the actual probability
distribution of the input sequence. In contrast, BUCKET fixes the probability of the first element
as the success probability and then goes through the whole bucket.

Correctness of SKIP. Next, we prove the following lemma to show the correctness of SKIP; that
is, the output of SKIP follows the definition of sorted subset sampling.

Theorem 3. Let Y be an output random variable of SKIP. Then given any subset S , it holds that

Pr[Y = S] = ���
∏
i�S

(1 − pi )�	� ·
���
∏
j ∈S

pj
�	� , (5)

where the right-hand side is the definition of sorted subset sampling.

Proof. Let S = {x j1 ,x j2 , . . . ,x jm
} with j1 < j2 < · · · < jm , where m = |S |. Then we can rewrite

the probability expression (5) as the following formatting:

Pr[Y = S] = ��pj1

j1−1∏
i=1

(1 − pi )�� · ���pj2

j2−1∏
i=j1+1

(1 − pi )�	� · · ·
���pjm

jm−1∏
i=jm−1+1

(1 − pi )�	� ·
���

h∏
i=jm+1

(1 − pi )�	� . (6)

Let Zi s be random variables of the indices of the sampled elements by SKIP, where i = 1, 2, . . . ,m.
Besides, in order to analyze the sampling behavior from x jm

to xh , we append infinite dummy
elements to the end of the input sequence, each with the same sampling probability ph (i.e., ph =

ph+1 = ph+2 = · · · ). The SKIP algorithm is also slightly modified: when j exceeds the last element
xh of X (see Line 7), keep sampling until we obtain the (m + 1)-th successfully sampled element
x jm+1 (clearly x jm+1 is a dummy element). Let Zm+1 be a random variable of the index of this
dummy element. If we can prove the conditional probability distribution of Zi with respect to Zi−1

(i = 1, 2, . . . ,m) satisfies

Pr[Zi = ji |Zi−1 = ji−1] =
ji−1∏

i=ji−1+1

(1 − pi ) · pji
, (7)

and the conditional probability of the event Zm+1 > h given Zm = jm satisfies

Pr[Zm+1 > h |Zm = jm] =
h∏

i=jm+1

(1 − pi ), (8)

then we can prove Equation (6) as follows:

Pr[Y = S] = Pr[Z1 = j1,Z2 = j2, . . . ,Zm = jm ,Zm+1 > h]

= Pr[Z1 = j1] · Pr[Z2 = j2 |Z1 = j1] · · · Pr[Zm = jm |Zm−1 = jm−1] · Pr[Zm+1 > h |Zm = jm]

= the r.h.s. of Equation (6).

Next, we try to prove the conditional probability distribution (7) by induction. We only give the
proof for the case of i = 1; that is,

Pr[Z1 = j] = pj

j−1∏
i=1

(1 − pi ), (9)

where we replace j1 with j for simplicity. It is easy to extend other values of i .
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For j = 1, it implies that the random number U = rand () (Line 6 in Algorithm 6) falls into the
range [1 − p1, 1]. This event happens with a probability p1.

Suppose that the conclusion is still true for j = k . Note that the sampling trial which successfully
samples xk could start from position 1, 2, . . . ,k (that is, the i in Line 6 could be 1, 2, . . . ,k). Let Ek

i

be the event that the successful sampling of xk is from position i , where i = 1, 2, . . . ,k . Obviously,
any two Ek

i s are mutually exclusive. Besides, the event Z1 = k is the union of all Ek
i s. Then we

rewrite the probability of Z1 = k as follows:

Pr[Z1 = k] = Pr[Ek
1 ] + Pr[Ek

2 ] + · · · + Pr[Ek
k ]

= α1 (1 − p1)k−1p1 ·
pk

p1
+ α2 (1 − p2)k−2p2 ·

pk

p2
+ · · · + αkpk

= ��
k∑

i=1

αi (1 − pi )k−i�� · pk = pk

k−1∏
i=1

(1 − pi ), (from assumption)

where αi is the probability that SKIP has arrived at position (i − 1) but no element is successfully
sampled (that is, the If condition turns out to be false in Line 9).

Now we show the expression (9) still holds for j = k + 1. Following the above discussion of the
case j = k , we have

Pr[Z1 = k + 1] = Pr[Ek+1
1 ] + Pr[Ek+1

2 ] + · · · + Pr[Ek+1
k+1]

= α1 (1 − p1)kp1 ·
pk+1

p1
+ α2 (1 − p2)k−2p2 ·

pk+1

p2
+ · · · + αk+1pk+1

= ��
k∑

i=1

αi (1 − pi )k+1−i�� · pk+1 + αk+1 · pk+1.

On the other hand, the value αk+1 is the probability that SKIP arrives at position k , but fails to
sample xk . We can compute it as follows:

αk+1 =

k∑
i=1

αi (1 − pi )k−ipi ·
(
1 − pk

pi

)

=

k∑
i=1

αi (1 − pi )k−i · (pi − pk ).

Therefore, plugging the expression of αk+1 into Pr[Z1 = k + 1], we obtain that

Pr[Z1 = k + 1] = ��
k∑

i=1

αi (1 − pi )k+1−i�� · pk+1 + ��
k∑

i=1

αi (1 − pi )k−i · (pi − pk )�� · pk+1

= ��
k∑

i=1

αi (1 − pi )k−i�� · (1 − pk )pk+1

= pk+1

k∏
i=1

(1 − pi ).

By induction, the probability distribution (9) holds for all elements in the input sequence. This
completes the proof of the conditional probability distribution (7).

Then we show how to prove the expression (8). In fact, it is rather straightforward if we utilize
the above result of the conditional distribution. The event Zm+1 > h given Zm = jm implies that
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all the elements jm + 1, jm + 2, . . . ,h are not sampled. Thus, we compute the probability as follows:

Pr[Zm+1 > h |Zm = jm] = 1 − (Pr[Zm+1 = jm + 1|Zm = jm] + · · · + Pr[Zm+1 = jm + 1|Zm = jm])

= 1 − ���pm+1 + (1 − pm+1)pm+2 + · · · +
h−1∏

i=jm+1

(1 − pi ) · ph
�	�

=

h∏
i=jm+1

(1 − pi ).

Putting together all the above results, we finally complete the proof of Lemma 3, providing a
guarantee for the correctness of SKIP. �

Time Complexity of SKIP. We will show the optimality of SKIP, in the sense that it achieves the
asymptotically tight time complexity in [11].

Theorem 4. The algorithm SKIP takes an expected time of O (μ ) if μ ≥ 1
2 logh, and O (1 +

log h

log((log h)/μ ) ) otherwise.

Proof. Here, we only give a proof sketch for Lemma 4. A formal proof is included in the appen-
dix. To prove the lemma, we make a claim that SKIP takes no more sampling trials (i.e., the number
of geometric distribution samplings) than BUCKET with any fixed β , given a fixed input sequence.
If the claim is correct, we immediately obtain the lemma since for any μ, there exists some β such
that BUCKET achieves the asymptotically tight time complexity as discussed in Section 4.2.

Fortunately, the claim does hold. For BUCKET, the success probability of the geometric distri-
bution sampling is fixed as pβ k for bucket Bk (k = 0, 1, 2, . . .). In contrast, for SKIP the geometric

distribution sampling from position i ∈ (βk , βk+1) (i.e., inside bucket Bk ) has a success probability
pi ≤ pk

β
, as the input sequence is in descending order. Note that the expectation of a geometrically

distributed random variable with success probability p is known as 1/p. Therefore, the expectation
of the sampling outcome of SKIP in each bucket is not smaller than that of BUCKET. Besides, for
each bucket Bk , BUCKET has to start sampling from the first element (namely βk ), whereas SKIP
starts sampling from position i > βk , which follows the last sampling trial in bucket Bk−1. Based
on these two observations, it is straightforward to conclude that SKIP takes no more sampling
trials than BUCKET. Thus, we complete the proof of Theorem 4. �

Time Complexity under General IC Model. Next, we are going to show the time complexity

bound of SUBSIM under the general IC model with SKIP. The time complexity function log h

log((log h)/μ )

is associated with the value μ, which brings us some difficulties in analyzing computational cost.
Here we only consider two common cases: μ = O (1) and μ = Θ(logh).

Case 1: μ = O (1). The time complexity of SKIP becomesO (1+ log h

log log h
). Define θ (x ) =

log x

log log x
. To

follow a similar derivation of Theorem 1, the concavity of θ (x ) is required. The following lemma
is used to prove the concavity of θ (x ).

Lemma 7. [10] Let f be a concave function and д a non-decreasing and concave function. Assume

that f and д are twice-differentiable. Define the function f by θ (x ) = д( f (x )) for all x . Then θ (x ) is

concave.

Let f (x ) = log(x ) and д(x ) = x
log x

. Then we have θ (x ) = д( f (x )). Obviously f is a concave

function for x > 0. Besides, since д′(x ) = ln 2 · ln x−1
ln2 x

≥ 0 and д′′(x ) = ln 2 · (2−ln x )

x ln3 x
≤ 0 for x ≥ e2,
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ALGORITHM 7: HIST(G,k, ϵ,δ )

1 ϵ1 = ϵ2 = ϵ/2, δ1 = δ2 = δ/2;

2 S∗
b

= SentinelSet(G,k, ϵ1,δ1);

3 S∗
k

= IM-Sentinel(G,k, ϵ, S∗
b
, ϵ2,δ2) ;

4 return S∗
k

;

it is obtained that д(x ) is non-decreasing and concave. According to Lemma 7, we can draw the
conclusion that θ (x ) is concave for x ≥ ee2

.
Since θ (x ) is concave, then we follow a similar derivation in Section 3.2, and conclude that the

time complexity of SUBSIM under general IC model isO (k · log(m/n)
log log(m/n) ·n · logn · ϵ−2). It improves

existing solution by O ( m
n
· log log(m/n)

log (m/n) ).

Case 2: μ = Θ(logh). In this setting, the expected cost of SKIP is O (logh) according to
Theorem 4. Therefore, the time complexity of SUBSIM under general IC model becomes O (k ·
log(m/n) · n · logn · ϵ−2), improving existing solutions by O ( m

n
· 1

log(m/n) ).

5 HIGHLY INFLUENTIAL SCENARIOS

In highly influential scenarios, i.e., high influence networks, one of the biggest challenges of exist-
ing RR-set-based solutions is that the average size of random RR sets is usually very large, which
incurs high running time and memory consumption. Therefore, one natural question is: can we
reduce the average size of random RR sets? If the answer is yes, then such a new solution might
outperform existing solutions. Motivated by this, we propose Hit-and-Stop (HIST) algorithm to
overcome the weakness of existing RR-set-based IM algorithms by dramatically decreasing the
average size of random RR sets. In particular, a sentinel set S∗

b
is selected in the first phase, and

with the help of S∗
b
, subsequent RR sets can be generated efficiently in the second phase since the

generation of an RR set can stop as soon as it reaches any node in S∗
b
. We denote this RR set gen-

eration algorithm to terminate when it reaches a sentinel set as the RR set-with-Sentinel algorithm
(Algorithm 8).

ALGORITHM 8: RR set-with-Sentinel(G,S∗
b

)

1 The steps are similar to that of Algorithm 2 except that it terminates the traversal and returns the RR
set when a node v ∈ S∗

b
is activated.

At a high level, HIST consists of two phases as follows:

— Sentinel Set Selection. This phase seeks for a size-b node set S∗
b

that satisfies IC (S∗
b

) ≥ (1 −
(1 − 1/k )b − ϵ1) · IC (So

k
) with high probability, where So

k
is the optimal seed set.

— IM-Sentinel. This phase computes a size-(k − b) seed set S∗
k−b

, and returns S∗
k−b
∪ S∗

b
as the

final result S∗
k

.

In the sentinel set selection phase, we aim at using only a small number of samples to find a sentinel
set S∗

b
of b nodes. When b = k , the sentinel set selection phase falls into existing IM algorithms

that provide a (1 − (1 − 1/k )k − ϵ ) (≈ 1 − 1/e − ϵ) approximate solution. When b < k , even
though the sentinel set selection phase cannot provide a 1 − 1/e − ϵ approximate solution, it can
still provide 1 − (1 − 1/k )b − ϵ approximate solution (as we will prove in Lemma 8). When b is
sufficiently small (much smaller than k), we only need to provide a very loose approximation for
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ALGORITHM 9: Greedy-Degree(G,R,k )

1 The steps are similar to that of Algorithm 1 except Line 3: if multiple nodes have maximum marginal
coverage, choose the one with the largest out-degree.

set S∗
b
, and it allows us to use a much smaller number of random RR sets to find a size-b seed

set that provides 1 − (1 − 1/k )b − ϵ approximate solution compared to solving the IM problem.
As we will see, with such a loose approximation on S∗

b
, we can still provide an approximation

guarantee after the second phase, i.e., the IM-sentinel phase. To explain, we will compensate the
first phase by sampling more random RR sets in the second phase. However, in the second phase,
the generation of a random RR set can terminate as soon as any node in sentinel set S∗

b
is hit.

Therefore, the cost to generate a random RR set can be significantly reduced. Our HIST achieves
up to 2 orders of magnitude speedup over existing solutions, which shows the effectiveness of
our proposed solution. The pseudocode of the HIST algorithm is shown in Algorithm 7, which
is self-explanatory. Notice that we set ϵ1 = ϵ2 = ϵ/2 so that the final error can be bounded by
1 − 1/e − ϵ1 − ϵ2 = 1 − 1/e − ϵ . Similarly, we set δ1 = δ2 = δ/2 since both phases have a failure
probability of δ/2, and by taking a union bound, the failure probability of the HIST algorithm is
δ1 + δ2 = δ . Next, we present more details of the two phases.

5.1 Sentinel Set Selection Phase

Algorithm 10 shows the pseudocode for the sentinel set selection phase. The main framework
is similar to existing IM algorithms in that we sample a certain number of RR sets to see if the
approximation ratio is satisfied. If not, we double the number of RR sets and continue the steps
until the bound holds. In each iteration, we select nodes with greedy algorithms and choose a
sentinel set S∗

b
with proper size b.

Node selection with modified greedy. Algorithm 10 Lines 5–15 show the process of finding a
sentinel set. If the size b is fixed, we will include the first b nodes selected by the greedy algorithm
and make them the candidate of the sentient set. If this candidate set provides the approximation
guarantee (Algorithm 10 Lines 11–12), we return it as the sentinel set.

Recap that the sentinel set we select will be used to facilitate the second phase. In particular,
any RR set in the second phase will terminate when it hits a node in the sentinel set. In the stan-
dard greedy algorithm; however, it only cares about the marginal coverage (Ref. the definition in
Section 2.2) in each iteration and selects the node with the maximum marginal coverage with re-
spect to the set of nodes selected in previous iterations. This does not differentiate two nodes when
they share the same maximum marginal coverage but one node has a larger out-degree than the
other. However, in our case, the node with a larger out-degree is obviously more preferred since it
is more likely to be hit, especially when we only select a sentinel set with a small size. Therefore,
we modify the greedy algorithm slightly (Algorithm 9) so as to better achieve the goal. When two
nodes share the same marginal coverage, we select the node with a larger out-degree. Notice that
this brings at most additionalO (k ·n · logn) cost and does not affect the final time complexity of the
HIST algorithm. In this case, we are more likely to select influential nodes (that get hit it selects) in
Algorithm 9 compared to Algorithm 1 which regards all nodes with the same importance as long
as their marginal coverage is the same. In Section 8, we experimentally evaluate the effectiveness
of our Greedy-Degree algorithm. It is compared with the standard greedy algorithm and another
variant of the greedy algorithm, Greedy-Cost, which attempts to reduce the average size of RR sets
from a cost reduction perspective. Please see Appendix B for more details.
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ALGORITHM 10: SentinelSet(G,k, ϵ1,δ1)

1 Set θ0 = 3 · ln (1/δ1) and θmax according to Equation (10);

2 Generate random RR sets R1 with |R1 | = θ0;

3 imax ← log2
θmax

θ0
�;

4 for i = 1 to imax do

5 Generate a size-k seed set S∗
k

by invoking Algorithm 9 with R1 as the input;

6 Estimate the lower bound Î−
C

(S∗a ) based on the result of Line 5, where a ∈ {1 . . .k };
7 Compute I+

C
(So

k
) by Equation (2), setting δu =

δ1
3imax

;

8 Let b be the maximum a such that Î−
C

(S∗a )/I+
C

(So
k

) > (1 − (1 − 1
k

)a − ϵ1);

9 Generate a set R2 of random RR sets with |R2 | = |R1 | by invoking RR set-with-Sentinel;

10 Compute I−
C

(S∗
b

) by Equation (1); set δl =
δ1

6imax
;

11 if I−
C

(S∗
b

)/I+
C

(So
k

) > (1 − (1 − 1
k

)b − ϵ1) then

12 return S∗
b

;

13 Increase the size of R2 to 4|R1 | and compute I−
C

(S∗
b

) again;

14 if I−
C

(S∗
b

)/I+
C

(So
k

) > (1 − (1 − 1
k

)b − ϵ1) then

15 return S∗
b

;

16 double the size of R1;

17 return S∗
b

;

Choosing the sentinel set S∗
b

with the proper size. A naive way to determine the size of the
sentinel set is to choose a constant and apply it to all choices of k . However, such a strategy may
not make full use of the pruning power of the sentinel set. Therefore, we aim at automating the
process of the choice of b. Notice that there is a tradeoff between the size b and the speedup of
the query efficiency. On the one hand, if b is too small, we have less chance to hit the sentinel set
in the second phase, providing inferior speedup. Hence, we hope that the size b to be as large as
possible. On the other hand, if b is too large, it is similar to solving the original IM problem. Hence,
a small sample size will not help provide the required approximation ratio. To get a good tradeoff
of these two, i.e., the cost of sampling in the first phase and the benefit we can bring to the second
phase, we provide a solution to automatically find the choice of b as large as possible that can
satisfy the constraint given the generated RR sets. To explain, given the set R1 of RR sets, we first
apply Algorithm 9 to select a seed set S∗

k
, and we denote S∗a (1 ≤ a ≤ k) as the set of nodes selected

by the first a iterations in the modified greedy algorithm. Then, we apply Equation (2) to derive
an upper bound I+

C
(So

k
) for IC (So

k
). However, we can not use R1 to derive a lower bound of IC (S∗a ).

To explain, the selected set S∗a depends on R1 and we cannot apply the concentration bounds to S∗a .
Therefore, we apply the concentration bound to derive an estimation of the lower bound on IC (S∗a ),
denoted as Î−

C
(S∗a ), as ifR1 and S∗a were independent. Then, we select the maximum a (Algorithm 10

Line 8) such that it satisfies:

Î
−
C

(S∗a )/I+
C

(So
k ) ≥

(
1 −

(
1 − 1

k

)a

− ϵ1

)
,

and set b to this maximum a. However, since this is only an estimation of the lower bound, we gen-
erate another set R2 of RR set and R2 is independent of S∗

b
. Then, we can apply the concentration

bound to derive the lower bound I−
C

(S∗
b

) using Equation (1). Given I−
C

(S∗
b

), we are able to check if
S∗

b
satisfies the approximation ratio (Algorithm 10 Line 11), i.e.,

I
−
C

(S∗b )/I+
C

(So
k ) ≥

(
1 −

(
1 − 1

k

)a

− ϵ1

)
.

ACM Transactions on Database Systems, Vol. 47, No. 3, Article 12. Publication date: August 2022.



Influence Maximization Revisited 12:21

If the approximation ratio is not satisfied, with the existing paradigm, we will simply double the
size of R1 and repeat the above process. However, since now we are only to estimate the influence
of S∗

b
, we can stop when any node in this set is hit. Hence, the RR set-with-Sentinel algorithm can

be applied here and tends to save much time. To take this advantage, if we find that S∗
b

violates the
approximation guarantee, we first increase the size of R2 and try to provide a tighter lower bound
I
−
C

(S∗
b

) for S∗
b

(Algorithm 10 Lines 13–15). We increase the size of R2 until |R2 | = 4 · |R1 | and stop
increasing afterward since it actually indicates that S∗

b
we selected is most likely not good enough

to provide the approximation ratio. Therefore, we select another set S∗
b

by doubling the size of R1

(Algorithm 10 Line 16). We repeat the whole process until we find the seed set S∗
b

satisfying the
required approximation ratio.

Stopping condition. We now give the following lemma to establish the stopping condition of
Algorithm 10. It provides a bound on the number of random RR sets required in R1 in the sentinel
set selection phase.

Lemma 8. Let R1 be the set of random RR sets generated by Algorithm 10 and S∗
b

be a size-b node

set selected by Algorithm 9 on R1. Given ϵ ′ and δ ′, if the size of R1 satisfies

|R1 | ≥
2n

(
(1 − xb )

√
ln 2

δ ′ +

√
(1 − xb ) (ln

(
n
b

)
+ ln 2

δ ′ )
)2

ϵ ′2 · IC (So
k

)
,

where x = 1 − 1
k

, then with at least 1 − δ ′ probability,

IC (S∗b ) ≥ (1 − (1 − 1/k )b − ϵ ′)IC (So
k ).

Further notice that the size of R2 solely depends on R1, and is only constant times the size of R1,
and therefore we omit its discussion. According to Lemma 8, by replacing IC (So

k
) withk , ln

(
n
b

)
with

ln
(
n
k

)
, 1−xb with 1, and setting ϵ ′ = ϵ1,δ

′ = δ1/3, we define the maximum number of random RR
sets θmax as follows:

θmax =

2n
(√

ln 6
δ1
+

√
(ln

(
n
k

)
+ ln 6

δ1
)
)2

ϵ2
1 · k

. (10)

That is, if the size of the set R1 is θmax , the seed set S∗
b

selected by Algorithm 9 guarantees (1 −
(1− 1/k )b − ϵ1) approximation of IC (So

k
) with at least 1− δ1/3 probability. The reason of choosing

the probability of 1 − δ1/3, rather than 1 − δ1, will be explained shortly.
In terms of the initial setting, for a random variable in the range of [0, 1] with an expectation to be

μ, the Monte–Carlo method requires at least 3 ln (1/δ )/μ/ϵ2 [19] so as to provide an estimation of μ
with ϵ-relative error guarantee. Hence, we set the initial number θ0 to be 3 ln (1/δ1) (Algorithm 10
Line 1), which is the case when the random variable has an expectation of 1 and the relative error
is close to 1.

Failure probability. Here, we explain why Algorithm 10 ensures (1−(1−1/k )b−ϵ1) approximation
with at least 1 − δ1 probability. The algorithm has at most imax iterations. In the last iteration, no
matter whether I−

C
(S∗

b
)/I+
C

(So
k

) reaches the approximation threshold or not, it returns S∗
b

as the
final seed set. As shown in Lemma 8, θmax RR samples ensure that the failure probability of S∗

b

being unqualified, i.e., IC (S∗
b

) < (1 − (1 − 1/k )b − ϵ1)IC (So
k

), is less than δ1/3. In each of the first
imax − 1 iterations, by the union bound, the failure probability that the algorithm terminates with
an unqualified set S∗

b
is at most δ1

3imax
+ 2 · δ1

6imax
=

2δ1
3imax

(the lower bound is computed twice at
most). The total failure probability of the first imax − 1 iterations is at most 2δ1/3. Therefore, the
failure probability of Algorithm 10 is at most δ1.
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5.2 IM-Sentinel Phase

Algorithm 11 shows the pseudocode of the IM-Sentinel phase. In this phase, we apply Algorithm
8 to sample random RR sets and immediately terminate when the RR set reaches a node in S∗

b
. For

the remaining parts, they are similar to that of the first phase. In particular, Algorithm 11 initializes
the sample size of the RR sets to be 3 ln (1/δ2) and set the maximum number of RR set according
to Equation (11) (Algorithm 11 Line 1). Then, in each iteration, it samples a set R1 and a set R2

of random RR sets with equal size. It uses R1 to find the seed set S∗
k

by invoking Algorithm 9 and
derives the upper bound I+

C
(So

k
) (Algorithm 11 Lines 5–8), and uses the other set R2 to derive the

lower bound I−
C

(S∗
k

) (Algorithm 11 Line 9). When the approximation ratio is satisfied, we return
the seed set S∗

k
(Algorithm 11 Line 10–11). Otherwise, we double the size of R1 and R2 and then

repeat the above process.
The main difference is that, when generating R1 and R2, we can apply Algorithm 8 to effectively

reduce the size of a random RR set. Besides, when we feed R1 to Algorithm 9 to greedily select the
remaining k −b nodes, we remove the RR sets that hit any node in S∗

b
since such RR sets will bring

zero marginal coverage to other nodes (Algorithm 11 Line 5).

Stopping condition. Here we provide another lemma to bound the size of R1 in Algorithm 11.

Lemma 9. Let S∗
b

be the seed set returned by Algorithm 10. Given ϵ ′ and δ ′, if the size of R1 satisfies

|R1 | ≥
2n ·

(√
ln 3

δ ′ +

√
(1 − 1/e ) (ln

(
n−b
k−b

)
+ ln 3

δ ′ )
)2

IC (So
k

)ϵ ′2
,

then with at least 1 − δ ′ probability, the selected S∗
k−b

satisfies

IC (S∗b ∪ S
∗
k−b ) ≥ (1 − 1/e − ϵ1 − ϵ ′)IC (So

k ).

According to Lemma 9, we replace IC (So
k

) with k , set δ ′ = δ2/3, ϵ ′ = ϵ2, and define the maximum
number of RR sets in the IM-Sentinel phase as

θmax =

2n ·
(√

ln 9
δ2
+

√
(1 − 1/e ) (ln

(
n−b
k−b

)
+ ln 9

δ2
)
)2

ϵ2
2 · k

. (11)

That is, if the size of R1 is θmax , the seed set S∗
k−b

obtained in Algorithm 11 Line 6 guarantees
IC (S∗

b
∪ S∗

k−b
) ≥ (1 − 1/e − ϵ1 − ϵ2)IC (So

k
) with at least 1 − δ2/3 probability.

Failure probability. Like the analysis of Algorithm 10, the total failure probability of the first
imax − 1 iterations is 2δ2/3. Taking the failure probability of δ2/3 in the last iteration into consid-
eration, the failure probability of Algorithm 11 is δ2.

Remark. By using multiple (more than two) phases, it is likely to have a smaller average size of
RR sets in the later phases since there exists a larger sentinel set. However, there is no free lunch
by bringing more phases. With multiple phases, it will introduce the following costs:

— If HIST consists of l phases, the error threshold of each phase will be ϵ/l . It implies that we
have to compute a more accurate result for each phase.

— The RR sets in the former phases cannot be reused in the subsequent phases, which may
cause heavy computational overhead.

Thus for ease of analysis, we take the simplest case in our HIST solution.

5.3 Theoretical Analysis

In this section, we provide the proofs of Lemmas 8 and 9.
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ALGORITHM 11: IM-Sentinel(G,k, ϵ, S∗
b
, ϵ2,δ2)

1 Set θ0 = 3 · ln (1/δ2) and θmax according to Equation (11);

2 Generate R1 and R2 with |R1 | = |R2 | = θ0 by utilizing RR set-with-Sentinel;

3 imax ← log2
θmax

θ0
�;

4 for i = 1 to imax do

5 R′1 ← {R : R ∈ R1,R ∩ S∗b = ∅};
6 Select a size-(k − b) seed set S∗

k−b
by invoking Algorithm 9 on R′1;

7 S∗
k
← S∗

b
∪ S∗

k−b
;

8 Compute I+
C

(So
k

) by Equation (2) with R1; set δu =
δ2

3imax
;

9 Compute I−
C

(S∗
k

) by Equation (1) with R2; set δl =
δ2

3imax
;

10 if I−
C

(S∗
k

)/I+
C

(So
k

) > (1 − 1/e − ϵ ) then

11 return S∗
k

;

12 double the size of R1 and R2 by utilizing RR set-with-Sentinel;

13 return S∗
k

;

Proof of Lemma 8. We first give three lemmas that will be used in the proof of Lemma 8.

Lemma 10 ([32]). Let S∗
b

be the seed set selected by Algorithm 9. Let x = (1− 1/k ), then ΛR (S∗
b

) ≥
(1 − xb )ΛR (So

k
).

Denote the size of R as θ . Since n
θ

ΛR (So
k

) is an unbiased estimator of IC (So
k

). If θ is large enough,
n
θ

ΛR (So
k

) should be close to IC (So
k

), as shown in the following lemma.

Lemma 11 ([47]). Given δ ′1, ϵ
′
1, and θ1 =

2n ·ln(1/δ ′1 )

IC (So
k

) ·ϵ ′1
2 , if θ ≥ θ1, n

θ
ΛR (So

k
) ≥ (1 − ϵ ′1)IC (So

k
) holds

with 1 − δ ′1 probability.

The proof of Lemma 11 is presented in [47] (Lemma 3). Here, if θ is large, n
θ

ΛR (S∗
b

) is close to
IC (S∗

b
). Based on Lemmas 10–11, we have:

n

θ
· ΛR (S∗b ) ≥

(
1 − xb

)
(1 − ϵ ′1)IC (So

k ). (12)

Hence, it is possible for us to build a connection between IC (S∗
b

) and IC (So
k

).

Lemma 12. Given δ ′2, ϵ
′
1 < ϵ ′, if Equation (12) holds and

θ > θ2 =

2(1 − xb ) · n ·
(
ln

(
n
b

)
+ ln 1

δ ′2

)

IC (So
k

) ·
(
ϵ ′ − (1 − xb ) · ϵ ′1

)2
,

then with at least 1 − δ ′2 probability, we have IC (S∗
b

) ≥ (1 − xb − ϵ ′)IC (So
k

).

Proof. The proof follows similar steps as Lemma 4 in [47]. Let Sb be an arbitrary size-b node
set selected from V . We say Sb is bad if IC (Sb ) < (1 − xb − ϵ ′)IC (So

k
). Define a random variable xi

for each Ri ∈ R, such that xi = 1 if Ri ∩ Sb � ∅, and xi = 0 if otherwise. Define p = IC (Sb )/n. By
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definition, we have p < (1 − xb − ϵ ′)IC (So
k

)/n. Let ϵ ′2 = ϵ ′ − (1 − xb ) · ϵ ′1.

Pr
[n
θ

ΛR (Sb ) − IC (Sb ) ≥ ϵ ′2IC (So
k )
]
= Pr

⎡⎢⎢⎢⎢⎣
θ∑

i=1

xi − θp ≥
ϵ ′2IC (So

k
)

np
· θp

⎤⎥⎥⎥⎥⎦
≤ exp ��−

ϵ ′2
2
IC (So

k
)2

2n2p + 2
3ϵ
′
2nIC (So

k
)
· θ�� ≤ exp ��−

ϵ ′2
2
IC (So

k
)

2n(1 − xb − ϵ ′) + 2
3ϵ
′
2n
· θ��

≤ exp ��−
ϵ ′2

2
IC (So

k
)

2n(1 − xb )
· θ2

�� ≤ δ ′2/

(
n

b

)
.

Hence, if θ > θ2, the probability of bad S∗
b

is at most δ ′2, since there exists only
(
n
b

)
size-b node sets

and each has at most δ ′2/
(

n
b

)
. That is, with at least 1 − δ ′2 probability,

IC (S∗b ) ≥ n

θ
· ΛR (S∗b ) − ϵ ′2IC (So

k ) ≥ (1 − xb − ϵ ′)IC (So
k ).

Hence, the lemma follows. �

Now we give the proof of Lemma 8. Based on Lemmas 11 and 12 and by the union bound, if
θ > max(θ1,θ2), it holds that IC (S∗

b
) ≥ (1 − xb − ϵ ′)IC (So

k
) with at least 1 − δ ′1 − δ ′2 probability. Set

δ ′1 = δ ′2 = δ ′/2 and θ1 = θ2, denoted as θ ′, we have

θ ′ =
2n

(
(1 − xb )

√
ln 2

δ ′ +

√
(1 − xb ) (ln

(
n
b

)
+ ln 2

δ ′ )
)2

ϵ ′2 · IC (So
k

)
.

Hence, if θ > θ ′, S∗
b

satisfies IC (S∗
b

) ≥ (1 − xb − ϵ ′)IC (So
k

) with at least 1 − δ ′ probability.

Proof of Lemma 9. We first give several lemmas that will be used in the proof of Lemma 9.

Lemma 13. Let S∗
b

be the seed set returned by Algorithm 10. Let S∗
k−b

be the seed set generated in

Algorithm 11 Line 6 on a set R of random RR sets. Then we have ΛR (S∗
b
∪S∗

k−b
) ≥ (1−xk−b )ΛR (So

k
)+

xk−b ΛR (S∗
b

), where x = 1 − 1/k .

Proof. Let S∗j (1 ≤ j ≤ k−b) be the set of nodes selected in the first j iterations of the generation
of S∗

k−b
, and Mj (1 ≤ j ≤ k − b) be a union of S∗

b
and S∗j , i.e., Mj = S∗

b
∪ S∗j . By the submodularity

property of coverage function ΛR (·),

ΛR (So
k ) ≤ ΛR (So

k ∪Mj ) ≤ ΛR (Mj ) +
∑

v ∈So
k
\Mj

ΛR (v |Mj )

≤ ΛR (Mj ) + k
(
ΛR (Mj+1) − ΛR (Mj )

)
.

Let γj = ΛR (So
k

) − ΛR (Mj ). Then we have: γj+1 ≤ (1 − 1
k

)γj = xγj . Recursively, we have γk−b ≤
xk−bγ0. By the definition of γj and Mj , we derive that:

γ0 = ΛR (So
k ) − ΛR (S∗b ), γk−b = ΛR (So

k ) − ΛR (S∗b ∪ S
∗
k−b ).

Hence, it can be obtained that,

ΛR (S∗b ∪ S
∗
k−b ) ≥ (1 − xk−b )ΛR (So

k ) + xk−b ΛR (S∗b ).

The lemma is proved. �
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According to Lemma 11, given δ ′1, ϵ
′
1, and θ1 =

2n ln 1
δ ′1

IC (So
k

) ·ϵ ′1
2 , if the size of R, denoted as θ , is larger

than θ1, it follows that n
θ

ΛR (So
k

) ≥ (1 − ϵ ′1)IC (So
k

) with at least 1 − δ ′1 probability. In fact, at this
moment (θ > θ1), n

θ
ΛR (S∗

b
) is close to IC (S∗

b
). That is the following lemma.

Lemma 14. Given ϵ ′1 and δ ′1, if θ > θ1, it holds that n
θ

ΛR (S∗
b

) ≥ IC (S∗
b

) − ϵ ′1IC (So
k

) with at least

1 − δ ′1 probability.

Proof. Define a random variable xi for each Ri ∈ R, such that xi = 1 if S∗
b
∩ Ri � ∅, and xi = 0

if otherwise. Define p = IC (S∗
b

)/n. Obviously, IC (So
k

) > IC (S∗
b

) = np. We have

Pr
[n
θ
· ΛR (S∗b ) − IC (S∗b ) ≤ −ϵ ′1IC (So

k )
]
= Pr

⎡⎢⎢⎢⎢⎣
θ∑

i=1

xi − θp ≤ −
ϵ ′1IC (So

k
)

np
θp

⎤⎥⎥⎥⎥⎦
≤ exp ��−

(
ϵ ′1IC (So

k
)

np

)2
pθ1

2
��

≤ exp ��−
(
ϵ ′1IC (So

k
)

np

)2
pθ1

2
�� ≤ δ ′1.

The lemma follows. �

Combining Lemmas 13 and 14, we have

Lemma 15. Given δ ′1 and ϵ ′1, if θ > θ1 and IC (S∗
b

) ≥ (1 − xb − ϵ1)IC (So
k

), then with at least 1 − 2δ ′1
probability, we have

n

θ
· ΛR (S∗b ∪ S

∗
k−b ) ≥ (1 − 1/e − ϵ1 − ϵ ′1)IC (So

k ). (13)

Proof. Based on Lemma 13,
n

θ
· ΛR (S∗b ∪ S

∗
k−b ) ≥ (1 − xk−b )ΛR (So

k ) + xk−b ΛR (S∗b )

≥ (1 − xk−b ) (1 − ϵ ′1)IC (So
k ) + xk−b

(
(1 − xb − ϵ1)IC (So

k ) − ϵ ′1IC (So
k )

)
= (1 − xk − ϵ ′1 − xk−bϵ1)IC (So

k ) ≥ (1 − xk − ϵ1 − ϵ ′1)IC (So
k ).

When θ > θ1, both n
θ

ΛR (So
k

) ≥ (1 − ϵ ′1)IC (So
k

) and n
θ

ΛR (S∗
b

) ≥ IC (S∗
b

) − ϵ ′1IC (So
k

) hold with at least
1 − δ ′1 probability. By union bound, the failure probability is 2δ ′1. The lemma follows. �

Let ϵ ′ be the error threshold in the IM-sentinel phase.

Lemma 16. Given δ ′2, ϵ ′1 < ϵ ′, and

θ2 =

2(1 − 1/e ) · n
(
ln

(
n−b
k−b

)
+ ln 1

δ ′2

)
IC (So

k
) (ϵ ′ − ϵ ′1)2

,

if Equation (13) holds and θ > θ2, then

IC (S∗b ∪ S
∗
k−b ) ≥ (1 − 1/e − ϵ1 − ϵ ′)IC (So

k ).

Proof. Let Sk−b be an arbitrary size-(k−b) node set selected fromV \S∗
b
. We say that Sk−b is bad,

if IC (S∗
b
∪Sk−b ) < (1−1/e−ϵ1−ϵ ′)IC (So

k
). Then, we can follow the proof steps in Lemma 12 to prove

the lemma. Define a random variable xi for each Ri ∈ R, such that xi = 1 if Ri∩{S∗b∪Sk−b } � ∅, and
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xi = 0 if otherwise. Definep = IC (S∗
b
∪Sk−b )/n. By definition, we havep < (1−1/e−ϵ1−ϵ ′)IC (So

k
)/n.

Let ϵ ′2 = ϵ ′ − ϵ ′1. Following the proof steps in Lemma 12, we can prove that

Pr
[n
θ

ΛR (S∗b ∪ Sk−b ) − IC (S∗b ∪ Sk−b ) ≥ ϵ ′2IC (So
k )
]

= Pr
⎡⎢⎢⎢⎢⎣

θ∑
i

xi − θp ≥
ϵ ′2IC (So

k
)

np
· θp

⎤⎥⎥⎥⎥⎦ ≤ exp ��−
ϵ ′2

2
IC (So

k
)2

2n2p + 2
3ϵ
′
2nIC (So

k
)
· θ��

≤ exp ��−
ϵ ′2

2
IC (So

k
)

2n(1 − 1/e − ϵ1 − ϵ ′) + 2
3ϵ
′
2n
· θ��

≤ exp ��−
ϵ ′2

2
IC (So

k
)

2n(1 − 1/e )
· θ2

�� ≤ δ ′2/

(
n − b
k − b

)
.

Hence, if θ > θ2, the probability of bad S∗
k−b

is at most δ ′2, since there exist only
(

n−b
k−b

)
size-(k − b)

node sets and each has at most δ ′2/
(

n−b
k−b

)
probability. That is, with at least 1 − δ ′2,

IC (S∗b ∪ S
∗
k−b ) ≥ n

θ
· ΛR (S∗b ∪ S

∗
k−b ) − ϵ ′2IC (So

k )

≥ (1 − 1/e − ϵ1 − ϵ ′)IC (So
k ).

Hence, the lemma follows. �

Now we prove Lemma 9. Lemmas 15 and 16 hold with 1−2δ ′1 and 1−δ ′2 probability, respectively.
By union bound, if θ > max(θ1,θ2), with 1 − 2δ ′1 − δ ′2 probability, we have that:

IC (S∗b ∪ S
∗
k−b ) ≥ (1 − 1/e − ϵ1 − ϵ ′)IC (So

k ).

By setting δ ′1 = δ ′2 = δ ′/3, θ1 = θ2, denoted as θ ′, we have:

θ ′ =
2n ·

(√
ln 3

δ ′ +

√
(1 − 1/e ) (ln

(
n−b
k−b

)
+ ln 3

δ ′ )
)2

IC (So
k

)ϵ ′2
.

The lemma follows.

6 FORWARD PROPAGATION

In the previous sections, we propose better solutions to find out a seed set for the IM problem by
means of the RR-set-based method. However, if we also hope to get fine-grained propagating infor-
mation, the RR-set-based approach may not be a good solution. For example, if we have obtained
a seed set S , now we hope to estimate the probability that node v is influenced with respect to S
for all v ∈ G. One possible solution is sampling sufficient RR sets from each node in the graph G,
which incurs prohibitive computations. On the other hand, we might conduct many forward prop-
agations, then the fraction of the simulations in which nodev is finally activated could work as an
unbiased estimator for the probability that seed set S influences node v . With the subset sampling
techniques developed in Section 4, the forward propagation approach might be efficient, compared
with the RR-set-based method. Motivated by this, we investigate this approach and provide some
new insights.

This section is organized as follows: In Section 6.1, we develop the time cost of conducting a
random forward propagation with subset sampling algorithms ISS and SKIP; in Section 6.2, we
propose a heuristic condition to indicate when the forward propagation should be chosen in terms
of estimating the expected influence of a given seed set.
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6.1 Time Complexity

We provide a theorem to bound the expected cost of conducting a random forward propagation.
This theorem holds for both directed and undirected graphs.

Theorem 5. Given a graph G = (V ,E), a seed set S , if it holds that
∑

u ∈I N (v ) p (u,v ) ≤ c for any

node v ∈ V , where c is a constant number, then the expected cost to conduct a forward propagation

is O (IC (S )) with ISS algorithm, and O (log(dmax ) · IC (S )) with SKIP algorithm where dmax is the

maximum out-degree of the graph G.

Proof. Let p (u,v ) denote the propagating probability of the edge from node u to node v . Let
Pr[S → u] denote the probability that the seed set S activates node u. Let IN (u) be the set of u’s
in-neighbors and OUT (u) be the set of u’s out-neighbors.

Let EC (S ) be the set of edges being alive under the cascade process C from S . That is, given a
realization ϕ of the probabilistic graphG by the live/blocked edge approach, for the corresponding
cascade C from S on ϕ, only the outgoing edges in ϕ from the activated nodes by S are included
in EC (S ), while other edges in ϕ, though being alive, are excluded. Let NC (S ) be the set of acti-
vated nodes by S under the cascade processC . Then the expected cost EF (S ) of running a forward
propagation with ISS is given as follows:

EF (S ) = IC (S ) + EC ∈C [|EC (S ) |].

The above equality is due to the fact that the ISS algorithm takes O (1) to sample a live edge, and
we have to take at least O (1) for each activated node. Therefore, we charge O (1) cost if an edge is
alive and charge no cost if the edge is not alive in the following proof.

We rewrite the expectation EC ∈C [|EC (S ) |] as follows:

EC ∈C [|EC (S ) |] = EC ∈C

⎡⎢⎢⎢⎢⎢⎣
∑
v ∈V

∑
u ∈I N (v )

1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ =
∑
v ∈V
EC ∈C

⎡⎢⎢⎢⎢⎢⎣
∑

u ∈I N (v )

1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ ,
where 1EC (S ) (u,v ) is an indicator function such that 1EC (S ) (u,v ) = 1 if edge (u,v ) ∈ EC (S ) and
1EC (S ) (u,v ) = 0 otherwise.

Now for node v ∈ V with din (v ) in-neighbors, we fix an order of these in-neighbors, and then
we partition C into din (v ) + 1 disjoint sets Cv

i for i = 0, 1, . . . ,din (v ) such that Cv
i is the set of

cascades where v’s ith incoming edge is the first (i.e., smallest-indexed) edge being visited by the
cascade for i ≥ 1, and Cv

0 is the set of cascades where none of the incoming edges is visited (i.e., v
is not activated under the cascade). Let ui be the ith incoming neighbor ofv . Then, for eachv ∈ V ,

EC ∈C

⎡⎢⎢⎢⎢⎢⎣
∑

u ∈I N (v )

1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ =
din (v )∑

i=1

���EC ∈Cv
i

⎡⎢⎢⎢⎢⎢⎣
∑

u ∈I N (v )

1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ · Pr
[
C ∈ Cv

i

]�	�
=

din (v )∑
i=1

���EC ∈Cv
i

⎡⎢⎢⎢⎢⎢⎣1 +
∑

u ∈I N (v )\{ui }
1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ · Pr
[
C ∈ Cv

i

]�	� . (14)

Now we analyze the term EC ∈Cv
i

[1EC (S ) (u,v )]. Note that for cascade C ∈ Cv
i ,

— For t = 1, 2, . . . , i − 1, edge (ut ,v ) is not alive by definition, and thus
∑i−1

t=1 1EC (S ) (ut ,v ) = 0;
— For t = i + 1, . . . ,din (v ), if ut is not activated, we have 1EC (S ) (ut ,v ) = 0;
— For t = i +1, . . . ,din (v ), ifut is activated, we have 1EC (S ) (ut ,v ) = 1 with probability p (ut ,v )

and 1EC (S ) (ut ,v ) = 0 with probability 1 − p (ut ,v ), due to independent propagation.

ACM Transactions on Database Systems, Vol. 47, No. 3, Article 12. Publication date: August 2022.



12:28 Q. Guo et al.

Therefore, we can obtain that

EC ∈Cv
i

⎡⎢⎢⎢⎢⎢⎣
∑

u ∈I N (v )\{ui }
1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ = EC ∈Cv
i

⎡⎢⎢⎢⎢⎢⎣
din (v )∑
t=i+1

1EC (S ) (ut ,v )

⎤⎥⎥⎥⎥⎥⎦
≤

din (v )∑
t=i+1

p (ut ,v ) ≤
∑

u ∈I N (v )\{ui }
p (u,v ).

Therefore, from Equation (14) and the constraint
∑

u ∈I N (v ) p (u,v ) ≤ c , we have

EC ∈C

⎡⎢⎢⎢⎢⎢⎣
∑

u ∈I N (v )

1EC (S ) (u,v )

⎤⎥⎥⎥⎥⎥⎦ ≤
din (v )∑

i=1

���
���1 +

∑
u ∈I N (v )\{ui }

p (u,v )�	� · Pr
[
C ∈ Cv

i

]�	�
≤ (1 + c )

din (v )∑
i=1

Pr
[
C ∈ Cv

i

]
= (1 + c ) Pr[S → v].

Finally, putting them together yields

EF (S ) ≤ IC (S ) + (1 + c )
∑
v ∈V

Pr[S → v] = (2 + c )IC (S ).

It completes the proof of the conclusion that the time complexity of a forward-propagation simu-
lation with ISS is bounded by O (IC (S )).

Let E ′F (S ) be the expected cost of conducting a forward propagation with SKIP. According to
Theorem 4, we know that SKIP takes a cost not more than 1+ βμ + logβ h for any β ≥ 2. Let β = 2,
and then, we have

E ′F (S ) =
∑
u ∈V

Pr[S → u] ���1 + 2
∑

v ∈OU T (u )

p (u,v ) + log(dout (u))�	�
= 2

∑
u ∈V

Pr[S → u] ���1 +
∑

v ∈OU T (u )

p (u,v )�	� +
∑
u ∈V

(log(dout (u)) − 1) Pr[S → u]

= 2EF (S ) +
∑
u ∈V

(log(dout (u)) − 1) Pr[S → u],

where EF (S ) =
∑

u ∈V Pr[S → u](1 +
∑

v ∈OU T (u ) p (u,v )) since ISS algorithm samples a live edge
with O (1) cost. Note that EF (S ) ≤ (c + 2)IC (S ) and log(dout (u)) ≤ log(dmax ) for any u ∈ V . Then,

E ′F (S ) ≤ (2c + 3 + log(dmax ))IC (S ).

Hence, the time complexity of conducting a forward propagation with the SKIP algorithm is
bounded by O (log(dmax )IC (S )). �

6.2 Heuristic Condition

According to Lemma 1, the expected influence of an arbitrary seed set could be estimated by the
RR-set-based method. On the other hand, we could also run many forward propagations and take
the average as an estimator of influence. It is natural to ask this question: when should we use
the forward propagation approach to estimate its influence if a seed set is given? From Section 6.1,
we have learned that a random forward propagation is bound by O (IC (S )). Intuitively, when the
expected influence is low, the forward propagation approach should be used. In this subsection,
we first derive an upper bound for the time cost of generating a random RR set under WC model
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on undirected graphs. Then with the aid of this bound, we are allowed to heuristically derive a
condition to answer the aforementioned question under the WC model.

Upper bound for the expected cost of a random RR set. According to [44], the following
lemma provides an upper bound on the expected influence of a given seed set.

Lemma 17. Given a WC model with an undirected graphG = (V ,E) and a seed set S ⊆ V , we have

IC (S ) ≤ |E (S,V \S ) | + |S |, where E (S,V \S ) is the set of edges between S and V \S .

The above lemma reveals that the expected influence of a given seed set S is inherently bounded
by the size of S plus the total number of the edges incident to S , denoted as |E (S,V \S ) |. It sets up
a connection between the expected influence of a seed set and its degree information. It is highly
informative such that we are allowed to further derive an upper bound for the expected cost of
generating a random RR set. The derivation is as follows: first, when S includes only one single
seed (i.e., S = {u}), the upper bound in Lemma 17 becomes d (u) + 1, where d (u) is the degree of
node u; Then plugging it into the inequality (3) in Section 3.2:

ER ≤
θ (V )

n

∑
u ∈V

θ (din (u))

θ (V )
IC ({u}) ≤ 1

n

∑
u ∈V

(d (u) + 1) = davд + 1,

where davд is the averaged degree over all the nodes in the graph.

Lemma 18. Given a WC model with an undirected graphG = (V ,E), the cost to generate a random

RR set on G can be bounded by davд + 1.

Lemma 18 is remarkable, showing that generating a random RR set under WC model on undi-
rected graphs is computationally efficient, with a cost of only davд + 1.

Heuristic condition. Now we are ready to give a heuristic condition. On one hand, Lemma 17
provides an upper bound (denoted as U ) for the expected influence of a given seed set S . Thus
according to Theorem 5, the running time cost of a random forward propagation is O (U ). On the
other hand, according to Lemma 17, the expected cost of generating a random RR set is bounded
by davд + 1. Let Nf be the number of forward propagations and Nr be the number of the RR sets.
Thus, heuristically we should use the forward propagation approach if it holds that

Nf ·U ≤ Nr · davд .

Here, we approximate the cost of a forward propagation to be the upper bound U .
Note that both approaches should be able to provide a similar approximation guarantee. It allows

us to establish a relationship between Nf and Nr . We claim that to achieve a similar guarantee, Nf

and Nr should satisfy

Nf =
α ·U
n

Nr , (15)

where α is a parameter taking the value of 10. The derivation is presented in Section 6.3.
Therefore, by putting together the above results, we draw this condition: we should use the

forward propagation approach if the given seed set S satisfies

α ·U 2 ≤ n · davд = 2m. (16)

It implies that if we want to use the forward propagation approach, the total number of the edges
incident to the seed set S should be much smaller than the edge number of the graph. It should
be pointed out that though this heuristic condition is derived from the properties of undirected
graphs, our experiments show it is also effective on directed graphs.
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6.3 Theoretical Analysis

In this subsection, we present the derivation of Equation (15) mentioned in the last subsection.
Given a seed set S , let fi (S ) be the number of activated nodes in the ith forward-propagating
simulation starting from S where i = 1, 2, . . . ,Nf . Without confusion, we denote it as fi for sim-
plification. LetU be the deterministic upper bound of influence for the given seed set S according
to Lemma 17. Though the expectation IC (S ) of fi satisfies IC (S ) ≤ U , the value of fi might be as
large as |V |, which makes applying the Chernoff bound unattractive.

To tackle this challenge, we define a variable f̂i by truncating fi with the threshold α · U , that
is,

f̂i =

{
fi , if fi ≤ αU

αU , otherwise
, (17)

where α is a parameter. We choose α = 10 such that the percentage of forward-propagating simu-
lation with influence larger than αU is less than 10%, which comes from the Markov inequality:

Pr[X ≥ a] ≤ E[X ]

a
,

where X is a non-negative random variable and a > 0. Let ÎC (S ) denote the expectation of f̂i .
Clearly, it holds that IC (S ) ≥ ÎC (S ).

The Chernoff bound is given as follows:

Lemma 19. [17] Let X1, . . . ,Xn be independently distributed in [0, 1]. Let X =
∑n

i=1 Xi . Then for

λ > 0,

Pr [X − E[X ] ≥ λ] ≤ exp

(
− λ2

2E[X ] + 2/3λ

)
.

For λ < E[X ], then we have exp(− λ2

2E[X ]+2/3λ
) ≤ exp(− λ2

3E[X ] ). Let Nf be the number of forward-
propagating simulations. By applying the Chernoff bound, we have

Pr

⎡⎢⎢⎢⎢⎢⎣
Nf∑
i=1

f̂i
αU
− Nf

ÎC (S )

αU
≥ λf

⎤⎥⎥⎥⎥⎥⎦ ≤ exp ���−
λ2

f

3
Nf ÎC (S )

αU

�	� .
Let λf =

Δf Nf

αU
. Then it can be rewritten as

Pr

⎡⎢⎢⎢⎢⎢⎣ÎC (S ) ≤ 1

Nf

Nf∑
i=1

f̂i − Δf

⎤⎥⎥⎥⎥⎥⎦ ≤ exp ��−
Δ2

f
Nf

3ÎC (S )αU
�� . (18)

On the other hand, let Nr be the number of RR sets and Yi be a random variable for the RR set
Ri such that Yi = 1 if S ∩ Ri � ∅, and Yi = 0 otherwise. According to Lemma 1 and the Chernoff
bound,

Pr
⎡⎢⎢⎢⎢⎣

Nr∑
i=1

Yi − Nr
IC (S )

n
≥ λr

⎤⎥⎥⎥⎥⎦ ≤ exp ��− λ2
r

3Nr
IC (S )

n

�� ,
where n is the number of nodes in the graph. Let λr =

Nr Δr

n
, and then we can rewrite the above

inequality as follows,

Pr
⎡⎢⎢⎢⎢⎣IC (S ) ≤ n

Nr

Nr∑
i=1

Yi − Δr

⎤⎥⎥⎥⎥⎦ ≤ exp

(
−

Nr Δ2
r

3n · IC (S )

)
. (19)

Assume that the parameter α = 10 is a favorable setting such that ÎC (S ) is close to IC (S ), (i.e.,
ÎC (S ) ≈ IC (S )). Then taking a comparison between Equations (18) and (19), to achieve a similar
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lower bound (i.e., Δf ≈ Δr ) with the same failure probability (i.e., exp(−
Δ2

f
Nf

3ÎC (S )αU
) = exp(− Nr Δ2

r

3n ·IC (S ) )),

we have
Nf

αU
=

Nr

n
.

Therefore, we finally obtain Equation (15).

7 ADDITIONAL RELATED WORK

There has been a large body of research on IM, e.g., [13–16, 18, 20, 23–25, 29, 30, 33, 34, 36, 43, 51], in
the literature. Kempe et al. [30] present the first seminal work on IM, and show that finding k users
that maximize the influence is NP-hard. They provide a greedy algorithm that provides (1−1/e−ϵ )-
approximate solution, which requires Ω(k ·m ·n ·poly (1/ϵ )) running time and is too expensive on
large social networks. A plethora of research works, e.g., [7, 14–16, 20, 24, 25, 29, 43], study how
to improve the efficiency of the IM problem. Most algorithms are heuristic and fail to provide an
approximation guarantee. The states-of-the-art are the RR set-based solutions [9, 42, 46–48], as
discussed in Section 2.2, which provide superb efficiency and a strong theoretical guarantee.

Besides, a plethora of research work focuses on more practical scenarios rather than the classic
IM. For instance, topic-aware IM, by taking into consideration of the topic propagated, is studied by
[34, 38]. Time-aware IM, which considers a time constraint during the diffusion process, is studied
in [21, 35]. Competitive IM [12, 36] considers the scenarios where several competitors spread their
influences in the same social networks simultaneously and their diffusion interferes with each
other. There also exist studies on IM under budget constraints [8, 38], constraint to user groups
[49], and under adaptive settings [27, 45]. These are orthogonal to our study.

Influence estimation with an accuracy guarantee is also studied in the literature, e.g., [37, 41].
Lucier et al. [37] introduce the influence estimation method with an accuracy guarantee, INFEST,
which is tailored for distributed settings. Nguyen et al. [41] propose the SIEA method to estimate
the influence spread with an accuracy guarantee, which is built on two components: the important
sampling method IICP that only samples non-singular cascades, and the estimation method RSA
that can reduce the number of cascade samples required for desired accuracy guarantee.

8 EXPERIMENTS

This section evaluates our solutions against alternatives. All experiments are conducted on a Linux
machine with an Intel Xeon CPU clocked at 2.70 GHz and 350 GB memory. We implement all of
our algorithms in C++ and compile all algorithms with full optimization. We repeat each algorithm
five times and report the average running time as the query performance.

Algorithms. For evaluating the effectiveness of SUBSIM, we compare our solutions against the
three state-of-the-art solutions, IMM, SSA, and OPIM-C, which all adopt the vanilla RR set gener-
ation algorithm (Algorithm 2). The C++ implementations of these solutions are available at [4–6],
respectively. For our solution, we first implement based on the existing state-of-the-art OPIM-
C and integrate our SUBSIM framework for RR set generation. Moreover, we also integrate the
OPIM-C with the RR set generation method SKIS [40] for performance comparison, and name it
OPIM-C+SKIS to be distinguished from the OPIM-C with the vanilla RR set generation algorithm.
The algorithm SKIS is implemented according to the pseudocode in [40].

For evaluating the effectiveness of HIST under highly influential scenarios, we implement two
versions of HIST, one with vanilla RR set generation algorithm and one with SUBSIM framework
for RR set generation. To compare HIST with non-RR-set-based solutions, we include the snapshot-
based method PMC [43] as a competitor, whose C++ implementation can be found at [2].
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Table 2. Summary of Datasets

(K = 103,M = 106,B = 109)

Dataset Type n m

Pokec directed 1.6 M 30.6 M
Orkut undirected 3.1 M 117.2 M

Twitter directed 41.7 M 1.5 B
Friendster undirected 65.6 M 1.8 B

In the experiments for forward propagation issues, we implement two versions of the forward
propagation, one with the SKIP algorithm, and one with the vanilla subset sampling algorithm
(that is, flipping a biased coin once for each out-going edge). Besides, to evaluate the effectiveness
of the heuristic condition proposed in Section 6.2, we implement three estimators for influence
estimation. The first one is the forward propagation estimator with the SKIP sampling method
(i.e., we conduct the IC propagation simulations using the SKIP sampling method many times, and
then take the average), dubbed as FP-SKIP ; the second one is the forward propagation estimator
with the IICP sampling method [41], dubbed as FP-IICP ; the third one is the RR-set-based estimator,
dubbed as RRSE, which samples sufficient RR sets and then estimate the influence spread according
to Lemma 1. The IICP sampling method is implemented according to the pseudocode in [41].

Datasets. We evaluate our experiments on four benchmark datasets that are publicly available at
[1, 3]. The summary of these datasets is shown in Table 2.

Parameter Settings. Recap that all the algorithms include an error parameter ϵ and a failure
probability parameter δ . Following previous work [46], we set ϵ = 0.1 and δ = 1/n for all solutions
in the experiments. To examine the effectiveness of our SUBSIM, we compare our SUBSIM against
the vanilla RR set generation algorithm under the IC model with different distribution settings. We
first test on the WC model, where the weight of an edge (w,u) is set as 1/din (u). Then we test the
case when the weight of edges follows skewed distributions, in particular, exponential distribution
and Weibull distribution. For exponential distribution, the probability density function (PDF) is
f (x ) = λe−λx . We set λ = 1 and sample the weight of each edge with this setting. For each node
v , we scale the sum of the weights of its incoming edges to 1. For Weibull distribution, the PDF
is f (x ) = a

b
· ( x

b
)a−1 · e−(x/b )a

. Following previous studies [47], we sample a and b from [0, 10]
uniformly at random for each edge e . For each node v , we scale the sum of the probability weight
of its incoming edges to 1.

We then examine the effectiveness of HIST in high influence networks, where the average size
of random RR sets tends to be quite large. We design our experiments by varying the average
size of random RR sets under two settings. The first setting, dubbed as WC variant, is similar to
WC model except that we introduce a constant θ ≥ 1 such that the weight of an edge (w,u)
is set as min{1,θ/din (u)}. By changing θ , we are able to vary the average size of random RR
sets. We then vary θ on each dataset such that the average size of random RR sets is approx-
imately {50, 400, 1,000, 4,000, 8,000, 32,000}. We denote the setting as θ50,θ400,θ1K ,θ4K ,θ8K ,θ32K ,
respectively. The second setting is the Uniform IC setting where all edges have the same weight
p. We vary the weight p on each dataset such that the average size of random RR sets is approx-
imately {50, 400, 1,000, 4,000, 8,000, 32,000}. We denote the setting as p50,p400,p1K ,p4K ,p8K ,p32K ,
respectively. As for the baseline PMC [43], we set the parameter R (i.e., the number of snapshots)
as 200, following the default setting in [43].

Accuracy Measure. To measure estimation accuracy when evaluating different influence es-
timators, we compute the relative error and then take the average, which is expressed as
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Fig. 1. Varying k : Running time of IM algorithms under WC model.

1
θ

∑θ
i=1 |x̂i/xi − 1|, where x̂i and xi are the estimated and exact influence of the ith seed set, re-

spectively. The exact expected influence is computed with the guarantee that relative error is less
than 0.1%.

8.1 Effectiveness of SUBSIM

In the first set of experiments, we examine the effectiveness of SUBSIM against IMM, SSA, OPIM-
C, and OPIM-C+SKIS under WC setting. Figure 1 reports the average running time on the four
datasets. The first observation is that SUBSIM consistently outperforms alternatives on all the
tested datasets. Compared to OPIM-C, even though we only modify the RR set generation algo-
rithm, SUBSIM is still up to 15× faster than OPIM-C on Twitter. SUBSIM further outperforms SSA
(respectively, IMM) by up to an order (respectively, three orders) of magnitude. Compared with
OPIM-C+SKIS which combines OPIM-C and SKIS, our SUBSIM also achieves better performance
by up to 20× on Twitter. It can be explained by the fact that our SUBSIM optimizes the generation
of both the singular and non-singular RR-sets. The cost of singular RR set generation in SUBSIM
is also much smaller than the vanilla RR set generation algorithm which takes an expected cost
proportional to the average degree. For example, on the WC model, the cost of singular RR set gen-
eration takes only O (1) cost with our SUBSIM. Note that OPIM-C+SKIS fails to consistently beat
the vanilla OPIM-C. To explain, the greedy algorithm in SKIS (see Algorithm 3 in [40]) iteratively
selects a node v̂ having the largest marginal influence gain which is float data type due to the
importance sampling mechanism, and is implemented using max heap. In contrast, OPIM-C with
the vanilla RR set generation iteratively pick a node v̂ with maximal marginal coverage which is
represented with an integer value, and thus could be implemented more efficiently with inverted
list and lazy update.

In the second set of experiments, we consider the skewed distribution settings, i.e., when the
edges follow the exponential or Weibull distribution. We omit the results for IM algorithms since
the experimental result follows a similar trend. Instead, we focus on comparing the cost of the
vanilla RR set generation algorithm, denoted as vanilla, with that of our SUBSIM for RR set gener-
ation. We implement SUBSIM with BUCKET with β = 2 (denoted as SUBSIM + BUCKET), ISS (de-
noted as SUBSIM + ISS), and SKIP (denoted as SUBSIM + SKIP), respectively. We generate 210×1000
random RR sets with each of the four algorithms on each dataset and report their running time.
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Fig. 2. Skewed distribution: RR set generation cost.

Fig. 3. Varying k : Running time under WC variant setting.

As shown in Figure 2, SUBSIM + SKIP consistently keeps its advantage on all four tested datasets
and achieves up to 41× (respectively, 43×) speedup over vanilla under exponential (respectively,
Weibull) distribution. Besides, even though the ISS sampling method has the optimal time complex-
ity of O (1 + μ ) for the subset sampling problem, however, SUBSIM+SKIP gives a better practical
performance than SUBSIM+ISS, and achieves up to 2.7× (respectively, 2.8×) speedup under expo-
nential (respectively, Weibull) distribution. This result can be explained by the fact that the ISS
sampling method takes a two-dimensional index structure, which is complicated and may hamper
the cache efficiency. Compared with the vanilla RR set generation algorithm, the ISS algorithm
is still faster on three (Orkut, Twitter, and Friendster) out of four tested datasets, and is up to an
order of magnitude faster on Twitter datasets. Furthermore, SUBSIM+SKIP consistently outper-
forms SUBSIM+BUCKET on all four graphs and achieves up to 1.4× (respectively, 1.7×) speedup
under exponential (respectively, Weibull) distribution, which agrees with the theoretical analysis
that SKIP is optimal for the index-free sorted subset sampling problem.

8.2 Effectiveness of HIST

Our first set of experiments examines the performance of our HIST when k varies under WC
variant setting. We fix θ and set it to θ4K for each dataset, and vary k with {1, 10, 50, 100, 200,
500, 1000, 1500, 2000}. Figure 3 shows the average running time of HIST (with vanilla RR set
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Fig. 4. Varying k : Expected influence under WC variant setting.

generation algorithm), HIST+SUBSIM (with SUBSIM for RR set generation), OPIM-C, and PMC.
We observe that with the increase of size k , the benefit of applying our HIST algorithm becomes
more significant, and HIST is at least an order of magnitude faster than OPIM-C. HIST+SUBSIM
further achieves up to an order of magnitude speedup over HIST since HIST+SUBSIM adopts SUB-
SIM for RR set generation. We omit the result of PMC on dataset Friendster since it runs out of
memory on our machine (due to the same reason, we also omit the result of PMC in the later
experiments). Note that the RR-set-based solutions outperform PMC by a large margin among all
three datasets under WC variant model. With the size k of the seed set increasing, the gap between
OPIM-C and PMC gets smaller. In contrast, this situation does not happen with our solutions HIST
and HIST+SUBSIM. Figure 4 shows the expected influence when we increase k from 1 to 2,000
with θ4k setting. The expected influence gains a significant increase when we increase k from 1 to
2,000 on all four datasets.

In our second set of experiments, we vary the average size of random RR sets under WC variant
setting. We fix k = 200 and vary θ with θ50,θ400,θ1K ,θ4K ,θ8K ,θ32K on each dataset. Figure 5 shows
the running time of our solutions against OPIM-C. We can observe that even when the average
size of random RR sets is around 50, our HIST is already as competitive as OPIM-C. When the size
of random RR sets further increases, HIST shows a more significant advantage and is up to two
orders of magnitude faster than OPIM-C when θ = θ32K . Besides, HIST+SUBSIM is always two
orders of magnitude faster than OPIM-C when θ = θ32K . Compared with PMC, the RR-set-based
solutions OPIM-C, HIST, and HIST+SUBSIM are faster. Observe that as the average size of random
RR sets is gradually increasing, the advantage of HIST/HIST+SUBSIM over PMC keeps relatively
stable, whereas the curve of OPIM-C becomes closer to that of PMC.

In our third set of experiments, we vary the average size of random RR sets under Uniform IC
setting. We fix k = 200 and vary p with {p50,p400,p1K ,p4K ,p8K ,p32K }. Figure 6 shows the running
time of all three algorithms. We can see that even when the average size of RR sets is around
50, HIST is already several times faster than OPIM-C. When p is set to p32K , HIST (respectively,
HIST+SUBSIM) is at least an order (respectively, two orders) of magnitude faster than OPIM-C.
Our HIST and HIST-SUBSIM also maintain a significant advantage compared with PMC. Note that
under Uniform IC model, when p is large (say larger than p400), PMC gives a better performance
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Fig. 5. Varying θ : Running time under WC variant setting.

Fig. 6. Varying p: Running time under Uniform IC setting.

than OPIM-C on datasets Orkut and Twitter. We also examine the effectiveness of our solutions
when k varies under Uniform IC setting. The result is similar to our findings under WC variant
setting and is omitted.

In our fourth set of experiments, we run HIST (without SUBSIM) and OPIM-C with various error
thresholds ϵ under WC variant model. We fix k = 200, θ = θ4K , and vary ϵ with {0.5, 0.25, 0.1, 0.01}.
Figure 7 shows the running time and its empirical influence. Observe that when achieving a
roughly identical empirical influence, HIST takes a much smaller running time compared with
OPIM-C. It implies that HIST does improve the tradeoff between the running time and empirical
influence.
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Fig. 7. Varying ϵ : Running time vs Empirical influence under WC variant setting.

Fig. 8. Statistics of RR sets.

In the fifth set of experiments, we report some statistics of RR sets with our HIST under WC
variant setting with k = 2,000 and θ = θ4K . Figure 8(a) reports the number of RR sets generated
in the sentinel set selection phase of HIST. We compare with the number of RR sets generated by
OPIM-C and we observe that the number of random RR sets required by our HIST is two orders of
magnitude smaller than that required by OPIM-C in most datasets. Figure 8(b) reports the average
size of random RR sets generated by our HIST against OPIM-C. Observe that the average size of
random RR sets with HIST is reduced by up to 700×. To explain, when a node in the sentinel set
is met, the RR set generation with HIST can immediately stop, reducing the size of RR sets.

In the last set of experiments, we examine the effectiveness of our revised greedy algorithm,
Greedy-Degree (see Algorithm 9), against standard greedy and Greedy-Cost (see Appendix B) un-
der WC variant seting with θ = θ4K and k = 2,000. The experiment is designed as follows: we
generate a collection R of RR sets, then respectively apply these three greedy algorithms to get a
sentinel set, and finally report the average size of RR sets with each obtained sentinel set. Since
the average size of RR sets with a sentinel set might be affected by the size of the sentinel set,
we fix b = 200, which is roughly equal to the size of S∗

b
obtained by our HIST when k = 2,000.

Besides, because a larger R can improve the quality of the sentinel set, thus for a fair comparison,
we fix the size of R on each dataset. We set the size of R as 1,000, 1,000, 100, and 10,000 on datasets
Pokec, Orkut, Twitter, and Friendster, respectively, such that it is similar to the number used in the
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Table 3. Average Size of RR Sets with the Sentinel Set

Alg

Dataset
Pokec Orkut Twitter Friendster

Greedy-Degree 39.8 61.1 18.5 197.0
Greedy-Cost 78.8 134.2 57.01 324.1

standard greedy 82.7 137.3 32.2 404.3

Fig. 9. Running time of forward propagations.

sentinel set selection phase of HIST which is reported in Figure 8(a). We repeat the experiment 20
times and take the average. Table 3 reports the average size of RR sets with the sentinel set S∗200.
We observe that the average size of the RR sets with the sentinel set obtained by Greedy-Degree is
much smaller, compared with its competitors, standard greedy and Greedy-Cost. Note that Greedy-
Cost gives smaller average size of RR sets than standard greedy, except on Twitter. It is explained
that the performance of Greedy-Cost relies on the size of R, and a larger R can better capture the
probability space of RR sets, while on dataset Twitter, the number of RR sets is only 100.

In summary, the result indicates that the larger the average size of random RR sets are, the more
effective our HIST and HIST+SUBSIM are. In high influence networks, the average size of random
RR sets tends to be large and our proposed solutions are preferred choices.

8.3 Forward Propagation

In the first set of experiments, we examine the effectiveness of SKIP in forward propagation under
WC setting. We first invoke SUBSIM with k = 10, 50, 100 to get a seed set S , and then run each ver-
sion (i.e., SKIP and vanilla) of the forward propagation starting from S 1,000 times. We repeat this
process 10 times and take the average. Figure 9 shows the running time of forward propagations
on four datasets. We can see that on all four datasets, the SKIP version of the forward propagation
consistently run faster than the vanilla version. Specifically, the SKIP version yields approximately
2× speed up on the datasets Orkut, Twitter, and Friendster. Note that the performance of the SKIP
algorithm in forward propagation is not as remarkble as that in RR set generation, which is up to
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Fig. 10. Varying Running time: mean relative error of three influence estimators.

43× (see Figure 2). It could be explained that the forward propagation process visits a large number
of nodes with low degree, which is unfavourable for SKIP.

In the second set of experiments, to evaluate the effectiveness of our proposed condition (see In-
equality (16)) under WC setting, we randomly generate 200 seed sets, each of which has 100 seeds
and satisfies the heuristic condition. We vary running time with {1, 2, 4, 8, 16, 32} seconds, and then
compare the estimation accuracy of FP-SKIP, FP-IICP, and RRSE. Figure 10 reports their mean rel-
ative error performance. Note that both forward-propagation-based estimators (i.e., FP-SKIP and
FP-IICP) demonstrate better estimation accuracy than RRSE on all four datasets. In particular, on
Pokec (Friendster, respectively), FP-SKIP achieves a mean relative error of 1.0% (6.9%, respectively,)
with only one second running cost, whereas RRSE has to take 32 seconds to get a inferior score,
2.4% (12%, respectively,). In spite of the fact that the heuristic condition is obtained from undi-
rected graphs, the experimental results demonstrate that it can also be applied to directed graphs.
Furthermore, our FP-SKIP gives a more accurate estimation since the SKIP sampling method is
efficient such that we can generate more simulations with the same running time, compared with
the IICP method.

9 CONCLUSION

This article presents SUBSIM, an efficient framework for RR set generation. We develop an index-
free algorithm SKIP for the sorted subset sampling problem. We further present HIST to further
tackle the challenging scalability issues in high influence networks. Furthermore, we present the
time complexity of the forward propagation and a heuristic condition for estimator choice.

APPENDICES

A PROOF OF THEOREM 4

We introduce some notations and lemmas that are useful to prove Theorem 4. Denote μ̄ as the total
expected number of elements inT checked by SKIP to determine whether x j is added to S (Lines 9–
10). Thus, SKIP takes O (1 + μ̄ ) time in expectation, where “1” is from the stopping step of while
loop when it meets the condition j > h (Line 7).
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Similarly, let μ̄ (pi , . . . ,pj ) denote the expected number of elements checked when T =

{xi , . . . ,x j }, e.g., μ̄ = μ̄ (p1, . . . ,ph ). Consider that SKIP performs on {xi , . . . ,x j } and xk is the first
element checked. The probability for such a case is (1 − pi )k−ipi , as Pr[X = k − i + 1] follows the
geometric distributionG (pi ). After checking xk , SKIP performs on {xk+1, . . . ,x j }. Thus, by Markov
chain,

μ̄ (pi , . . . ,pj ) =

j∑
k=i

(
(1 − pi )k−ipi ·

(
1 + μ̄ (pk+1, . . . ,pj )

))
.

The following lemma shows the monotonicity of μ̄ (pi , . . . ,pj ).

Lemma 20. μ̄ (pi+1, . . . ,pj ) ≤ μ̄ (pi , . . . ,pj ).

Proof. We prove the lemma by induction. When i = j − 1, we have μ̄ (pi+1) = pi+1 and
μ̄ (pi ,pi+1) = pi + (1 − pi )pi + pipi+1 = (2 + pi+1 − pi )pi , which indicates that μ̄ (pi+1) ≤ μ̄ (pi ,pi+1).
Assume that for any i ≥ i∗, it holds that

μ̄ (pi+1, . . . ,pj ) ≤ μ̄ (pi , . . . ,pj ).

Now consider i = i∗ − 1. Similar to (A), we have

μ̄ (pi+1, . . . ,pj ) =

j∑
k=i+1

(
(1 − pi+1)k−i−1pi+1 ·

(
1 + μ̄ (pk+1, . . . ,pj )

))
.

For any � = i, . . . , j, define

Δ� :=
�∑

k=i

(1 − pi )k−ipi −
�∑

k=i+1

(1 − pi+1)k−i−1pi+1 = (1 − pi+1)�−i − (1 − pi )�−i+1.

It is easy to verify that Δ� ≥ 0 for any � = i, . . . , j owing to the fact that {pi , . . . ,pj } are in non-
ascending order. Besides, the following conclusion holds by definition, and will be used later,

Δ�+1 + pi+1 (1 − pi+1)l−i = Δ� + pi (1 − pi )l−i+1. (20)

Then, we have

μ̄ (pi , . . . ,pj ) =

j∑
k=i

(
(1 − pi )k−ipi ·

(
1 + μ̄ (pk+1, . . . ,pj )

))

= pi

(
1 + μ̄ (pi+1, . . . ,pj )

)
+

j∑
k=i+1

(
(1 − pi )k−ipi ·

(
1 + μ̄ (pk+1, . . . ,pj )

))

≥ Δi+1

(
1 + μ̄ (pi+2, . . . ,pj )

)
+ pi+1

(
1 + μ̄ (pi+2, . . . ,pj )

)

+

j∑
k=i+2

(
(1 − pi )k−ipi ·

(
1 + μ̄ (pk+1, . . . ,pj )

))
.

The inequality is due to μ̄ (pi+1, . . . ,pj ) ≥ μ̄ (pi+2, . . . ,pj ) and Δi+1 + pi+1 = pi + (1 − pi )pi by
Equation (20).
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Recursively, we have

μ̄ (pi , . . . ,pj ) ≥ Δi+2

(
1 + μ̄ (pi+3, . . . ,pj )

)
+

i+2∑
k=i+1

(
(1 − pi+1)k−i−1pi+1 ·

(
1 + μ̄ (pk+1, . . . ,pj )

))

+

j∑
k=i+3

(
(1 − pi )k−ipi ·

(
1 + μ̄ (pk+1, . . . ,pj )

))

≥ · · · ≥ Δj + μ̄ (pi+1, . . . ,pj ).

Note that Δj ≥ 0 as pi ≥ pi+1, which immediately concludes the lemma. �

Lemma 21. For any pk ≤ p ′
k

, μ̄ (pi , . . . ,pk , . . . ,pj ) ≤ μ̄ (pi , . . . ,p
′
k
, . . . ,pj ).

Proof. We prove the lemma by induction. When i = j = k , it obviously holds that μ̄ (pk ) =
pk ≤ p ′

k
= μ̄ (p ′

k
). Assume that μ̄ (pi , . . . ,pk , . . . ,pj ) ≤ μ̄ (pi , . . . ,p

′
k
, . . . ,pj ) that for any i ≥ i∗. Now

consider the following two cases when i = i∗ − 1.

Case (i) k > i. With assumption that for any � + 1 ≥ i + 1 ≥ i∗, μ̄ (p�+1, . . . ,pk , . . . ,pj ) ≤
μ̄ (p�+1, . . . ,p

′
k
, . . . ,pj ), then we have:

μ̄ (pi , . . . ,pk , . . . ,pj ) =

j∑
�=i

(
(1 − pi )�−ipi ·

(
1 + μ̄ (p�+1, . . . ,pk , . . . ,pj )

))

≤
j∑

�=i

(
(1 − pi )�−ipi ·

(
1 + μ̄ (p�+1, . . . ,p

′
k , . . . ,pj )

))
= μ̄ (pi , . . . ,p

′
k , . . . ,pj ).

Case (ii) k = i. Let Γ� :=
∑�

i=k
(1 − p ′

k
)i−kp ′

k
− ∑�

i=k
(1 − pk )i−kpk , which implies that Γ� = (1 −

pk )�−k+1 − (1 − p ′
k

)�−k+1 ≥ 0 for any � = k, . . . , j, since pk ≤ p ′
k

. Similar with (20), we have

−Γ�+1 + p
′
k (1 − p ′k )�−k+1 = −Γ� + pk (1 − pk )�−k+1. (21)

Then, we can get that

μ̄ (pk , . . . ,pj ) =

j∑
�=k

(
(1 − pk )�−kpk ·

(
1 + μ̄ (p�+1, . . . ,pj )

))

= −Γk

(
1 + μ̄ (pk+1, . . . ,pj )

)
+ p ′k

(
1 + μ̄ (pk+1, . . . ,pj )

)

+

j∑
�=k+1

(
(1 − pk )�−kpk ·

(
1 + μ̄ (p�+1, . . . ,pj )

))

≤ −Γk+1

(
1 + μ̄ (pk+2, . . . ,pj )

)
+

k+1∑
�=k

(
(1 − p ′k )�−kp ′k ·

(
1 + μ̄ (p�+1, . . . ,pj )

))

+

j∑
�=k+2

(
(1 − pk )�−kpk ·

(
1 + μ̄ (p�+1, . . . ,pj )

))

≤ · · · ≤ −Γj + μ̄ (p ′k , . . . ,pj ) ≤ μ̄ (p ′k , . . . ,pj ),

where the inequality is due to Lemma 20 and (21). Thus, Lemma 21 follows. �

Given any β = 2, . . . ,n, we divide V into L(β ) + 1 buckets such that bucket Bk = {xi : βk ≤ i <
βk+1} with k = 0, 1, . . . ,L(β ), where L(β ) = �logβ n�. For xi ∈ Bk , let p̂i := pβ k which is an upper
bound on pi . The following lemma establishes an upper bound on μ̄.

Lemma 22. Given β = 2, . . . ,n, μ̄ ≤ μ̂ (β ) + L(β ) + 1, where μ̂ (β ) =
∑n

i=1 p̂i .
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Proof. Define μ̄∗ := μ̄ (p̂1, . . . , p̂n ). By Lemma 21, we have μ̄ ≤ μ̄∗. We just need to show that
μ̄∗ ≤ μ̂ (β ) + L(β ) + 1. By Lemma 20, we have

μ̄∗ =
n∑

k=1

(
(1 − p̂1)k−1 · (1 + μ̄ (p̂k+1, . . . , p̂n ))

)

≤
β−1∑
k=1

(
(1 − p̂1)k−1p̂1 · (1 + μ̄ (p̂k+1, . . . , p̂n ))

)
+

n∑
k=β

(
(1 − p̂1)k−1p̂1 ·

(
1 + μ̄ (p̂β , . . . , p̂n )

))

≤
β−1∑
k=1

(
(1 − p̂1)k−1p̂1 · (1 + μ̄ (p̂k+1, . . . , p̂n ))

)
+(1 − p̂1)β−1 ·

(
1 + μ̄ (p̂β , . . . , p̂n )

)
.

For β = 2, it is straightforward to verify that,

μ∗ ≤ p̂1

(
1 + μ̄ (p̂β , . . . , p̂n )

)
+ (1 − p̂1)

(
1 + μ̄ (p̂β , . . . , p̂n )

)
= 1 + μ̄ (p̂β , . . . , p̂n ) ≤ p̂1 + 1 + μ̄ (p̂β , . . . , p̂n ).

For β > 2, we have

μ̄ (p̂2, . . . , p̂n ) ≤
β−1∑
k=2

(
(1 − p̂2)k−2p̂2 · (1 + μ̄ (p̂k+1, . . . , p̂n ))

)
+(1 − p̂2)β−2 ·

(
1 + μ̄ (p̂β , . . . , p̂n )

)
.

Note that p̂1 = p̂2 when β > 2. Thus, (1 − p̂1)k−1p̂1 + p̂1 (1 − p̂2)k−2p̂2 = (1 − p̂1)k−2p̂1. As a result,

μ̄∗ ≤ p̂1 +

β−1∑
k=2

(
p̂1 (1 − p̂2)k−2p̂2 + (1 − p̂1)k−1p̂1)

)
(1 + μ̄ (p̂k+1, . . . , p̂n ))

+
(
p̂1 (1 − p2)β−2 + (1 − p̂1)β−1

) (
1 + μ̄ (p̂β , . . . , p̂n )

)

≤ p̂1 +

β−1∑
k=2

(
(1 − p̂1)k−2p̂1 · (1 + μ̄ (p̂k+1, . . . , p̂n ))

)
+(1 − p̂1)β−2 ·

(
1 + μ̄ (p̂β , . . . , p̂n )

)

≤ · · · ≤ (β − 2)p̂1 + p̂1 ·
(
1 + μ̄ (p̂β , . . . , p̂n )

)
+ (1 − p̂1) ·

(
1 + μ̄ (p̂β , . . . , p̂n )

)
≤ (β − 1)p̂1 + 1 + μ̄ (p̂β , . . . , p̂n ).

Therefore for β = 2, . . . ,n, we recursively have

μ̄∗ ≤ (β − 1)p̂1 + 1 + μ̄ (p̂β , . . . , p̂n ) ≤ (β − 1)p̂1 + (β2 − β )p̂β + 2 + μ̄ (p̂β 2 , . . . , p̂n )

≤ · · · ≤
L(β )−1∑

k=0

(βk+1 − βk )p̂β k + L(β ) + μ̄ (p̂β L (β ) , . . . , p̂n ).

Meanwhile, SKIP performs sampling with standard geometric distribution G (p̂β L (β ) ) on

{p̂β L (β ) , . . . , p̂n }, which indicates that μ̄ (p̂β L (β ) , . . . , p̂n ) = (n − βL(β ) + 1)p̂β L (β ) + 1. Therefore,
μ̄∗ ≤ μ̂ (β ) + L(β ) + 1. �

Now, we are ready to prove our main result.

Proof of Theorem 4. Recall that SKIP takes an expected time of O (1 + μ̄ ). By Lemma 22, we
know that μ̄ ≤ minβ ∈{2, ...,n } {μ̂ (β ) + L(β ) + 1}. In addition, according to the definition of p̂i under
a given β , it is easy to verify that p̂i ≤ p i/β � . Thus,

μ̂ (β ) =
n∑

i=1

p̂i ≤
n∑

i=1

p i/β � ≤ β
n∑

i=1

pi = βμ .
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Therefore, μ̄ ≤ minβ ∈{2, ...,n } {βμ + logβ n + 1}.
When μ ≥ (logn)/2, μ̄ ≤ 2μ + log2 n ≤ 6μ by setting β = 2. Thus, Theorem 4 holds, since

O (1 + μ̄) = O (μ ).
Next, we consider μ < (logn)/2. Define

γ :=
(logn)/μ

log ((logn)/μ )
and β∗ := γ � .

Thus, β∗μ = O (
log n

log((log n)/μ ) ) and logβ ∗ n = O (
log n

log((log n)/μ ) ). Therefore,

O (1 + μ̄) = O

(
1 +

logn

log((logn)/μ )

)
.

This completes the proof. �

B VARIANT OF GREEDY ALGORITHM

In this appendix, we present another revised greedy algorithm, which is different from Greedy-
Degree in Algorithm 9. For ease of explanation, we name it Greedy-Cost.

Recap that in the second phase of HIST, we can stop the RR set generation process as soon as we
hit any sentinel node, thus reducing the average size of the RR sets. Suppose we have a function
CR (S ) which represents the amount of cost reduction on the collection R of RR sets when S is
selected as the sentinel set. Then we can design the Greedy-Cost algorithm by replacing Line 3 in
Algorithm 1, that is,

v ← arg maxu ∈V (ΛR (S∗k ∪ {u})) − ΛR (S∗k ),

with the following statements:

M ← arg maxu ∈V (ΛR (S∗k ∪ {u})) − ΛR (S∗k )

v ← arg maxv ′ ∈M CR (S∗k ∪ {v
′}) −CR (S∗k ),

whereM is the set of nodes which have the largest marginal coverage. Obviously if |M| = 1, we
have only one candidate, and it must be selected as the sentinel node.

In the following, we present how to define the cost funtion CR (·). Recap that when generating
an RR set R, each sampled node is added into R one by one (please see Algorithm 2). Thus, we say
the index of u is i if it is the ith node added into R, where i = 0, 1, 2, . . . , |R | − 1. Let l (u,R) be the
function which returns the index of u in R. Let l (u,R) = |R | if u � R. Due to the existence of the
sentinel set S , the process of generating R can be stopped immediately when it reaches the sentinel
node u∗ ∈ S with the minimum index,

u∗ = arg minu′ ∈S l (u
′,R).

Therefore, we define the cost reduction function on an RR set R caused by the sentinel set S as

C (R, S ) = |R | − l (u∗,R).

It is easy to realize that if no node of S is hit by R, the cost reductionC (R, S ) = 0 due to l (u,R) = |R |
for each u ∈ S . It implies that it can not save any sampling cost when generating R. By summing
up all the cost reduction in R, the function CR (S ) is defined as

CR (S ) =
∑
R∈R

C (R, S ).
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