
18

Efficient Algorithms for Approximate Single-Source

Personalized PageRank Queries

SIBO WANG, The Chinese University of Hong Kong

RENCHI YANG, Nanyang Technological University

RUNHUI WANG, Rutgers University

XIAOKUI XIAO, National University of Singapore

ZHEWEI WEI, Renmin University of China

WENQING LIN, Tencent

YIN YANG, Hamad Bin Khalifa University

NAN TANG, Qatar Computing Research Institute, HBKU

Given a graphG, a source node s, and a target node t , the personalized PageRank (PPR) of t with respect to s is

the probability that a random walk starting from s terminates at t . An important variant of the PPR query is

single-source PPR (SSPPR), which enumerates all nodes inG and returns the top-k nodes with the highest PPR

values with respect to a given source s . PPR in general and SSPPR in particular have important applications

in web search and social networks, e.g., in Twitter’s Who-To-Follow recommendation service. However, PPR

computation is known to be expensive on large graphs and resistant to indexing. Consequently, previous

solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power

of modern data centers, which is costly.

Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR pro-

cessing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution

that combines two existing methods—Forward Push (which is fast but does not guarantee quality) and Monte

Carlo Random Walk (accurate but slow)—in a simple and yet non-trivial way, leading to both high accuracy

and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top-k
selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are or-

ders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset,

FORA answers a top-500 approximate SSPPR query within 1s, using a single commodity server.

Sibo Wang is supported by CUHK Direct Grant No. 4055114, CUHK University Startup Grant No. 4930911 and No. 5501570,

and a donation from Tencent. Xiaokui Xiao is supported by MOE, Singapore, under grant MOE2015-T2-2-069, and by NUS,

Singapore, under an SUG. Zhewei Wei is supported in part by National Natural Science Foundation of China (No. 61972401,

61932001 and 61832017) and by the Fundamental Research Funds for the Central Universities and the Research Funds of

Renmin University of China under Grant 18XNLG21. Yin Yang is supported by NPRP grant #NPRP10-0208-170408 from

the Qatar National Research Fund.

Authors’ addresses: S. Wang, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; email: swang@se.cuhk.

edu.hk; R. Yang, Nanyang Technological University, 50 Nanyang Ave, Singapore; email: yang0461@ntu.edu.sg; R. Wang,

Rutgers University, New Brunswick, NJ, United States; email: runhui.wang@rutgers.edu; X. Xiao, National University of

Singapore, 13 Computing Drive, Singapore; email: xkxiao@nus.edu.sg; Z. Wei (corresponding author), Renmin Univer-

sity of China, Beijing, China; email: zhewei@ruc.edu.cn; W. Lin, Tencent, Shenzhen, China; email: edwlin@tencent.com;

Y. Yang, Hamad Bin Khalifa University, Doha, Qatar; email: yyang@hkbu.edu.qa; N. Tang, Qatar Computing Research

Institute, HBKU, Doha, Qatar; email: ntang@hkbu.edu.qa.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0362-5915/2019/10-ART18 $15.00

https://doi.org/10.1145/3360902

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3360902
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3360902&domain=pdf&date_stamp=2019-10-23

18:2 S. Wang et al.

CCS Concepts: • Mathematics of computing → Graph algorithms;

Additional Key Words and Phrases: Personalized PageRank, forward push, random walk

ACM Reference format:

Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin, Yin Yang, and Nan Tang.

2019. Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries. ACM Trans. Data-

base Syst. 44, 4, Article 18 (October 2019), 37 pages.

https://doi.org/10.1145/3360902

1 INTRODUCTION

Personalized PageRank (PPR) is a fundamental operation first proposed by Google [Page et al. 1999],

a major search engine. Specifically, given a graph G and a pair of nodes s, t in G, the PPR value

π (s, t) is defined as the probability that a random walk starting from s (called the source node) ter-

minates at t (the target node), which reflects the importance of t with respect to s . One particularly

useful variant of PPR is the single-source PPR (SSPPR), which takes as input a source node s and a

parameterk and returns the top-k nodes inG with the highest PPR values with respect to s . Accord-

ing to a recent paper [Gupta et al. 2013], Twitter, a leading microblogging service, applies SSPPR in

their Who-To-Follow application, which recommends to a user s (who is a node in the social graph)

a number of other users (with high PPR values with respect to s) that user s might want to follow.

Clearly, such an application computes SSPPR for every user in the social graph on a regular basis.

Hence, accelerating PPR computation may lead to improved user experience (e.g., faster response

time), as well as reduced operating costs (e.g., lower power consumption in the data center).

Similar to PageRank [Page et al. 1999], PPR computation on a web-scale graph is immensely

expensive, which involves extracting eigenvalues of an × n matrix, wheren is the number of nodes

that can reach millions or even billions in a social graph. Meanwhile, unlike PageRank, PPR values

cannot be easily materialized: Since each pair of source/target nodes lead to a different PPR value,

storing all possible PPR values requiresO (n2) space, which is infeasible for large graphs. For these

reasons, much previous work focuses on approximate PPR computation (defined in Section 2.1),

which provides a controllable tradeoff between the execution time and result accuracy. Meanwhile,

compared to heuristic solutions, approximate PPR provides rigorous guarantees on result quality.

However, even under the approximate PPR definition, SSPPR computation remains a challeng-

ing problem, since it requires sifting through all nodes in the graph. To our knowledge, the majority

of existing methods (e.g., References [Lofgren et al. 2014, 2016; Wang et al. 2016]) focus on approx-

imate pair-wise (i.e., with given source and target nodes) PPR computations. A naive solution is

to compute pair-wise PPR π (s,v) for each possible target node v and subsequently apply top-k
selection. Clearly, the running time of this approach grows linearly to the number of nodes in the

graph, which is costly for large graphs.

Motivated by this, we propose FORA (short for FOward Push and RAndom Walks), an efficient

algorithm for approximate SSPPR computation. The basic idea of FORA is to combine two existing

solutions in a simple and yet non-trivial way, which are (i) Forward Push [Andersen et al. 2007],

which can either compute the exact SSPPR results at a high cost or terminate early but with no

guarantee at all on the result quality, and (ii) Monte Carlo [Fogaras et al. 2005], which samples

and executes random walks and provides rigorous guarantees on the accuracy of SSPPR results,

but is rather inefficient. In fact, this idea is so effective that even without any indexing, basic

FORA already outperforms its main competitors BiPPR [Lofgren et al. 2016] and HubPPR [Wang

et al. 2016]. Then, we describe a simple and effective indexing scheme for FORA, as well as a

novel algorithm for top-k selection. Extensive experiments using several real graphs demonstrate

that FORA is more than two orders of magnitude faster than BiPPR, and more than an order of

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

https://doi.org/10.1145/3360902

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:3

magnitude faster than HubPPR. In particular, on a billion-edge Twitter graph, FORA answers top-

500 SSPPR query within 1s, using a single commodity server.

2 BACKGROUND

2.1 Problem Definition

Let G = (V ,E) be a directed graph. In case the input graph is undirected, we simply convert it

to a directed one by treating each edge as two directed edges of opposing directions. Given a

source node s ∈ V and a decay factor α , a random walk (or more precisely, random walk with

restart [Fujiwara et al. 2012]) from s is a traversal of G that starts from s and, at each step, either

(i) terminates at the current node with α probability, or (ii) proceeds to a randomly selected out-

neighbor of the current node. For any node v ∈ V , the personalized PageRank (PPR) π (s,v) of v
with respect to s is then the probability that a random walk from s terminates atv [Page et al. 1999].

A single-source PPR (SSPPR) query takes as input a graph G, a source node s , and a parameter

k , and returns the top-k nodes with the highest PPR values with respect to s , together with their

respective PPR values. This article focuses on approximate SSPPR processing, and we first define

a simpler version of the approximate SSPPR without top-k selection (called approximate whole-

graph SSPPR), as follows:

Definition 2.1 (Approximate Whole-graph SSPPR). Given a source node s , a threshold δ , an er-

ror bound ϵ , and a failure probability pf , an approximate whole-graph SSPPR query returns an

estimated PPR π̂ (s,v) for each node v ∈ V , such that for any π (s,v) > δ ,

|π (s,v) − π̂ (s,v) | ≤ ϵ · π (s,v) (1)

holds with at least 1 − pf probability.

The above definition is consistent with existing work, e.g., References [Lofgren et al. 2014, 2016;

Wang et al. 2016]. Next, we define the approximate top-k SSPPR, as follows:

Definition 2.2 (Approximate Top-k SSPPR). Given a source node s , a threshold δ , an error bound

ϵ , a failure probability pf , and a positive integer k , an approximate top-k SSPPR query returns

a sequence of k nodes, v1,v2, . . . ,vk , such that with probability 1 − pf , for any i ∈ [1,k] with

π (s,v∗i) > δ ,

π̂ (s,vi) ≥ (1 − ϵ)π (s,vi) (2)

π (s,vi) ≥ (1 − ϵ) · π (s,v∗i) (3)

hold with at least 1 − pf probability, where v∗i is the node whose actual PPR with respect to s is

the ith largest.

Note that Equation (2) ensures the accuracy of the estimated PPR values, while Equation (3)

guarantees that the ith result returned has a PPR value close to the ith largest PPR score. This defi-

nition is consistent with previous work [Wang et al. 2016]. Following previous work [Lofgren et al.

2014, 2016; Wang et al. 2016], we assume that δ = O (1/n), wheren is the number of nodes inG. The

intuition is that, we provide approximation guarantees for nodes with above-average PPR values.

In addition, most applications of personalized PageRank concern web graphs and social net-

works, in which case the underlying input graphs are generally scale-free; that is, for any k ≥ 1,

the fraction f (k) of nodes in G that have k edges satisfies

f (k) = c · k−γ , (4)

where γ is a parameter with 2 ≤ γ ≤ 3 and c is a constant smaller than 1. It can be verified that, in

a scale-free graph with 2 ≤ γ ≤ 3, the average node degree m/n = O (logn). We will analyze the

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:4 S. Wang et al.

Table 1. Frequently Used Notations

Notation Description

G = (V ,E) The input graph G with node set V and edge set E
n,m The number of nodes and edges in G, respectively

N out (v) The set of out-neighbors of node v
N in (v) The set of in-neighbors of node v
π (s, t) The exact PPR value of t with respect to s
α The probability that a random walk terminates at a step

δ , ϵ,pf Parameters of an approximate PPR query, as in Definitions 2.1 and 2.2

rmax The residue threshold for local update

r (s,v) The residue of v during a local update process from s
π ◦ (s,v) The reserve of v during a local update process from s
rsum The sum of all nodes’ residues during a local update process from s
π (s,v∗

k
) The kth largest PPR value with respect to s

asymptotic performance of our algorithm on both general graphs and scale-free graphs. Table 1

lists the frequently used notations throughout the article.

Remark. Our algorithms can also handle SSPPR queries where the source s is not fixed but sam-

pled from a node distribution. Interested readers are referred to Section 6.3 for details.

2.2 Main Competitors

Monte-Carlo. A classic solution for approximate PPR processing is the Monte-Carlo (MC) ap-

proach [Fogaras et al. 2005]. Given a source node s , MC generates ω random walks from s , and it

records, for each nodev , the fraction of random walks f (v) that terminate atv . It then uses f (v) as

an estimation of the PPR π̂ (s,v) of v with respect to s . According to Fogaras et al. [2005], MC sat-

isfies Definition 2.1 with a sufficiently large number of random walks:ω = Ω(
log (1/pf)

ϵ 2δ
). According

to Lofgren et al. [2014], Lofgren et al. [2016], and Wang et al. [2016], as well as our experiments

in Section 8, MC is rather inefficient. Specifically, the time complexity of MC is O (
log (1/pf)

ϵ 2δ
). As

will be explained later in Section 3.2, when δ = O (1/n) and the graph is scale-free, in which case

m/n = O (logn), this time complexity is a factor of 1/ϵ larger than that of FORA even without

indexing or top-k pruning.

BiPPR and HubPPR. BiPPR [Lofgren et al. 2016] and its successor HubPPR [Wang et al. 2016]

are currently the state-of-the-art for answering pairwise PPR queries, in which both the source

node s and the target node t are given, and the goal is to approximate the PPR value π (s, t) of

t with respect to s . The main idea of BiPPR is a bi-direction search on the input graph G. The

forward direction simply samples and executes random walks, akin to MC described above. Un-

like MC, however, BiPPR requires a much smaller number of random walks, thanks to additional

information provided by the backward search.

The backward search in BiPPR (dubbed as reverse push) is originally proposed in Andersen et al.

[2007], and is rather complicated. In a nutshell, the reverse push starts from the target node t
and recursively propagates residue and reserve values along the reverse directions of edges in G.

Initially, the residue is 1 for node t and 0 for all other nodes. The original reverse push [Andersen

et al. 2007] requires complete propagation until the residues of all nodes become very small, which

is rather inefficient as pointed out in Lofgren et al. [2016]. BiPPR performs the same backward

propagations but terminates early when the residues of all nodes are below a pre-defined threshold.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:5

ALGORITHM 1: Forward Push

Input: Graph G, source node s , probability α , residue threshold rmax

Output: π◦ (s,v), r (s,v) for all v ∈ V
1 r (s, s) ← 1; r (s,v) ← 0 for all v � s;
2 π◦ (s,v) ← 0 for all v ;

3 while ∃v ∈ V such that r (s,v)/|N out (v) | > rmax do

4 for each u ∈ N out (v) do

5 r (s,u) ← r (s,u) + (1 − α) · r (s,v)
|N out (v) |

6 π◦ (s,v) ← π◦ (s,v) + α · r (s,v);

7 r (s,v) ← 0;

Then, the method performs forward search, i.e., random walks, utilizing the residue and reserve

information computed during backward search. The main tricky part in BiPPR is how to set this

residue threshold to minimize computation costs, while satisfying Inequality 1. Intuitively, if the

residue threshold is set too high, then the forward search requires numerous random walks to

reach the approximation guarantee; conversely, if the residue threshold is too low, then the cost

of backward search dominates. Lofgren et al. [2016] provide a careful analysis and report that

a residue threshold of O (ϵ ·
√

m ·δ
n ·log (1/pf)) strikes a good balance between forward and backward

searches and achieves a low overall cost for pair-wise PPR computation.

To extend BiPPR to SSPPR, one simple method is to enumerate all nodes in G and compute the

PPR value for each of them with respect to the source node s . The problem, however, is that the

residue threshold designed in Lofgren et al. [2016] is not optimized for SSPPR, leading to poor

performance. To explain, observe that applying BiPPR for SSPPR involves one backward search at

each node inG, but only one single forward search from s . Therefore, we improve the performance

of BiPPR by tuning down overhead of each backward search at the cost of a less-efficient forward

search. This optimization turns out to be non-trivial, and we present it in Section 6.1. Nevertheless,

the properly optimized version of BiPPR still involves high costs, since it either (i) degrades to the

Monte-Carlo approach if the residue threshold is large or (ii) incurs a large number of backward

searches if the residue threshold is small.

HubPPR [Wang et al. 2016] is an index structure based on BiPPR that features an improved

algorithm for top-k queries. Since HubPPR inherits the deficiencies of the BiPPR, it is not suitable

for SSPPR, either. We will demonstrate this in our experiments in Section 8.

Forward Push. Forward Push [Andersen et al. 2006] is an earlier solution that is not as efficient

as BiPPR and HubPPR. We describe it in detail here, since the proposed solution FORA uses its

components. Specifically, Forward Push can compute the exact PPR values at a high cost. It can also

be configured to terminate early but without any guarantee on result quality. Algorithm 1 shows

the pseudo-code of Forward Push for whole-graph SSPPR processing. It takes as inputG, a source

node s , a probability value α , and a threshold rmax ; its output consists of two values for each node

v in G: a reserve π ◦ (s,v) and a residue r (s,v). The reserve π ◦ (s,v) is an approximation of π (s,v),
while the residue r (s,v) is a by-product of the algorithm. In the beginning of the algorithm, it sets

r (s, s) = 1 and π ◦ (s, s) = 0, and sets r (s,v) = π ◦ (s,v) = 0 for anyv � s (Lines 1–2 in Algorithm 1).

Subsequently, the residue of s is converted into other nodes’ reserves and residues in an iterative

process (Lines 3–7).

Specifically, in each iteration, the algorithm first identifies every node v with
r (s,v)
|N out (v) | > rmax ,

where N out denotes the set of out-neighbors of v (Line 3). After that, it propagates part of v’s

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:6 S. Wang et al.

residue to each u of v’s out-neighbors, increasing u’s residue by (1 − α) · r (s,v)
|N out (v) | . Then, it in-

creases v’s reserve by α · r (s,v) and resets v’s residue to r (s,v) = 0. This iterative process termi-

nates when every node v has
r (s,v)
|N out (v) | ≤ rmax (Line 3).

Andersen et al. [2006] show that Algorithm 1 runs in O (1/rmax) time and that the reserve

π ◦ (s,v) can be regarded as an estimation of π (s,v). This estimation, however, does not offer any

worst-case assurance in terms of absolute or relative error. As a consequence, Algorithm 1 itself is

insufficient for addressing the problem formulated in Definitions 2.1 and 2.2.

TopPPR. Most recently, TopPPR [Wei et al. 2018] is proposed to combine the Forward Push, Monte-

Carlo, and the backward search to process the top-k queries. The main idea is to use the Filter-

Refinement paradigm to accelerate the top-k query processing. They first use the Forward Push

and Monte-Carlo approach to derive the upper and lower bound of the PPR π (s,v) for each target

nodev . It further maintains a setC of candidates that are the potential top-k answers by examining

the upper and lower bound of each node; for example, if a node v has an upper bound π (s,v) that

is larger than that of the kth largest lower bound. Then, we know this node will not be in the top-k
answer. When the candidate set is sufficiently small, backward search is started from this node

and refines the upper bound and lower bound of the candidate nodes adaptively. The algorithm

explores the power-law property and achieves a time complexity of O (
k

1
4 ·n

3
4 ·log n√

дapρ)
), where дapρ

is a value that quantifies the difference between the top-k and non-top-k PPR values, and ρ is

a precision parameter to guarantee that at least ρ fraction of the returned nodes are among the

true top-k answers. Notice that дapρ should be no larger than π (s,v∗
k

) where π (s,v∗
k

) is the kth

largest PPR with respect to s . Therefore, their time complexity can be written asO (
k

1
4 ·n

3
4 ·log n√

π (s,v∗
k

))
). On

general graphs, the time complexity will degrade toO (
m+n ·log n√

π (s,v∗
k

)
). As we will see in Section 5.2 and

Section 8, our top-k algorithm achieves both better theoretical result and practical performance.

Comparison with the conference version [Wang et al. 2017]. We make the following new

contributions over the conference version.

• For whole-graph SSPPR queries, we revised the time complexity analysis to derive a re-

fined bound (Section 3.2). Then, in Section 4, we further present optimization techniques for

whole-graph SSPPR queries. With the new optimization technique, our index-free method

improves over the solution in Wang et al. [2017] by 2×. Our new index-based method im-

proves over the index-based solution in Wang et al. [2017] by at least 2× and up to 3× with

2× space consumption, which demonstrates the effectiveness of the new algorithm and a

good trade-off of the new algorithms between the space consumption and query efficiency.

• For top-k SSPPR queries, the solution proposed in Wang et al. [2017] has a worst time

complexity similar to the whole-graph SSPPR queries. In this article, we derive a new

top-k algorithm in Section 5.2, whose time complexity depends on the kth largest PPR

value, denoted as π (s,v∗
k

). When π (s,v∗
k

) is a constant, we then improve over the whole-

graph SSPPR query by O (1/n); when π (s,v∗
k

) is O (1/n), then the time complexity of the

top-k algorithm is identical to that of the whole-graph SSPPR algorithm. Since the kth

largest PPR is typically in betweenO (1) andO (1/n), the new proposed algorithm improves

over the solution proposed in Wang et al. [2017], and is shown to outperform the solution

in Wang et al. [2017] by around 5× in our experimental evaluation.

• In Section 6, we further extend our results to global PageRank. The results show that it

outperforms the classic Monte-Carlo approach and the Power-Iteration method. In addition,

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:7

Table 2. Comparison of Approximate Whole-graph SSPPR and top-k Algorithms with 1 − 1/n Success

Probability (Ref. Table 1 for the Definition of ϵ,δ , and π (s,v∗
k

))

Query Time

Algorithm Space Overhead whole-graph Top-k

MC 0 O
(

log n

δ ·ϵ 2

)
O

(
log n

π (s,v∗
k

)ϵ 2

)
[Fogaras et al. 2005] (Using our top-k algorithm)

BiPPR 0 O

(
1
ϵ

√
mn ·log n

δ

)
[Lofgren et al. 2016]

HubPPR O (n +m) O

(
1
ϵ

√
mn ·log n

δ

)
[Wang et al. 2016]

0 N.A. O (
m+n ·log n√

π (s,v∗
k

)
)

TopPPR (general graphs)

[Wei et al. 2018] O (
k

1
4 ·n

3
4 ·log n√

π (s,v∗
k

)
)

(power-law graphs)

FORA 0 O (min{
√

m ·log n

ϵ ·
√

δ
, O (min{

√
m log n

ϵ ·
√

π (s,v∗
k

)
,

FORA+ O (min{n + 1

ϵ ·
√

δ

√
m log (1/pf),m}) log n

ϵ 2 ·δ })
log n

ϵ 2 ·π (s,v∗
k

)
})

our new top-k algorithm can be further used to return the top-k nodes with the highest

global PageRank with a time complexity that linearly depends on the inverse of the kth

largest global PageRank.

• In the experimental evaluation, we have added four game social networks from Tencent

Games to examine the effectiveness of our algorithms in real applications and two large

synthetic datasets to examine the scalability of our proposed algorithms. Extensive experi-

ments demonstrate that our solution is also effective on real social networks and is scalable

to huge graphs with up to 8.6B edges.

Table 2 lists the time complexity and space consumption of all approximate algorithms to pro-

vide ϵ relative error guarantee for PPR values no smaller than δ with at least 1 − 1/n probability.

As we can see, the proposed FORA/FORA+ achieves the best time complexity for both the whole-

graph SSPPR and top-k queries.

3 FORA

This section presents the proposed FORA algorithm. We first describe a simpler version of FORA

for whole-graph SSPPR (Definition 2.1) without indexing in Sections 3.1 and Sections 3.2. Then,

we present the indexing scheme of FORA in Section 3.3. We present optimization techniques for

whole-graph SSPPR in Section 4 and top-k query in Section 5.

3.1 Main Idea

As reviewed in Section 2.2: (i) MC is inefficient due to a large number of random walks required

to satisfy the approximation guarantee, (ii) BiPPR and HubPPR either degrade to MC or require

fewer forward random walks but still incur high cost due to numerous backward search operations,

and (iii) Forward Push with early termination provides no formal guarantee on result quality. The

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:8 S. Wang et al.

proposed solution FORA can be understood as a combination of these methods. In particular, FORA

first performs Forward Push with early termination and subsequently runs random walks. Similar

to BiPPR and HubPPR, FORA utilizes information obtained through Forward Push to significantly

cut down the number of required random walks while satisfying the same result quality guaran-

tees. But unlike BiPPR and HubPPR, in FORA there is a single invocation of Forward Push starting

from the source node s , while BiPPR and HubPPR invoke numerous backward search operations.

Novelty. The main difference between the proposed approach and BiPPR/HubPPR is that the for-

mer combines forward push and MC, whereas the latter uses MC with backward propagation. The

proposed idea (i.e., using forward instead of backward push) is indeed natural, and highly effective

as shown in experiments (Section 8). Intuitively, forward push limits the search to nodes in the

vicinity of the source node, which is more efficient for SSPPR compared to backward propagation,

since the latter involves numerous nodes far from the source, as explained in Sections 2.2 (which

explains BiPPR).

Combining forward push with MC, however, is far from straightforward. The devil is in the

details. Specifically, in backward propagation, the residue r (v, t) for a given node v is bounded by

rmax , which is a controllable parameter (t is the destination node). In Forward Push (Algorithm 1),

the corresponding concept is r (s,v) (s being the source node), which depends on both rmax and

the out-degree of v , which can be as large as O (n) in the worst case. The proposed solution ad-

dresses this challenge with a novel mechanism that utilizes rsum (Algorithm 2), whose correctness

is rigorously established in this section. The novelty of our method lies in the fact that we realize

a natural, effective, and yet challenging combination of forward push and MC with a non-trivial

algorithmic design, explained below.

Details. Specifically, the reason that Forward Push with early termination fails to obtain any result

quality guarantee is that it uses π ◦ (s,v) to approximate π (s,v), and yet, the two values are not

guaranteed to be close. To mitigate this deficiency, we aim to utilize the residue r (s,v) to improve

the accuracy of π ◦ (s,v). Towards this end, we utilize the following result from Andersen et al.

[2006]:

π (s, t) = π ◦ (s, t) +
∑
v ∈V

r (s,v) · π (v, t), (5)

for any s , t ,v inG. Our idea is to derive a rough approximation of π (v, t) for each nodev (denoted

as π ′(v, t)), and then combine it with the reserve of each node to compute an estimation of π (s, t):

π (s, t) = π ◦ (s, t) +
∑
v ∈V

r (s,v) · π ′(v, t).

In particular, we derive π ′(v, t) by performing a number of random walks from v and set π ′(v, t)
to the fraction of walks that ends at t .

It remains to answer two key questions in FORA: (i) how many random walks do we need for

each node v?; and (ii) how should we set the residue threshold rmax in Forward Push? It turns out

that although the FORA algorithm itself is simple, deriving the proper values for its parameters is

rather challenging, since they must optimize efficiency while satisfying the result quality guaran-

tee. In the following, we first present the complete FORA and answer question (i); then we answer

question (ii) in Section 3.2.

Algorithm 2 illustrates the pseudo-code of FORA. GivenG, a source node s , a probability value α ,

and a residue threshold rmax , FORA first invokes Algorithm 2 onG to obtain a reserve π ◦ (s,vi) and

a residue r (s,vi) for each node vi (Line 1 in Algorithm 2). After that, it computes the total residue

of all nodes rsum , based on which it derives a value ω that will be used to decide the number of

random walks required from each node vi (Line 2). Then, it initializes the PPR estimation of each

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:9

ALGORITHM 2: FORA for Whole-Graph SSPPR

Input: Graph G, source node s , probability α , threshold rmax , relative error threshold ϵ
Output: Estimated PPR π̂ (s,v) for all v ∈ V

1 Invoke Algorithm 1 with input parameters G, s , α , and rmax ;

2 let r (s,vi),π◦ (s,vi) be the returned residue and reserve of node vi ;

3 Let rsum =
∑

vi ∈V r (s,vi) and ω = rsum ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ ;

4 Let π̂ (s,vi) = π◦ (s,vi) for all vi ∈ V ;

5 for vi ∈ V with r (s,vi) > 0 do

6 Let ωi = �r (s,vi) · ω/rsum�;
7 Let ai =

r (s,vi)
rsum

· ω
ωi

;

8 for i = 1 to ωi do

9 Generate a random walkW from vi ;

10 Let t be the end point ofW ;

11 π̂ (s, t)+ = ai ·rsum
ω ;

12 return π̂ (s,v1), . . . , π̂ (s,vn);

vi to be π̂ (s,vi) = π ◦ (s,vi), and it proceeds to inspect the nodes whose residues are larger than

zero (Lines 3–4).

For each vi of those nodes, it performs ωi random walks from vi , where

ωi =

⌈
r (s,vi)

rsum
· ω

⌉
.

If a random walk ends at a node t , then FORA increases π̂ (s,vi) by ai ·rsum

ω
, where

ai =
r (s,vi)

rsum
· ω
ωi
.

After allvi are processed, the algorithm returns π̂ (s,vi) as the approximated PPR value forvi (Line

11).

To explain why FORA can provide accurate results, let us consider the ωi random walks that

it generates from a node vi . Let X j (t) be a Bernoulli variable that takes value 1 if the jth random

walk terminates at t , and value 0 otherwise. By definition,

E[X j] = π (vi , t).

Then, based on the definition of ω, ωi , and ai , we have

E

⎡⎢⎢⎢⎢⎢⎣
rsum

ω
·

ωi∑
j=1

(
ai · X j

)⎤⎥⎥⎥⎥⎥⎦ = r (s,vi) · π (vi , t). (6)

Observe that rsum

ω
·∑ωi

j=1 (ai · X j) is exactly the amount of increment that π̂ (s, t) receives when

FORA processesvi (see Lines 7–10 in Algorithm 2). We denote this increment asψi . It follows that

E
⎡⎢⎢⎢⎢⎣

n∑
i=1

ψi

⎤⎥⎥⎥⎥⎦ =
n∑

i=1

r (s,vi) · π (vi , t). (7)

Combining Equations (5) and (7), we can see that FORA returns, for each nodev , an estimated PPR

π̂ (s,v) whose expectation equals π (s,v). Next, we will show that π̂ (s,v) is very close to π (s,v)
with a high probability. For this purpose, we utilize the following concentration bound:

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:10 S. Wang et al.

Theorem 3.1 ([Chung and Lu 2006]). Let X1, . . . ,Xω be independent random variables with

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi .

Let X = 1
ω
·∑ω

i=1 aiXi with ai > 0, and ν = 1
ω

∑ω
i=1 a

2
i · pi . Then,

Pr[|X − E[X]| ≥ ϕ] ≤ 2 · exp

(
− ϕ2 · ω

2ν + 2aϕ/3

)
,

where a = max{a1, . . . ,aω }.

To apply Theorem 3.1, let us consider the ω ′ =
∑n

i=1 ωi random walks generated by FORA. Let

bj = ai if the jth random walk starts from vi . Then, we have maxj bj = 1, and b2
j ≤ bj for any j. In

addition, letYj (t) be a random variable that equals 1 if the jth walk terminates at t , and 0 otherwise.

Then, by Theorem 3.1 and Equations (5) and (7), we have the following lemma:

Lemma 3.2. For any node t , given an arbitrary relative error threshold ϵ , an arbitrary absolute

threshold λ, we have that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ 2 · exp

(
− ϵ2 · ω · π (s, t)

rsum · (2 + 2ϵ/3)

)
. (8)

Pr[|π (s, t) − π̂ (s, t) | ≥ λ] ≤ 2 · exp

(
− λ2 · ω
rsum · (2π (s, t) + 2λ/3)

)
. (9)

Proof. First, define Y ′ = 1
ω′

∑ω′
j=1 bjYj (t), and ν = 1

ω′
∑ω′

j=1 b
2
j E[Yj (t)]. Let a = max{b1, . . . ,bω′ }.

By definition, b2
j ≤ 1, and hence, ν ≤ E[Y ′] and a ≤ 1. By Theorem 3.1, for any ϕ, we have that

Pr[|Y ′ − E[Y ′]| ≥ ϕ] ≤ 2 · exp(− ϕ2 ·ω′
2ν+2aϕ/3). Apply ν ≤ E[Y ′], we have that:

Pr[|Y ′ − E[Y ′]| ≥ ϕ] ≤ 2 · exp

(
− ϕ2 · ω ′

2E[Y ′] + 2aϕ/3

)
.

Observe that ω′ ·rsum

ω
(E[Y ′] − Y ′) = π (s, t) − π̂ (s, t), the above inequality can be rewritten as:

Pr

[
|π (s, t) − π̂ (s, t) | ≥ ω ′ · rsum

ω
ϕ

]
≤ 2 · exp

(
− ϕ2 · ω ′

2E[Y ′] + 2aϕ/3

)
.

Besides, by Equation (6), we have that: E[Y ′] ≤ ω
ω′ ·rsum

· π (s, t), it is satisfied that:

Pr

[
|π (s, t) − π̂ (s, t) | ≥ ω ′ · rsum

ω
ϕ

]
≤ 2 · exp

��−
ϕ2 · ω ′

2
ω ·π (s,t)
ω′ ·rsum

+ 2aϕ/3

��� .
Let ϕ = ω ·ϵ ·π (s,t)

ω′ ·rsum
, we have:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ 2 · exp

(
− ϵ2 · ω · π (s, t)

rsum · (2 + 2a · ϵ/3)

)
.

Since a ≤ 1, we get that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ 2 · exp

(
− ϵ2 · ω · π (s, t)

rsum · (2 + 2ϵ/3)

)
.

By setting ϵ = λ/π (s, t), we further have that:

Pr[|π (s, t) − π̂ (s, t) | ≥ λ] ≤ 2 · exp

(
− λ2 · ω
rsum · (2π (s, t) + 2λ/3)

)
.

This finishes the proof. �

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:11

Lemma 3.3. For any node t with π (s, t) > δ , Algorithm 2 returns an approximated PPR π̂ (s, t) that

satisfies Equation (1) with at least 1 − pf probability.

Proof. Since ω = rsum ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ , according to Lemma 3.2, we have that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ exp

(
− ϵ2 · π (s, t)

rsum · (2 + 2ϵ/3)
· rsum ·

(2ϵ/3 + 2) · log (2/pf)

ϵ2 · δ

)

≤ 2 exp

(
−π (s, t)

δ
· log (2/pf)

)
.

Since π (s, t) > δ , we have that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] < 2 exp(log (2/pf)) = pf .

Also notice that the target t is arbitrarily chosen, and we can derive this bound for all nodes

t ∈ V . Hence, the returned answer for the single-source PPR query satisfies Definition 2.1, which

finishes the proof. �

3.2 Choosing rmax

Recall from Sections 2.2 and 3.1 that parameter rmax determines how quickly we can terminate

Forward Push. A high value for rmax leads to low cost for Forward Push (since it can terminate

early) but high cost for random walks (since a large number of them are required) and vice versa.

Thus, finding the appropriate value of rmax requires modelling the overall running time of FORA.

Recall that the Forward Push runs in O (1
rmax

) time. In addition, the expected time complexity of

the random walk phase is O (rsum ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2), since each random walk takesO (1) expected

time to generate. Observe that

rsum =
∑

vi ∈V
r (s,vi) ≤

∑
vi ∈V

rmax · |N out (vi) | =m · rmax .

Therefore, the expected running time of Algorithm 2 is

O
(

1
rmax

+m · rmax ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ

)
.

Using the method of Lagrange multipliers, we can see that the above time complexity is mini-

mized when

rmax =
ϵ
√
m
·

√
δ

(2ϵ/3 + 2) · log (2/pf)
. (10)

Accordingly, the expected time complexity of Algorithm 2 becomes

O
(

1

ϵ ·
√

δ

√
m · (2ϵ/3 + 2) · log (2/pf)

)
.

However, we also note that rsum can be bounded by 1. Therefore, we have to consider two cases:

• Case 1: m · rmax ≤ 1. Then, it is easy to verify that 1

ϵ ·
√

δ

√
m · (2ϵ/3 + 2) · log (2/pf) ≤

(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ . Then the time complexity can be bounded by

O (1

ϵ ·
√

δ

√
m · (2ϵ/3 + 2) · log (2/pf)).

• Case 2: m · rmax > 1. In this case, 1

ϵ ·
√

δ

√
m · (2ϵ/3 + 2) · log (2/pf) >

(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ .

Therefore, if we set rmax according to Equation (10), we will have sub-optimal performance.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:12 S. Wang et al.

To remedy this issue, we set rmax to ϵ 2 ·δ
(2ϵ/3+2) ·log (2/pf) . Then the time complexity can be

bounded by O (
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ).

Therefore, combining the above two cases, the time complexity of FORA can be bounded by

O
(
min

{
1

ϵ ·
√

δ

√
m · log (2/pf),

log (2/pf)

ϵ 2 ·δ

})
.

When δ = O (1/n), pf = O (1/n), the above time complexity becomes

O

(
1

ϵ
min

{√
m · n · logn,

n · logn

ϵ2

})
for general graphs. When the graph is scale-free, in which casem/n = O (logn), the time complex-

ity becomes O (1
ϵ
n · logn), improving over the MC approach by 1/ϵ .

3.3 Indexing Scheme

Based on FORA, we propose a simple and effective index structure to further improve the efficiency

of whole-graph SSPPR queries. The basic idea is to pre-compute a number of random walks from

each nodev and then store the destination of each walk. During query processing, if FORA requires

performing x random walks from v , we would inspect the set S of random walk destinations pre-

computed for v and then retrieve the first x nodes in S . As such, we avoid generating any random

walks on-the-fly, which considerably reduces query overheads.

A natural question to ask is: How many random walks should we pre-compute for each node

v? To answer this question, we first recall that, when the local update phase of FORA terminates,

the residue of each nodev is at most |N out (v) | · rmax . Combining this with Lemma 3.3, we can see

that the number of random walks from v required by FORA is

ωmax (v) =

⌈
|N out (v) | · rmax ·

(2ϵ/3 + 2) · log (2/pf)

ϵ2 · δ

⌉
. (11)

If we set rmax according to Equation (10) in which casem · rmax ≤ 1, then we have

ωmax (v) =

⌈
|N out (v) | · 1

ϵ ·
√
m · δ

·
√

(2ϵ/3 + 2) · log (2/pf)

⌉
.

Otherwise, rmax is set to ϵ 2 ·δ
(2ϵ/3+2) ·log (2/pf) , we have

ωmax (v) = |N out (v) |.

In summary, we pre-computeωmax (v) random walks from each nodev and record the last nodes

of those walks in our index structure. The total space overhead incurred is then bounded by

∑
v

ωmax (v) ≤ min
⎧⎪⎨⎪⎩
∑

v

⌈
|N out (v) | ·

√
(2ϵ/3+2) ·log (2/pf)

ϵ ·
√

m ·δ

⌉
,
∑

v |N out (v) |
⎫⎪⎬⎪⎭

≤ min

{
n +

√
m

ϵ ·
√
δ
·
√

(2ϵ/3 + 2) · log (2/pf),m

}
.

Therefore, we have the following lemma:

Lemma 3.4. The space consumption of our index structure is

O

(
min

{
n + 1

ϵ

√
m log (1/pf)

δ
,m

})
. (12)

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:13

When δ = O (1/n), pf = O (1/n), and m/n = O (logn), the above space complexity becomes

O (min{ 1
ϵ
n · logn,m}).

Remark. One may wonder whether we can also pre-compute the Forward Push result for each

node so we can answer each query by a simple combination of pre-processed Forward Push and

random walks, which could lead to higher query efficiency. However, we note that storing the

Forward Push results for all nodes incurs significant space overheads. In particular, it requires

O (min{n, 1/rmax }) space for each node, where rmax is set according to Equation (10). As such, the

total space consumption for preprocessing Forward Push results is

O

(
min

{
n2, n

ϵ
·
√

m ·log (1/pf)

δ

})
,

which is prohibitive for large graphs. Therefore, we do not store Forward Push results in our index

structure.

4 OPTIMIZATIONS FOR WHOLE-GRAPH SSPPR QUERIES

In this section, we present optimization techniques to reduce the index size or improve the query

efficiency of our FORA algorithm on whole-graph SSPPR queries. In particular, in Section 4.1,

we will present our technique to reduce the index size by avoiding zero-hop nodes in the index

structure. In Section 4.2, we will present our technique to reduce the query time by balancing the

forward push and the random walk costs.

4.1 Pruning Zero-hop Random Walks

Recall that in FORA, after the local update phase, we sample random walks from each source with

non-zero residues. Our main observation is that: α portion of the random walks is expected to

stop at the current node, and with O (1) time, we can immediately record the portion of such ran-

dom walks and hence avoid simulating α portion of the total random walks. However, a question

is that, can we still provide approximation guarantee while exploring this pruning strategy? We

next demonstrate how to use the reduction of zero-hop random walk idea to ensure the approx-

imation guarantee. We first define two random variables π0 (s, t) and π1 (s, t). We define π0 (s, t)
as the probability that a random walk from s immediately stopped at node t , i.e., the length of

the random walk is 0; we further define π1 (s, t) as the probability that a random walk from s that

stopped at node t after traversing at least one node, i.e., the length of the random walk is at least

1. Then it is clear that the personalized PageRank π (s, t) satisfies the following equation:

π (s, t) = π0 (s, t) + π1 (s, t).

We hence rewrite Equation (5) as follows:

π (s, t) = π ◦ (s, t) +
∑
v ∈V

r (s,v) · (π0 (v, t) + π1 (v, t)).

Also notice that π0 (s, t) either equals α or 0, depending on whether s = t or not. Therefore, the

above equation can be further rewritten as:

π (s, t) = π ◦ (s, t) + r (s, t) · α +
∑
v ∈V

r (s,v) · π1 (v, t).

We define a random variableXv as follows: We randomly select one of a out-neighboru ofv and

then start a random walk from u. If the random walk stops at t , then Xv = 1; otherwise, Xv = 0.

Then, it is not difficult to verify that (1 − α) · E[X] = π1 (s, t).

π (s, t) = π ◦ (s, t) + r (s, t) · α +
∑
v ∈V

(1 − α) · r (s,v) · E[Xv].

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:14 S. Wang et al.

Define r ′(s,v) = (1 − α) · r (s,v), we have that:

π (s, t) = π ◦ (s, t) + r (s, t) · α +
∑
v ∈V

r ′(s,v) · E[Xv].

With the above equation, we can then further apply the same technique proposed in Section 3.1.

We define r ′sum =
∑

v ∈V r ′(s,v). Then, by sampling ω ′ = r ′sum ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ random walks, we

can provide approximation guarantee for the whole-graph SSPPR queries. With this approach,

when the same rmax is used as Algorithm 5, the maximum number of random walks sampled from

a node v can be bounded by

(1 − α) · rmax · N out (v) ·
(2ϵ/3 + 2) · log (2/pf)

ϵ2 · δ ,

while previously, it requires

rmax · N out (v) ·
(2ϵ/3 + 2) · log (2/pf)

ϵ2 · δ .

Therefore, with this optimization, we can also reduce the index size by α portion. Next, we

further demonstrate our second optimization technique to improve the query efficiency.

4.2 Balancing Forward Push and Random Walk Cost

Recall that in FORA, we set rmax according to Equation (10) to minimize the time complexity of

FORA. However, in practice, the derived rmax may not be the best choice, since Equation (10)

considers the worst case while in practice the running time might be quite different. Of course,

we may tune rmax for a different dataset and choose rmax that derives the best piratical perfor-

mance. However, the tuned rmax will typically be data-dependent. Here, we are aiming to propose

a solution that balances the forward push and random walk costs without any dependency on the

datasets.

In Lofgren [2015], they propose a balanced approach for BiPPR by doing the backward propa-

gation and maintaining the largest residue using a max-heap. Since the total number of random

walks depends linearly on the maximum residue, it estimates the running time of the random walk

and stops the backward propagation as soon as the running time is around the same as the forward

random walk. Our proposed balancing strategy shares the similar spirit as theirs. However, we do

not maintain the priority queue, since the number of random walks of FORA depends linearly on

the total sum of the residues instead of the maximum residue. When we finish the forward push,

we can accurately estimate the running time of the random walk part, since (i) we know the total

number of random walks; (ii) the average running time of one random walk depends only on α ,

which is dataset-independent. Therefore, we can easily estimate the cost of a random walk and

use it for random walk cost estimation no matter what dataset we are running on. Therefore, we

propose the adaptive approach to balance the forward push and random walk cost as shown in

Algorithm 3.

Initially, we start the forward push by setting rmax = 1 and calculate the current accumulated

forward push cost (Algorithm 3, Line 11). Then, it checks if the forward push cost is still lower than

the estimated random walk cost (Algorithm 3, Line 4). If this is the case, the algorithm continues the

forward push process, then updates the accumulated forward push cost and updates the estimated

random walk cost (Algorithm 3, Lines 5–11). The forward push terminates as soon as the estimated

random walk cost is larger than the forward push cost (Algorithm 3, Line 4). By this strategy, it

guarantees that, when the forward push terminates, the cost will not differ from the random walk

cost by a large margin. The random walk phase is similar to the one in Algorithm 2 except that

here we prune the zero-hop random walks as mentioned in Section 4.1. In particular, we convert

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:15

ALGORITHM 3: FORA for Whole-graph SSPPR with optimization

Input: Graph G, source node s , probability α , relative error threshold ϵ
Output: Estimated PPR π̂ (s,v)for all v ∈ V

1 Let rc be the cost of a random walk, and FC be the running time of the forward push;

2 Let r (s,vi),π◦ (s,vi) be the residue and reserve of node vi in forward push, and initially only r (s, s) = 1

while all other values are zero;

3 Let FC = 0, rmax = 1, rsum = 1,ω = rsum ·
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ ;

4 while ∃v ∈ V such that r (s,v)/|N out (v) | > rmax and FC < ω ∗ rc do

5 for each u ∈ N out (v) do

6 r (s,u) ← r (s,u) + (1 − α) · r (s,v)
|N out (v) |

7 π◦ (s,v) ← π◦ (s,v) + α · r (s,v);

8 rsum = rsum − α · r (s,v);

9 ω = rsum · (1 − α) · (2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ ;

10 r (s,v) ← 0;

11 FC ← current elapsed time;

12 Let π̂ (s,vi) = π◦ (s,vi) + α · r (s,vi) for all vi ∈ V ;

13 for vi ∈ V with r (s,vi) > 0 do

14 Let r (s,vi) = (1 − α) · r (s,vi),ωi = �r (s,vi) (1 − α) · ω/rsum�;
15 Let ai =

r (s,vi)
rsum

· ω
ωi

;

16 for i = 1 to ωi do

17 Randomly select a out-neighbor u of vi and generate a random walkW from u;

18 Let t be the end point ofW ;

19 π̂ (s, t)+ = ai ·rsum
ω ;

20 return π̂ (s,v1), . . . , π̂ (s,vn);

α portion of the residue r (s,vi) to its reserve (Algorithm 3, Line 12), and the residue of node vi is

reduced to (1 − α) · vi (Algorithm 3, Line 14). When we sample a random walk from each nodevi ,

we first randomly select one of its out-neighbors and then do random walk from these nodes, thus

avoiding the zero-hop random walks.

As we will see in our experimental evaluation, the balanced strategy can help reduce the average

running time of whole-graph SSPPR queries by almost half, which demonstrates the effectiveness

of the balancing strategy. For the indexing version of our FORA and the top-k algorithm, we tune

rmax to evaluate the trade-off between the index size and the query performance in Section 8.

5 TOP-K SSPPR

In this section, we discuss how FORA handles approximate top-k SSPPR queries.

Rationale. A straightforward approach to answer a top-k SSPPR query with FORA is to first apply

it to perform a whole-graph SSPPR query and then return the k nodes with the largest approximate

PPR values. However, if we are to satisfy the accuracy requirement described in Definition 2.2, we

would need to set the parameters of FORA according to the exact kth largest PPR value π (s,v∗
k

),
which is unknown in advance. To address this, a naive solution is to conservatively set π (s,v∗

k
) =

1/n, which, however, would lead to unnecessary overheads.

To avoid the aforementioned overheads, we propose a trial-and-error approach as follows:

We first assume that π (s,v∗
k

) is a large value (e.g., 1/k), and we set the parameters of FORA

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:16 S. Wang et al.

ALGORITHM 4: Top-k FORA with bound refinement

Input: Graph G, source node s , probability α
Output: k nodes with the highest approximate PPR scores

1 for δ = 1
k
, 1

2k
, 1

4k
, . . . , 1

n do

2 Invoke Algorithm 2 with G, s , α , and rmax set by Equation (10) and fail probability p′
f
=

pf

n ·log n
;

3 LetC = {v ′1, . . . ,v
′
k
} be the set that contains the k nodes with the top-k largest lower bounds (from

Theorem 3.1);

4 Let LB (u) and UB (u) be the lower and upper bounds of π (s,u) (from Theorem 3.1);

5 if UB (v ′i) < (1 + ϵ) · LB (v ′i) for i ∈ [1,k] and LB (v ′
k

) ≥ δ then

6 Let U be the set of nodes u ∈ V \C such that UB (u) > (1 + ϵ) · LB (v ′
k

);

7 if �u ∈ U such that UB (u) < (1 + ϵ) · LB (u)/(1 − ϵ) then

8 return v ′1,v
′
2, . . . ,v

′
k

and their estimated PPR;

accordingly to perform a whole-graph SSPPR query. After that, we inspect the results obtained

to check whether the estimated PPR values are indeed large. If they are not as large as we have

assumed, then we re-run FORA with more conservative parameters and check the new results

returned. This process is conducted iteratively, until we are confident that the results from FORA

conform to the requirements in Definition 2.2. In this section, we first present a top-k algorithm

by iteratively refining the upper and lower bounds of the top-k PPR results in Section 5.1. Nev-

ertheless, it is expensive to calculate the upper and lower bounds for each node in each iteration,

and it is unclear whether the algorithm will terminate with δ close to π (s,v∗
k

) or not. Therefore,

the expected running time of Algorithm 4 might be identical to that of invoking Algorithm 2 with

δ = 1/n. Therefore, in Section 5.2, we further propose a new top-k query algorithm that provides

guarantee on the expected running time, and that the algorithm has high probability to terminate

with π (s,v∗
k

)/4 ≤ δ ≤ π (s,v∗
k

).

5.1 Top-k with Bound Refinement

Algorithm. Algorithm 4 shows the pseudo-code of the top-k extension of FORA with bound re-

finement. The algorithm consists of at most logn iterations. In the ith iteration, we invoke Algo-

rithm 2 with δ set to 1
2i−1 ·k and the failure probability set to p ′

f
=

pf

n log n
(Lines 1–2 in Algorithm 4).

(The reason for this setting will be explained shortly.) After we obtain the results from FORA,

we compute an upper bound and a lower bound of each node’s PPR value and use them to de-

cide whether the current top-k results are sufficiently accurate (Lines 3–8). If the top-k results are

accurate, then we return them as the top-k answers (Line 8); otherwise, we proceed to the next

iteration. In the following, we elaborate how the upper and lower bounds of each node’s PPR value

is derived.

Define LB0 (v) = 0 and UB0 (v) = 1 for any v ∈ V . We have the following theorem that estab-

lishes the lower bound LBj (v) and upper bound UBj (v) of π (s,v) in the jth iteration of Algo-

rithm 4:

Theorem 5.1. In the jth iteration of Algorithm 4, letωj be theω calculated by FORA (Algorithm 2,

Line 2) in this iteration, and π ◦j (s,v) and π̂j (s,v) be the reserve and estimated PPR of v . Define

ϵj =

√√
3rsum · log (2/p ′

f
)

ωj ·max{π ◦j (s,v),LBj−1 (s,v)} , and λj =
2/3 log (2/p f ′)

2ωj

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:17

+

√
4
9r

2
sum · log2 (2/p ′

f
) + 8rsum · ωj · log (2/p ′

f
) ·UBj−1 (v)

2ωj
.

Then, with at least 1 − p ′
f

probability, the following two inequalities hold simultaneously:

π̂j (s,v)/(1 + ϵj) ≤ π (s,v) ≤ π̂j (s,v)/(1 − ϵj),

π̂j (s,v) − λi ≤ π (s,v) ≤ π̂j (s,v) + λi .

Proof. Ref. Appendix A. �

Theorem 5.1 enables us to derive tight lower and upper bounds of each node’s PPR value in each

iteration. In particular, we set

UBj (v) =min{1, π̂j (s,v)/(1 − ϵ), π̂j (s,v) + λi },

LBj (v) = max{π̂j (s,v)/(1 + ϵ), π̂j (s,v) − λi , 0}.
With these upper and lower bounds, the following theorem shows that if Lines 5 and 7 in Algo-

rithm 4 hold, then Algorithm 4 returns the answer for the approximate top-k SSPPR query.

Theorem 5.2 (Approximate Top-k). Let v ′1, . . . ,v
′
k

be the k nodes with the largest lower bounds

in the jth iteration of Algorithm 4. Let U be the set of nodes u ∈ V \C such that UBj (u) > (1 + ϵ) ·
LBj (v ′

k
), If UB (v ′i) < (1 + ϵ) · LB (v ′i) for i ∈ [1,k], LBj (v ′

k
) ≥ δ , and there exists no u ∈ U such that

UBj (u) < (1 + ϵ) · LBj (u)/(1 − ϵ), then returning v ′1, . . . ,v
′
k

and their estimated PPR values would

satisfy the requirements in Definition 2.2 with at least 1 − j · n · p ′
f

probability.

Proof. Ref. Appendix A. �

Now recall that the number of iterations in Algorithm 4 is logn, and in each iteration, we as-

sume that the upper and lower bounds are correct. Hence, by applying union bound, the failure

probability will be at most n logn · p ′
f
. Note that p ′

f
=

pf

n log n
. The failure probability is hence no

more than pf , and we guarantee that the returned answer has approximation with at least 1 − pf

probability.

5.2 Top-k with Improved Time Complexity

Despite the fact that Algorithm 4 provides superb performance on top-k query processing as shown

in Wang et al. [2017], there is no guarantee that the running time will depend on δ = π (s,v∗
k

) in-

stead of δ = 1/n. Also, after each iteration, we need to re-calculate the lower- and upper-bounds

for each node, which may take more than half of the query running time. This motivates us to pro-

pose our new top-k algorithm, which avoids the overheads of the bound-refinement and provides

running time guarantees with respect to π (s,v∗
k

).

Algorithm. Algorithm 5 shows the pseudo-code of the top-k extension of FORA. The algorithm

consists of at most log2 (n/k) iterations. In the ith iteration, we invoke Algorithm 2 with δ set to
1

k ·2i−1 , relative error threshold ϵ ′ = ϵ/2, and the failure probability set top ′
f
=

pf

n log2 (n/k) (Lines 1–2,

Algorithm 5). (The reason for this setting will be explained shortly.) After we obtain the results

from FORA, we compute the estimated PPR scores for each node and get the kth largest estimated

PPR value. We compare the kth estimated PPR score with (1 + ϵ) · δ and use this as evidence to

see whether the current top-k results are sufficiently accurate (Line 4). If the top-k results are

accurate, then we return them as the top-k answers (Lines 5–6); otherwise, we halve the value of

δ and proceed to the next iteration. In the following, we analyze the approximation guarantee and

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:18 S. Wang et al.

time complexity of Algorithm 5. First, we have the following lemma about the value of δ when

Algorithm 5 terminates:

Lemma 5.3. Let vk be the node that has the kth largest estimated PPR value and π̂ (s,vk) be the

estimated PPR value for node vk with respect to s . Let v∗
k

be the node with the true kth largest PPR.

Then, when Algorithm 5 terminates, it holds for δ that:

• δ > π (s,v∗
k

) with at most n · p ′
f
/8 probability;

• δ ≤ π (s,v∗
k

) with at least 1 − log2
1

π (s,v∗
k

) · n · p
′
f
/8;

• δ ≤ π (s,v∗
k

)/2x+1 (x = 1, 2, 3 . . .) with at most
p′

f

2x probability.

Proof. We first consider the case when Algorithm 5 terminates with δ > π (s,v∗
k

).
δ > π (s,v∗

k
). If δ > π (s,v∗

k
) when Algorithm 5 terminates, then we know that there exists

at least n − k + 1 nodes such that π (s,v) < δ . Denote X as the set of nodes such that v ∈ X if

π (s,v) < δ . For any of these nodes, we consider the probability that their PPR values with respect

to s is greater than (1 + ϵ) · δ . Note that according to Line 2 of Algorithm 5, the number of random

walks is set to
rsum ·(ϵ/2·2/3+2) ·log (2/p′

f
)

(ϵ/2)2 ·δ . Let t be a node in X , and λ = ϵ · δ , according to Lemma 3.2,

we have that:

Pr[π̂ (s, t) − π (s, t) > λ] ≤ exp ��− λ2

rsum · (2π (s, t) + 2λ/3)
·

4rsum · (2 + ϵ/3) · log (2/p ′
f

)

ϵ2 · δ
��

≤ exp

(
− 4δ · (2 + ϵ/3)

2 · π (s, t) + 2ϵ · δ/3 · log (2/p ′f)

)

≤ exp

(
− 4δ · (2 + ϵ/3)

2 · δ + 2ϵ · δ/3 · log (2/p ′f)

)
(δ > π (s, t))

≤ exp

(
−4 · (2 + ϵ/3)

2 + 2ϵ/3
· log (2/p ′f)

)
< exp

(
−3 · log (2/p ′f)

)
< p ′f /8.

So, by union bound, it is satisfied that π̂ (s, t) < π (s, t) + ϵ · δ holds for any node t ∈ X with at

least 1 − n · p ′
f
/8 probability. Also note that π (s, t) < δ . This indicates that with at least probability

1 − n · p ′
f
/8, for all nodes t ∈ X , it is satisfied that π̂ (s, t) < (1 + ϵ) · δ . Since there are at least n −

k + 1 nodes in X , it indicates that the returned π̂ (s,vk) must be no larger than maxv ∈X π̂ (s,v),
which is less than (1 + ϵ) · δ . However, this contradicts the fact that Algorithm 5 terminates when

π̂ (s,vk) ≥ (1 + ϵ) · δ . As a result, with at most n · p ′
f
/8 probability, the algorithm terminates when

δ > π (s,v∗
k

).
Next, we consider the probability when Algorithm 5 terminates with δ ≤ π (s,v∗

k
).

δ ≤ π (s,v∗
k

). Since in Algorithm 5, there are at most log2
1

k ·π (s,vk ∗) iterations such that

δ > π (s,v∗
k

), the probability that the algorithm terminates when δ > π (s,v∗
k

) is bounded by

log2
1

k ·π (s,v∗
k

)n · p
′
f
/8. Hence, with at least probability 1 − log2

1
k ·π (s,v∗

k
)n · p

′
f
/8, the algorithm ter-

minates with δ ≤ π (s,v∗
k

).
Finally, we consider whether δ will be too small when Algorithm 5 terminates.

δ ≤ π (s,v∗
k

)/2
x+1. Consider the k nodes with the k largest PPR values. Denote these nodes

as v∗1 ,v
∗
2 ,v
∗
3 , . . . ,v

∗
k

. Consider the estimated PPR of v∗i with respect to s (1 ≤ i ≤ k). According to

Lemma 3.2, it is satisfied that:

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:19

ALGORITHM 5: Top-k FORA

Input: Graph G, source node s , probability α
Output: k nodes with the highest approximate PPR scores

1 for δ = 1
k
, 1

2k
. . . , 1

n do

2 Invoke Algorithm 2 with G, s , and α with ϵ ′ = ϵ/2, failure probability p′
f
=

pf

n log2 (n/k) , and rmax

set by Equation (10);

3 Let π̂ (s,vk) be the kth largest estimated PPR score returned by Algorithm 2;

4 if π̂ (s,vk) ≥ (1 + ϵ) · δ then

5 Let v ′1,v
′
2, . . . ,v

′
k

be the k nodes with the top-k largest PPR values;

6 return v ′1,v
′
2, . . . ,v

′
k

and their estimated PPR values;

Pr[π̂ (s,v∗i) ≤ (1 + ϵ) · δ] ≤ Pr[π̂ (s,v∗i) ≤ (1 + ϵ) · π (s,v∗k)/2x+1] (δ ≤ π (s,v∗k)/2x+1)

≤ Pr[π̂ (s,v∗i) ≤ (1 + ϵ) · π (s,v∗i)/2x+1] (π (s,v∗k) ≤ π (s,v∗i))

≤ Pr[π̂ (s,v∗i) ≤ (1 − (1 − 1/2x) · ϵ) · π (s,v∗i)]

(1 + ϵ)/2x+1 ≤ 1 − (1 − 1/2x) · ϵ for 0 < ϵ < 1

≤ exp ��−
((1 − 1/2x) · ϵ)2 · π (s,v∗i)

rsum · (2 + 2(1 − 1/2x) · ϵ/3)
·

4rsum · (2 + ϵ/3) · log (2/p ′
f

)

ϵ2 · δ
��

≤ exp

(
−2(1 − 1/2x)2 · 2x+1 · 2(2 + ϵ/3)

2 + 2(1 − 1/2x) · ϵ · log (2/p ′f)

)

2(1 − 1/2x)2 > 1,
2(2 + ϵ/3)

2 + (1 − 1/2x)
> 1

≤ exp
(
−2x+1 · log (2/p ′f)

)
<

(p ′
f

)2

2x+1
.

By union bound, the probability that π̂ (s,v∗i) ≥ (1 + ϵ) · δ holds for any 1 ≤ i ≤ k simultane-

ously is at least 1 − k ·
(p′

f
)2

2x+1 ≥ 1 −
p′

f

2x+1 . Since there are k estimations no smaller than (1 + ϵ) · δ ,

Algorithm 5 will terminate. Therefore, Algorithm 5 terminates when δ ≤ π (s,v∗i)/2i+1 with at most
p′

f

2x+1 probability, which finishes the proof. �

Lemma 5.3 indicates several desired properties of our top-k algorithm. First, the algorithm stops

with δ > π (s,v∗
k

) with low probability. Besides, it terminates with δ ≤ π (s,v∗
k

) with high proba-

bility, which is an important condition for providing approximate top-k answer. Third, when the

algorithm terminates, δ will not deviate from π (s,v∗
k

) by a large margin. The larger the margin

is between δ and π (s,v∗
k

), the lower the probability it is. By leveraging 5.3, we further have the

following lemma on the time complexity of our top-k algorithm:

Lemma 5.4. The expected running time of Algorithm 5 can be bounded by

O
��min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
m · log (2/pf)

ϵ ·
√
π (s,v∗

k
)
,

log (2/pf)

ϵ2 · π (s,v∗
k

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
���� .

Proof. Let c be the constant factor of the time complexity of Algorithm 2 and δ ∗ be the value of

δ when Algorithm 5 terminates. Suppose that the algorithm terminates after i + 1 iterations, and

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:20 S. Wang et al.

note that the time complexity of each iteration is bounded byO (c

ϵ ·
√

δ

√
m · (2ϵ/3 + 2) · log (2/pf)).

Then, the cost C of FORA can be bounded by

C =
1/(2i ·k)∑
δ=1/k

c

ϵ ·
√
δ

√
m · (2ϵ/3 + 2) · log (2/pf)

=
c

ϵ

√
m · (2ϵ/3 + 2) · log (2/pf) ·

1/(2i ·k)∑
δ=1/k

1
√
δ

≤ c

ϵ

√
m · (2ϵ/3 + 2) · log (2/pf) · 1 + 1/

√
δ ∗

1 − 1/
√

2

≤ c

ϵ

√
m · (2ϵ/3 + 2) · log (2/pf) · 4

√
δ ∗
.

Denote

ϕ =
4c

ϵ

√
m · (2ϵ/3 + 2) · log (2/pf).

Next, we further consider the expected cost of Algorithm 5.

E[C] = Pr[δ > π (s,v∗k)] · Cδ>π (s,v∗
k

) + Pr[π (s,v∗k)/4 < δ ≤ π (s,v∗k)] · Cπ (s,v∗
k

)/4<δ ≤π (s,v∗
k

)

+

log2 (n/π (s,v∗
k

))∑
x=1

Pr[π (s,v∗k)/2i+2 < δ ≤ π (s,v∗k)/2i+1] · Cπ (s,v∗
k

)/2i+2<δ ≤π (s,v∗
k

)/2i+1

< 1 · ϕ√
π (s,v∗

k
)
+ 1 · ϕ√

π (s,v∗
k

)/4
+

log2 (n/π (s,v∗
k

))∑
i=1

p ′
f

2i+1

ϕ√
π (s,v∗

k
)/2i+1

<
4ϕ√

π (s,v∗
k

)
=

16

ϵ ·
√
π (s,v∗

k
)

√
m · (2ϵ/3 + 2) · log (2/pf).

Besides, note that the time complexity of each iteration can also be bounded by

O (
(2ϵ/3+2) ·log (2/pf)

δ
). Still let c denote the constant in the time complexity. Then, the cost C of

FORA can be bounded by

C = c ·
(2ϵ/3 + 2) · log (2/pf)

ϵ2
·

1/(2i ·k)∑
δ=1/k

1

δ
≤ c ·

(2ϵ/3 + 2) · log (2/pf)

ϵ2
· 2

δ
.

Let ϕ = 2c · (2ϵ/3+2) ·log (2/pf)

ϵ 2 , the expected cost of Algorithm 5 then can be further bounded by:

E[C] = Pr[δ > π (s,v∗k)] · Cδ>π (s,v∗
k

) + Pr[π (s,v∗k)/4 < δ ≤ π (s,v∗k)] · Cπ (s,v∗
k

)/4<δ ≤π (s,v∗
k

)

+

log2 (n/π (s,v∗
k

))∑
x=1

Pr[π (s,v∗k)/2i+2 < δ ≤ π (s,v∗k)/2i+1] · Cπ (s,v∗
k

)/2i+2<δ ≤π (s,v∗
k

)/2i+1

< 1 · ϕ

π (s,v∗
k

)
+ 1 · ϕ

π (s,v∗
k

)/4
+

log2 (n/π (s,v∗
k

))∑
i=1

p ′
f

2i+1
· ϕ

π (s,v∗
k

)/2i+1

<
6ϕ

π (s,v∗
k

)
=

12c · (2ϵ/3 + 2) · log (2/pf)

ϵ2 · π (s,v∗
k

)
.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:21

Therefore, the expected time complexity of Algorithm 5 can be bounded by

O
��min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
m · log (2/pf)

ϵ ·
√
π (s,v∗

k
)
,

log (2/pf)

ϵ2 · π (s,v∗
k

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
���� ,

which finishes the proof. �

It still remains to clarify whether Algorithm 5 returns approximate top-k answers. The following

lemma shows that our algorithm returns approximate top-k answer with high probability:

Lemma 5.5. Algorithm 5 returns an ϵ-approximate top-k answer with at least 1 − pf probability.

Proof. Let v1,v2, . . . ,vk be the returned k nodes by Algorithm 5 and R = {v∗1 ,v∗2 , . . . ,v∗k }
be the k nodes with the real top-k largest PPR values. According to Lemma 5.3, Algorithm 5

terminates with δ ≤ π (s,v∗
k

) (denoted as Condition C1) with at least 1 − log2
1

π (s,v∗
k

) · n · p
′
f
/8

probability. When C1 holds, we note that for v∗i , it is satisfied that, with 1 − p ′
f
/2 probability,

π̂ (s,v∗i) − π (s,v∗i) > ϵ
2 · π (s,v∗i). As a result,

π̂ (s,v∗i) − π (s,v∗i) >
ϵ

2
· π (s,v∗i) for any 1 ≤ i ≤ k (13)

holds with at least 1 − k · p ′
f
/2 probability. We denote this condition as C2.

We next consider when conditions C1 and C2 both hold, the probability that the single source

FORA fails to provide an ϵ-approximate top-k answer. When C1 holds, we know that ˆπ (s,v∗i) >
(1 − ϵ/2) · π (s,v∗i). With this condition, π̂ (s,vi) must be larger than (1 − ϵ/2) · π (s,v∗i), since its

estimation is ith largest and we know that there are at least i nodes with estimated PPR larger

than (1 − ϵ/2) · π (s,v∗i), i.e., π̂ (s,v∗1), π̂ (s,v∗2), . . . , π̂ (s,v∗i). We say a query fails if there exists a

returned node vi such that:

(1) π̂ (s,vi) > (1 − ϵ/2) · π (s,vi),
(2) π (s,vi) < (1 − ϵ) · π (s,v∗i).

Next, we prove that vi fails with very low probability. Let ϵ ′ =
(1−ϵ/2) ·π (s,v∗i)

π (s,vi) − 1.

Pr[π̂ (s,vi) > (1 − ϵ/2) · π (s,v∗i)] = Pr[π̂ (s,vi) > (1 + ϵ ′) · π (s,vi)].

Since π (s,vi) < (1 − ϵ)π (s,v∗i), we have that ϵ ′ > ϵ/2
1−ϵ

. Also note that

ϵ ′ · π (s,vi)

π (s,v∗i)
= (1 − ϵ/2) − π (s,vi)

π (s,v∗i)
> (1 − ϵ/2) − (1 − ϵ) = ϵ/2.

Then, according to Lemma 3.2, it is satisfied that:

Pr[π̂ (s,vi) > (1 − ϵ/2) · π (s,v∗i)] = Pr[(1 + ϵ ′) · π (s,vi)]

≤ exp ��− (ϵ ′)2 · π (s,vi)

rsum · (2 + 2ϵ ′/3)
·
rsum · (2 + ϵ/3) · log (2/p ′

f
)

(ϵ/2)2 · δ
��

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:22 S. Wang et al.

≤ exp ��− ϵ ′

(2 + 2ϵ ′/3)
· ϵ
′ · π (s,vi)

π (s,v∗i)
·
π (s,v∗i)

δ
·

(2 + ϵ/3) · log (2/p ′
f

)

(ϵ/2)2
��(

ϵ ′

2 + 2ϵ ′/3
is monotonically increasing,

ϵ ′ · π (s,vi)

π (s,v∗i)
> ϵ/2,

π (s,v∗i)

δ
> 1

)

≤ exp ��− ϵ/(2 − 2ϵ)

2 + ϵ/(3 − 3ϵ)
· ϵ/2 · 1 ·

(2 + ϵ/3) · log (2/p ′
f

)

(ϵ/2)2
��

≤ exp

(
− ϵ/3 + 2

2 − 5ϵ/3
· log (2/p ′f)

) (
ϵ/3 + 2

2 − 5ϵ/3
> 1

)
≤ exp(− log (2/p ′f)) = p ′f /2.

As a result, when C1 holds, the probability that the query does not fail on any node is at least

1 − n · p ′
f

by applying union bound on the events that no vi fails and condition C2 holds. Since in

the worst case, there exists log (n/π (s,v∗
k

)) iterations when C1 holds. Therefore, we further have

that the query returns ϵ-approximate answer with at least

1 −
(
log2

1

π (s,v∗
k

)
· n · p ′f /8 + log (n/π (s,v∗k)) · n · p ′f

)
≥ 1 − pf

probability. This finishes the proof. �

6 EXTENSIONS

6.1 Extending BiPPR to Whole-Graph SSPPR

Recall from Section 2.2 that in BiPPR, it includes both a forward phase and a backward

phase. It is proved in Andersen et al. [2007] that the amortized time complexity for the back-

ward phase is O (m
n ·rmax

), and in Lofgren et al. [2016], it shows that the forward phase re-

quires O (
rmax ·log (1/pf)

ϵ 2 ·δ) time, given the backward phase threshold rmax . Afterwards, they choose

rmax = O (ϵ ·
√

m ·δ
n ·log (1/pf)) to minimize the time complexity for the pairwise PPR query, which is

O (1
ϵ

√
m ·log (1/pf)

n ·δ). To apply BiPPR for whole-graph SSPPR queries, a straightforward approach is

to use it to answer n point-to-point PPR queries (i.e., from s to every other node). This, however,

leads to a total time complexity of O (1
ϵ

√
mn ·log (1/pf)

δ
), which is a factor of

√
n larger than that of

the whole-graph SSPPR FORA.

To improve this, we observe that then point-to-point PPR queries share the same forward phase,

and hence, we can conduct the forward phase once and then re-use its results for all n backward

phases. In addition, to reduce the total cost of n backward phases, we can set rmax to a larger value;

although it would require more random walks to be generated in the forward phase, the tradeoff is

still favorable, as the overhead of the forward phase has been significantly reduced by the re-usage

of results. Since the backward phase (for all target nodes) has a cost of O (m
rmax

), it can be verified

that, by setting rmax = O (ϵ ·
√

m ·δ
log (1/pf)), the expected time complexity of this optimized version

of BiPPR (for SSPPR queries) is

O

(
1

ϵ ·
√
δ

√
m · log (1/pf)

)
,

which is identical to that of single-source FORA.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:23

However, as we show in Section 8, the optimized BiPPR is significantly outperformed by Whole-

Graph SSPPR FORA. The reason is that, even after the aforementioned optimization, BiPPR either

degrades to MC when rmax is large or still requires performing a backward phase from each node

v inG, even if π (s,v) is extremely small and can be omitted. In contrast, single-source FORA does

not suffer from these deficiencies and avoids examining nodes with very small PPR values. Instead,

it performs a forward search phase, followed by a number of random walks from the nodes visited

in the search; this process tends to avoid examining nodes with very small PPR values, since those

nodes are unlikely to be visited by the forward push or the random walks.

6.2 Extending FORA to Source Distributions

In many real applications of the personalized PageRank, the source s can be a distribution (e.g., on

a set of bookmark pages) instead of a single node. We show that our algorithms for single-source-

node FORA can be extended to the case of arbitrary source distributions.

Let σ be the node distribution that the source node s is sampled from. For any target node t , its

personalized PageRank with respect to σ is defined as [Haveliwala 2002; Lofgren et al. 2016]:

π (σ , t) =
∑
v ∈V

σ (v) · π (v, t),

where σ (v) is the probability that a sample from σ equals v . To apply our algorithms, we modify

Line 1 of Algorithm 1 to set the initial residue of each node v as σ (v). Let π ◦ (σ ,v) (respectively,

r (σ ,v)) denote the reserve (respectively, residue) of node v in the modified version of Forward

Push. Then, it is easy to prove that the following invariant holds for the modified version of For-

ward Push:

π (σ , t) = π ◦ (σ , t) +
∑
v ∈V

r (σ ,v) · π (v, t).

In particular, the initial states satisfy the above invariant, and by induction, it can be proved that

the invariant still holds after every push operation. Given the above invariant, our algorithms

can be applied to compute π (σ , t) without compromising their asymptotic guarantees. Besides,

the indexing scheme presented in Section 3.3 is still applicable, since the maximum number of

random walks required for each node is identical to that in the single-source-node algorithms.

6.3 Extending FORA to Global PageRank

Global PageRank can be regarded as the personalized PageRank with a source distribution of

(1/n, 1/n, . . . , 1/n). According to our discussion in Section 6.3, FORA can further be used to calcu-

late the global PageRank. The classic solution for PageRank is the Power-Method, which takes a

running time of O (m · log 1
δ ·ϵ) to provide ϵ-approximation for PageRank scores above the thresh-

old δ . To apply the Monte-Carlo method, we can first randomly sample source node, record the

number of random walks stops at a node v , and use the fraction of random walks stopped at v as

the estimated PageRank. To derive ϵ-approximation, the running time will be O (
(2ϵ/3+2) ·log (2/pf)

ϵ 2 ·δ).

When ϵ is moderate, andm > 3
ϵ 2 ·δ , the Monte-Carlo approach achieves a better time complexity.

With the proposed FORA framework, the running time can be bounded by:

O

(
min

{√
m ·log (2/pf)

ϵ ·
√

δ
,

log (2/pf)

ϵ 2 ·δ

})
,

which actually achieves the best asymptotic performance compared to the two existing solutions

when ϵ is moderate andm > 3
ϵ 2 ·δ .

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:24 S. Wang et al.

Besides, our top-k algorithm can be further extended to output the top-k nodes with the highest

PageRank scores with a running time of:

O
��min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
m · log (2/pf)

ϵ ·
√
π (v∗

k
)
,

log (2/pf)

ϵ2 · π (v∗
k

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
���� ,

where π (v∗
k

) is the node with the kth largest PageRank score.

7 OTHER RELATED WORK

Apart from the methods discussed in Section 2.2, there exists a plethora of techniques for whole-

graph and top-k SSPPR queries. Those techniques, however, are either subsumed by BiPPR and

HubPPR or unable to provide worst-case accuracy guarantees. In particular, a large number of

techniques adopt the matrix-based approach, which formulates PPR values with the following

equation:

πs = α · es + (1 − α) · πs · D−1A, (14)

where πs is a vector whose ith element equals π (s,vi), A ∈ {0, 1}n×n is the adjacency matrix ofG,

and D ∈ Rn×n is a diagonal matrix in which each ith element on its main diagonal equals the out-

degree of vi . Matrix-based methods typically start from an initial guess of πs and then iteratively

apply Equation (14) to refine the initial guess until converge is achieved. Recent work that adopts

this approach [Fujiwara et al. 2012; Maehara et al. 2014; Shin et al. 2015; Zhu et al. 2013] propose

to decompose the input graph into tree structures or sub-matrices and utilize the decomposition

to speed up the PPR queries. The state-of-the-art approach for the single-source and top-k PPR

queries in this line of research work is BEAR, proposed by Shin et al. [2015]. However, as shown

in Wang et al. [2016], the best of these methods is still inferior to HubPPR [Wang et al. 2016] in

terms of query efficiency and accuracy.

There also exist methods that follow similar approaches to the forward search method

[Andersen et al. 2006] described in Section 2.2. Berkhin [2005] proposes to pre-compute the For-

ward Push results from several important nodes and then use these results to speed up the query

performance. Ohsaka et al. [2015] and Zhang et al. [2016] further design algorithms to update the

stored Forward Push results on dynamic graphs. Jeh and Widom [2003] propose the backward

search algorithm, which (i) is the reverse variant of the Forward Push method, and (ii) can cal-

culate the estimated PPRs from all nodes to a target node t . Zhang et al. [2016] also design the

algorithms to update the stored backward push results on dynamic graphs. Nonetheless, none of

these solutions in this category provide approximation guarantees for single-source or top-k PPR

queries on directed graphs.

In addition, there are techniques based on the Monte-Carlo framework. Fogaras et al. [2005] pro-

pose techniques to pre-store the random walk results and use them to speed up the query process-

ing. Nonetheless, the large space consumption of the technique renders it applicable only on small

graphs. Backstrom and Leskovec [2011] and Sarma et al. [2013] investigate the acceleration of the

Monte-Carlo approach in distributed environments. Lofgren et al. [2014] propose FastPPR , which

significantly outperforms the Monte-Carlo method in terms of query time. However, FastPPR in

turn is subsumed by BiPPR [Lofgren et al. 2016] in terms of query efficiency. In Lofgren [2015],

Lofgren further proposes to combine a modified version of Forward Push, random walks, and the

backward search algorithm to reduce the processing time of pairwise PPR queries. Nevertheless,

the time complexity of the method remains unclear, since Lofgren does not provide any theoretical

analysis on the asymptotic performance of the method in Lofgren [2015]. Wang and Tao [2018]

also consider combine the forward random walks and the backward search to accelerate the heavy

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:25

hitter queries in personalized PageRank; Wei et al. [2019] find connections between SimRank and

PPR, combine the forward random walks with backward search, and propose the PRSim algorithm

that can answer SimRank queries with sublinear time on power-law graphs.

Finally, a plethora of research work [Avrachenkov et al. 2011; Bahmani et al. 2011; Fujiwara

et al. 2012, 2013; Gupta et al. 2008; Lofgren et al. 2016] study how to efficiently process the top-k
PPR queries. Gupta et al. [2008] propose to use Forward Push to return the top-k answers. How-

ever, their solutions do not provide any approximation guarantee. Avrachenkov et al. [2011] study

how to use Monte-Carlo approach to find the top-k nodes. Nevertheless, the solution does not

return estimated PPR values and does not provide any worst-case assurance. Fujiwara et al. [2012,

2013] and Shin et al. [2015] investigate how to speed up the top-k PPR queries with the matrix

decomposition approach. These approaches either cannot scale to large graphs or do not provide

approximation guarantees.

Most recently, Wei et al. propose the index-free TopPPR [Wei et al. 2018], which combines the

Forward Push, random walk, and the backward propagation to answer top-k PPR queries with

precision guarantees. However, as we will see in our experiments, our FORA+ actually achieves

a better performance than TopPPR when we set ρ = 0.99 on large datasets and achieves a better

trade-off among the space consumption, query efficiency, and query accuracy. The main reason

is that FORA+ can benefit from the indexing scheme while TopPPR cannot. It is also difficult for

TopPPR to benefit from indexing scheme, since (i) their random walk adopts the
√
α-random walk,

and all the nodes visited will be used to estimate the PPR scores; (ii) the sources of random walks

in Monte-Carlo phase are generated randomly in TopPPR and it may result in poor cache perfor-

mances. In contrast, FORA+ only needs to scan the index structures in order and only stores the

destinations in index structure, making it lightweight and cache-friendly.

8 EXPERIMENTS

In this section, we experimentally evaluate our methods for whole-graph SSPPR queries and top-k
SSPPR queries. For whole-graph (respectively, top-k) SSPPR queries, we include our index-free

method FORA, which includes the optimizations as mentioned in Section 4 (respectively, Sec-

tion 5.2) and their index-based variant, referred to as FORA+, against the state-of-the-art. All ex-

periments are conducted on a Linux machine with an Intel 2.9GHz CPU and 200GB memory.

8.1 Experimental Settings

Datasets and query sets. We use six real graphs: DBLP, Web-St, Pokec, LJ, Orkut, and Twitter,

which are public benchmark datasets used in recent work [Lofgren et al. 2016; Wang et al. 2016].

We further generate two synthetic datasets using the RMAT random graph generator [Chakrabarti

et al. 2004], denoted as RMAT-1 and RMAT-2, to examine the scalability of our proposed top-k
algorithms. Note that RMAT-2 includes 8.6B edges. Moreover, we test our methods on four different

game social networks from Tencent Games. Table 3 summarizes the statistics of the datasets. For

each dataset, we choose 50 source nodes uniformly at random, and we generate an SSPPR query

from each chosen node. In addition, we also generate five top-k queries from each source node,

with k varying in {100, 200, 300, 400, 500}. Note that the maximum k is set to 500 in accordance

to Twitter’s Who-To-Follow service [Gupta et al. 2013], whose first step requires deriving top-500

PPR results.

Methods. For whole-graph SSPPR queries, we compare our proposed FORA and FORA+ against

three methods: (i) the Monte-Carlo approach, dubbed as MC; (ii) the optimized BiPPR for SSPPR

queries described in Section 6.1; (iii) HubPPR, which is the indexed version of BiPPR. We fur-

ther compare our FORA and FORA+ against the version without the optimization techniques (Ref.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:26 S. Wang et al.

Table 3. Datasets (K = 103,M = 106,B = 109)

Name n m Type Linking Site

DBLP 613.6K 2.0M undirected www.dblp.com

Web-St 281.9K 2.3M directed www.stanford.edu

Pokec 1.6M 30.6M directed pokec.azet.sk

LJ 4.8M 69.0M directed www.livejournal.com

Orkut 3.1M 117.2M undirected www.orkut.com

Twitter 41.7M 1.5B directed twitter.com

RMAT-1 41.7M 1.5B directed -

RMAT-2 128M 8.6B directed -

X0 26.1M 485.6M undirected tencent.com

X1 50.1M 792.0M undirected tencent.com

X2 58.2M 1.1B undirected tencent.com

X3 74.3M 1.5B undirected tencent.com

Section 4), dubbed as FORA-Basic and FORA-Basic+ for the index-free and index-based methods,

respectively.

For top-k SSPPR queries, we compare our algorithm with the existing approximate solutions:

the single-source BiPPR, the top-k algorithm for HubPPR in Wang et al. [2016], and the TopPPR

[Wei et al. 2018]. For BiPPR and HubPPR, we use the same ϵ , δ , and pf as FORA. For TopPPR, we

follow the settings in Wei et al. [2018] and set ρ = 0.99. We further extend our top-k algorithm

(Ref. Algorithm 5) to the Monte-Carlo approach and denote this algorithm as MC-Topk. We also

include the Forward Push [Andersen et al. 2006] and TPA [Yoon et al. 2018] as a baseline for top-k
SSPPR queries, and we tune their accuracy control parameters on each dataset separately so their

precisions for top-k PPR queries are the same as FORA on each dataset. Besides, we also compare

our FORA and FORA+ against the version without the top-k optimization techniques (Ref. Sec-

tion 5.2), dubbed as FORA-Basic and FORA-Basic+ for the index-free and index-based algorithms,

respectively.

Parameter setting. Following previous work [Lofgren et al. 2014, 2016; Wang et al. 2016], we set

δ = 1/n,pf = 1/n, and ϵ = 0.5. For our FORA and FORA+, note that the performance and/or the

index size depends on the choice of rmax . On the whole-graph queries, for FORA-Basic and FORA-

Basic+, rmax is set according to Section 3.2; we then use the balanced strategy to auto-decide the

choice of rmax for FORA; for FORA+, we include the optimization technique in Section 4.1 and tune

rmax varying from r ∗max to 7r ∗max where r ∗max is the choice of rmax set according to Equation (10).

We find that rmax = 2r ∗max strikes the best trade-off, and therefore use this setting for FORA+ on

the whole-graph queries. For top-k PPR query, we also tune rmax to find the best index size for our

top-k queries and vary rmax from r ∗max to 7r ∗max . As we show in the experiment, when rmax is set

to r ∗max , it achieves the best trade-off, and therefore we use this setting in our top-k evaluation. For

fair comparison, the index size of HubPPR is set to be the same as that of FORA+ for top-k SSPPR

processing and also FORA-Basic+ (for whole-graph SSPPR processing).

8.2 Whole-graph SSPPR Queries

In our first set of experiments, we evaluate the efficiency of each method for whole-graph SSPPR

queries on the six public datasets. Table 4 reports the average query time of each method. Observe

that both FORA and BiPPR achieve better query performance than MC, which is consistent with

our analysis that the time complexity of FORA and BiPPR is better than that of MC. Moreover,

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

http://www.dblp.com
http://www.stanford.edu
http://pokec.azet.sk
http://www.livejournal.com
http://www.orkut.com
http://twitter.com
http://tencent.com
http://tencent.com
http://tencent.com
http://tencent.com

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:27

Table 4. Whole-graph SSPPR Performance (s) (i) (K = 103)

MC BiPPR HubPPR FORA-Basic FORA FORA-Basic+ FORA+

DBLP 14.2 3.8 2.8 0.8 0.6 0.09 0.05

Web-St 5.4 3.7 1.6 0.03 0.02 0.01 0.01

Pokec 69.1 24.9 19.6 11.26 6.3 0.9 0.4

LJ 163.5 61.4 50.8 15.5 9.9 1.2 0.6

Orkut 230.6 158.2 126.3 40.1 26.4 4.8 1.7

Twitter 4.3K 3.1K 2.4K 513.8 283.1 63.3 29.8

Table 5. Whole-graph SSPPR Performance (s) (ii) (K = 103)

FORA-Basic FORA FORA-Basic+ FORA+

X0 527.47 259.9 66.7 31.2

X1 957.4 504.9 130.7 60.4

X2 1,072.5 530.4 152.4 63.7

X3 2,340.6 1,163.3 216.8 97.2

FORA is at least four times faster than BiPPR on most of the datasets. The reason, as we explain

in Section 3.2, is that BiPPR either degrades to the MC approach when the backward threshold is

large or requires conducting a backward search from each nodev inG, even if π (s,v) is extremely

small. In contrast, FORA avoids degrading to MC and tends to omit nodes with small PPR values,

which helps improve efficiency. In addition, FORA+ achieves significant speedup over FORA and

is around 10 times faster than the latter on most of the datasets. The HubPPR also improves over

BiPPR, but the improvement is far less than what FORA+ achieves over FORA. Moreover, even

without any index, FORA is still more efficient than HubPPR.

As we can observe from Table 4, with our optimization techniques introduced in Section 4,

the index-free method FORA improves over FORA-Basic by up to 1.8×. Apart from the six public

datasets, we further test the effectiveness of our methods on the four social networks from com-

pany X. We omit the results for the baseline methods (MC, BiPPR, and HubPPR), since they incur

prohibitive processing costs. As shown in Table 5, FORA still improves over FORA-Basic by more

than 2× almost on all datasets, which demonstrates the effectiveness of our proposed optimization

technique for online algorithms. For the index-based method, FORA improves over FORA+ by at

least twice on almost all datasets, and up to 2.8×. As shown in Table 8, the space consumption

required by FORA+ is twice as that of FORA-Basic+, which demonstrates that our optimization

technique achieves a good trade-off between query time and space consumption.

8.3 Top-k SSPPR Queries

In our second set of experiments, we evaluate the efficiency and accuracy of each method for

top-k SSPPR queries. For our methods, we only include our FORA and FORA+ that include the

optimizations presented in Section 5.2 to avoid the figures being too crowded. We will examine

the effectivess of our optimization techniques in the next set of experiments.

8.3.1 Top-k Query Efficiency. Figure 1 reports the average query time of each method on four

representative datasets: DBLP, Pokec, Orkut, and Twitter. (The results on the other two datasets

are qualitatively similar and are omitted due to the space constraint.) Note that the y-axis is in

log-scale. Recall that Forward Push provides no approximation guarantee, and we tune the rmax

on each dataset separately so it provides the same precision for top-500 SSPPR queries as our FORA

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:28 S. Wang et al.

Fig. 1. Top-k SSPPR query efficiency: varying k .

algorithm does. Similarly, for TPA [Yoon et al. 2018], we tune the parameters so it provides the

best possible precision.

The main observation is that our FORA+ achieves the best performance on all the datasets.

For instance, on Twitter dataset with k = 500, our FORA+ provides similar or better accuracy and

NDCG as competitors and runs 2× faster than TopPPR, two orders of magnitude faster than MC-

Topk, and more than 500× faster than Forward Push, TPA, BiPPR, and HubPPR. This is expected,

since our FORA+ applies an iterative approach to refine the top-k answers and terminates imme-

diately whenever the answer could provide the desired approximation guarantee; it further uses

the indexing scheme to reduce the expensive costs of random walks.

Our FORA is the fastest online algorithm except for TopPPR, since TopPPR uses a more advanced

filter-refinement paradigm to answer the top-k queries. However, their proposed approach does

not benefit from an indexing scheme and is outperformed by our FORA+. It is also difficult for

TopPPR to benefit from an indexing scheme, since (i) their random walk adopts the
√
α-random

walk, and all the nodes visited will be used to estimate the PPR scores; (ii) the sources of random

walks in Monte-Carlo phase are generated randomly in TopPPR and it may result in poor cache

performances. In contrast, FORA+ only needs to scan the index structures in order and only store

the destinations in index structure, making it lightweight and cache-friendly.

Another observation is that after extending the MC approach with our top-k algorithm, MC-

Topk achieves more than 20× speedup on Twitter over its single-source alternative. This further

demonstrates the effectiveness of our top-k algorithm proposed in Section 5.2, which improves

the time complexity to O (
log n

ϵ 2 ·π (s,v∗
k

)
). However, our FORA and FORA+ are still far more efficient

than MC-Topk, since FORA and FORA+ explore the forward push to reduce the random walk

costs.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:29

Fig. 2. Top-k SSPPR query accuracy: varying k .

Finally, with our index structure, FORA+ further improves over FORA by an order of magnitude,

which demonstrates the effectiveness of the index structure. Notably, on the Twitter social network

with 1.5B edges, our FORA+ can answer the top-500 query in 0.8s.

8.3.2 Top-k Query Accuracy. To compare the accuracy of the top-k results returned by each

method, we first calculate the ground-truth answer of the top-k queries using the Power Iteration

[Page et al. 1999] method with 100 iterations. Afterwards, we evaluate the top-k results of each

algorithm by their precision and NDCG [Järvelin and Kekäläinen 2000] with respect to the ground

truth. Note that the precision and recall are the same for the top-k SSPPR queries and is the fraction

of nodes returned by the top-k algorithm that are real top-k nodes. For NDCG, let s be the query

node, v1,v2, . . . ,vk be the k nodes returned by the top-k algorithm, and v∗1 ,v
∗
2 , . . . ,v

∗
k

be the true

top-k nodes. Then, the NDCG is defined as 1
Zk

∑k
i=1

2π (s,vi)−1
log (i+1) , where Zk =

∑k
i=1

2
π (s,v∗

k
)−1

log (i+1) .

Figure 2 (respectively, Figure 3) shows the accuracy (respectively, NDCG) of the top-k query

algorithms on four datasets: DBLP, Pokec, Orkut, and Twitter. Observe that all methods except TPA

consistently provide high precision. In the meantime, notice that our FORA+ consistently provides

similar precision as TopPPR and sometimes even slightly better precision than TopPPR on all the

tested datasets. In terms of NDCG, all methods achieve very high NDCG scores, above 0.999 on all

datasets.

8.3.3 Scalability of Top-k Algorithms. In this section, we examine the scalability of our FORA+

using synthetic datasets. We first generate a synthetic dataset with the same size as Twitter and

then generate a graph with 8.6B edges. The results are reported in Table 6. As we can see, our

FORA+ achieves 3× improvement over TopPPR on both datasets while providing the same ac-

curacy and NDCG. As we will see in Section 8.5, the space consumption of FORA+ is only 2×

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:30 S. Wang et al.

Fig. 3. Top-k SSPPR query NDCG: varying k .

Table 6. Scalability Test on Synthetic Datasets (K = 500)

Query Time Precision NDCG
RMAT-1 RMAT-2 RMAT-1 RMAT-2 RMAT-1 RMAT-2

FORA+ 17.4 149.5 0.993 0.995 0.9999 0.9999

TopPPR 51.1 481.0 0.993 0.995 0.9999 0.9999

and 1.5× that of TopPPR on RMAT-1 and RMAT-2, respectively. This demonstrates that FORA+

achieves a better trade-off between query efficiency and space consumption when providing the

same accuracy for the top-k queries.

8.4 Effectiveness of the Top-k Optimization

In this set of experiments, we evaluate the effectiveness of the new top-k algorithm proposed in

Section 5.2, which provides improved time complexity and reduces the time to calculate the bounds

for each node. We present the results for six representative datasets: DBLP, Pokec, Orkut, Twitter,

X2, and X3.

Figures 4(a)–(f) demonstrate the running time of FORA and FORA+ against the versions with-

out the optimization techniques in Section 5.2, referred to as FORA-Basic and FORA-Basic+ for the

index-free and index-based solution, respectively. As we can observe, with the new algorithm,

FORA (respectively, FORA+) improves over FORA-Basic (respectively, FORA-Basic+) by a large

margin. For instance, on Twitter dataset, FORA (respectively, FORA+) improves over FORA-Basic

(respectively, FORA-Basic+) by around 4× (respectively, 6×). The main reason for the significant

improvements are two-fold: (i) the time complexity of FORA and FORA+ depend on 1
π (s,v∗

k
) while

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:31

Fig. 4. Effectiveness of top-k optimization: query efficiency.

FORA-Basic and FORA-Basic+ depend on 1
n

; (ii) FORA and FORA+ avoid the expensive bound cal-

culation part that are required by FORA-Basic and FORA-Basic+.

Next, we report the accuracy of the four methods on the six datasets as shown in Fig-

ures 5(a)–(f). As we can observe, all four methods provide similarly high accuracy for the top-k
queries on all datasets. To explain, all four methods share the similar spirit by adaptively refining

the top-k answer and returning the approximate answer with theoretical guarantees. Therefore,

all the four methods provide similarly high accuracy.

8.5 Preprocessing Costs

Finally, we inspect the preprocessing costs of our methods against alternatives. We first exam-

ine the preprocessing time of the index-based methods: FORA+, FORA-Origin+, HubPPR, and TPA.

Note that the rmax of FORA+ for whole-graph and top-k queries are different, and therefore the

preprocessing times are shown as separately in Table 7. The choice of tuned rmax of FORA+ is the

same as that of FORA-Basic, and therefore their preprocessing times are the same. As shown in

Table 7, the preprocessing time of FORA+, FORA-Basic+, HubPPR, and TPA are all moderate. On

the largest dataset X3, our FORA+ for whole graph SSPPR queries (respectively, for top-k SSPPR

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:32 S. Wang et al.

Fig. 5. Effectiveness of top-k Optimization: query accuracy.

queries) can still finish index construction in less than 3h (respectively, less than 1.5h), which is

more than compensated by its high query performance as shown in Table 4. Besides, this prepro-

cessing time can be further significantly reduced by parallelizing the index construction process.

Next, we examine the space consumption of all methods. Note that each method will need to

store at least a copy of the graph. For MC, FORA, and TPA, they can store only a single copy of

the input graph (each node stores the out-neighbor list). However, for HubPPR, BiPPR, and TopPPR,

they need to store two copies of the graph (each node stores an out-neighbor and an in-neighbor

list) for efficient random walks and backward propagation.

Table 8 reports the space consumption of all methods. As we can observe, the index size of our

FORA+ for whole-graph queries and top-k queries are no more than 7.5× and 4× of the original

graph, respectively. The space consumption is more than compensated by the superb performance

of FORA+, where we can answer a whole-graph query within 30s and top-k query within 0.9s on

the 1.5B edge Twitter graph, which improves over the index-free FORA by more than an order

of magnitude on almost all datasets. This demonstrates the effectiveness and efficiency of our

indexing scheme.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:33

Table 7. Preprocessing Time

Datasets HubPPR TPA

FORA+ (for whole

graph)

FORA-Basic+ &

FORA+ (for top-k)

DBLP 26.4 4.4 7.6 3.6

Web-St 9.3 1.3 3.2 1.5

Pokec 90.6 42.5 77.1 34.6

LJ 279.9 112.5 181.3 81.2

Orkut 530.6 177.3 383.5 165.9

Twitter 5,088.6 3,112.3 5,130.4 2,255.4

RMAT-1 - - - 2,695.2

RMAT-2 - - - 12,076.8

X0 - - 2,031.2 967.14

X1 - - 5,244.5 2,428.6

X2 - - 5,721.7 2,602.9

X3 - - 8,836.4 4,213.5

Table 8. Space Consumption

Datasets MC/FORA BiPPR/TopPPR HubPPR TPA
FORA-Basic+ &
FORA+ (for top-k)

FORA+ (for
whole-graph)

DBLP 18.4MB 36.8MB 127.6MB 23.3MB 109.2MB 200.1MB

Web-St 10.4MB 20.8MB 66.3MB 12.6MB 55.9MB 101.4MB

Pokec 130.8MB 261.5MB 673.5MB 143.6MB 542.7MB 954.6MB

LJ 295.2MB 590.5MB 1.7GB 333.6MB 1.4GB 2.5GB

Orkut 950.1MB 1.9GB 3.5GB 974.9MB 2.6GB 4.2GB

Twitter 6.2GB 12.5GB 25.1GB 6.5GB 18.8GB 31.4GB

RMAT-1 6.2GB 12.5GB - - 20.0GB -

RMAT-2 33.3GB 66.5GB - - 96.3GB -

X0 2.0GB - - - 7.5GB 13.1GB

X1 3.2GB - - - 13.2GB 23.2GB

X2 4.6GB - - - 17.5GB 30.4GB

X3 6.0GB - - - 22.6GB 39.2GB

Compared to TopPPR, FORA+ achieves 2×, 3×, and 3.4× improvement on Twitter, RMAT-1, and

RMAT-2, with only 1.5×, 1.6×, and 1.4× space consumption, respectively. The experimental results

demonstrate that our proposed methods achieve a good trade-off between the space consumption

and query efficiency when providing query answers with identical accuracy.

8.6 Tuning rmax

Finally, we examine the trade-off between the space consumption and query performance of our

FORA+ algorithm by tuning rmax for whole graph queries and top-k queries. Let r ∗max be the rmax

value set according to Section 3.2. We then vary rmax from r ∗max to 7r ∗max . Notice that the index

size is proportional to rmax and let y be the index size when rmax = r
∗
max . Then, if rmax = 3r ∗max ,

then the index size will be 3y. As we can observe from Figures 6 and 7, when we increase the index

size for FORA+, the query performance also improves on almost all datasets for both whole-graph

queries and top-k queries. To explain, by increasing the index size, FORA+ avoids the expensive

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:34 S. Wang et al.

Fig. 6. Tuning rmax for whole-graph SSPPR queries (×r∗max).

Fig. 7. Tuning rmax for top-k SSPPR queries (×r∗max).

random walks, thus saving the query time. However, from the experiment, we can observe that

when rmax = 2r ∗max (respectively, rmax = r ∗max), FORA+ actually achieves the best trade-off be-

tween the query performance and space consumption on whole-graph queries (respectively, top-k
queries), and hence in our experiment, we set rmax = 2r ∗max (respectively, rmax = r

∗
max) for all the

whole-graph queries (respectively, top-k queries).

9 CONCLUSION

We present FORA, a novel algorithm for approximate single-source personalized PageRank com-

putation. The main ideas include (i) combining Monte-Carlo random walks with Forward Push

in a non-trivial and optimized way; (ii) pre-computing and indexing random walk results; and

(iii) additional pruning based on top-k selection. Compared to existing solutions, FORA involves

a reduced number of random walks, avoids expensive backward searches, and provides rigorous

guarantees on result quality. Extensive experiments demonstrate that FORA outperforms existing

solutions by a large margin and enables fast responses for top-k SSPPR searches on very large

graphs with little computational resources.

APPENDIX

A PROOF OF THEOREM

Proof of Theorem 5.1. Given ωj , we can derive that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ 2 · exp

(
−
ϵ2 · ωj · π (s, t)

2 + 2a · ϵ/3

)
.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:35

Since a ≤ 1 and π (s, t) ≥ π ◦ (s, t), and π (s, t) ≥ LBj−1 (t), we can derive that:

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)]

≤ 2 exp ��−
ϵ2 · ωj ·max{π ◦j (s,v),LBj−1 (s,v)}

2 + 2ϵ/3
�� .

Let p ′
f

equal the RHS of the above inequality. We have ϵ ≥
√

3 log (2/p′
f

)

ωj ·max{π ◦j (s,v),LBj−1 (s,v) } .

By setting ϵj =

√
3 log (2/p′

f
)

ωj ·max{π ◦j (s,v),LBj−1 (s,v) } , we can derive that π̂j (s,v)/(1 + ϵj) ≤ π (s,v) ≤
π̂j (s,v)/(1 − ϵj) holds with 1 − p ′

f
probability. Similarly, we have

Pr[|π (s, t) − π̂ (s, t) | ≥ ϵ · π (s, t)] ≤ 2 exp

(
− λ2 · ω
rsum · (2π (s, t) + 2λ/3)

)
.

Let p ′
f

equal the RHS of the above inequality and note that π (s, t) ≤ UBj−1 (t). This helps us derive

the designed bound for λj .

Proof of Theorem 5.2. We apply a similar technique in Wang et al. [2016]. If LBj (v ′i) · (1 + ϵ) >
UBj (v ′i). Then, it can be derived that

π̂ (v ′i) ≤ UBj (v ′i) ≤ LBj (v ′i) · (1 + ϵ) ≤ (1 + ϵ) · π (s,v ′i).

π̂ (v ′i) ≥ LBj (v ′i) ≥ UBj (v ′i)/(1 + ϵ) ≥ (1 − ϵ) · π (s,v ′i).

Hence, v ′1, . . . ,v
′
k

satisfy Equation (2). Let v1, . . . ,vk be the k nodes that have the top-k exact

PPR values. Assume that all bounds are correct, then as LB (v ′
l
) ≥ δ , it indicates that the top-k

PPR values are no smaller than δ . In this case, all the top-k nodes should satisfy ϵ-approximation

guarantee, i.e., they satisfy that UB (vi) < (1 + ϵ) · LB (vi)/(1 − ϵ).
Let UB′j (1),UB′j (2), . . .UB′j (k) be the top-k largest PPR upper bounds in the jth iteration. Note

that the ith largest PPR satisfies that UB′j (i) ≥ π (s,vi) ≥ LBj (s,v ′i).

Now assume that one of the upper bounds, sayUB′j (i), is not fromUB (v1), . . . ,UB (vk). If it sat-

isfies that LBj (v ′
k

) · (1 + ϵ) ≥ UB′j (i), then it indicates that LBj (v ′i) · (1 + ϵ) ≥ UB′j (i) for all nodes.

Hence, we update the node whose upper bound is minimum amongUBj (v ′1), . . . ,UBj (v ′1), we can

still guarantee that LBj (v ′i) · (1 + ϵ) > UBj (v ′i). We repeat this process untilUBj (v ′1), . . . ,UBj (v ′
k

)
are the top-k upper bounds. However, let U be the set of nodes such that the node u ∈ U satisfies

thatUBj (u) < LBj (v ′
k

). Then it is still possible that these nodes are from the exact top−k answers.

However, recall that if a node u ∈ U is from the top-k , it should satisfy that UB (u) < (1 + ϵ) ·
LB (u)/(1 − ϵ). As a result, if there exists no node u ∈ U such thatUB (u) < (1 + ϵ) · LB (u)/(1 − ϵ),
then no node u ∈ U is from the top-k answers, in which case it will not affect the approximation

guarantee.

Afterwards, we proceed a bubble sort on the top-k upper bounds in decreasing order. If we

replace two upper bounds UBj (v ′x) and UBj (v ′y) with x < y, then UBj (v ′x) < UBj (v ′y). Also

LBj (v ′x) > LBj (v ′y) from the definition. As

UBj (v ′x)/LBj (v ′y) < UBj (v ′y)/LBj (v ′y) ≤ (1 + ϵ),

UBj (v ′y)/LBj (v ′x) < UBj (v ′y)/LBj (v ′y) ≤ (1 + ϵ).

When the sort finishes, the inequations still hold. We then have

UB′j (1) ≤ (1 + ϵ) · LBj (v ′i) . . . ,UB′j (k) ≤ (1 + ϵ) · LBj (v ′k).

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

18:36 S. Wang et al.

Also note that

π̂ (v ′i) ≥ LBj (v ′i) ≥ 1

1 + ϵ
UB′j (i) ≥ (1 − ϵ) · π (s,vi),

for all i ∈ [1,k]. So, the answer provides approximation guarantee if the bounds from the first to

the jth iteration are all correct. By applying the union bound, we can obtain that the approximation

is guaranteed with probability at least 1 − n · j · p ′
f
.

REFERENCES

Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S. Mirrokni, and Shang-Hua Teng. 2007. Local

computation of PageRank contributions. In Proceedings of the WAW. 150–165.

Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local graph partitioning using PageRank vectors. In Proceedings

of the FOCS. 475–486.

Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, Elena Smirnova, and Marina Sokol. 2011. Quick detection of

Top-k personalized PageRank lists. In Proceedings of the WAW. 50–61.

Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: Predicting and recommending links in social networks.

In Proceedings of the WSDM. 635–644.

Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. 2011. Fast personalized PageRank on MapReduce. In Proceedings

of the SIGMOD. 973–984.

Pavel Berkhin. 2005. Survey: A survey on PageRank computing. Int. Math. 2, 1 (2005), 73–120.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A recursive model for graph mining. In Pro-

ceedings of the SDM. 442–446.

Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration inequalities and martingale inequalities: A survey. Int. Math.

3, 1 (2006), 79–127.

Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards scaling fully personalized PageRank:

Algorithms, lower bounds, and experiments. Int. Math. 2, 3 (2005), 333–358.

Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and Makoto Onizuka. 2013. Efficient ad hoc

search for personalized PageRank. In Proceedings of the SIGMOD. 445–456.

Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa, and Makoto Onizuka. 2012. Efficient person-

alized PageTank with accuracy assurance. In Proceedings of the KDD. 15–23.

Manish S. Gupta, Amit Pathak, and Soumen Chakrabarti. 2008. Fast algorithms for top-k personalized PageRank queries.

In Proceedings of the WWW. 1225–1226.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. 2013. WTF: The Who To Follow

service at Twitter. In Proceedings of the WWW. 505–514.

Taher H. Haveliwala. 2002. Topic-sensitive PageRank. In Proceedings of the WWW. 517–526.

Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retrieving highly relevant documents. In Proceedings

of the SIGIR. 41–48.

Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceedings of the WWW. 271–279.

Peter Lofgren. 2015. Efficient algorithms for personalized PageRank. Retrieved from: CoRR abs/1512.04633 (2015).

Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageRank estimation and search: A bidirectional

approach. In Proceedings of the WSDM. 163–172.

Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. 2014. FAST-PPR: Scaling personalized PageRank

estimation for large graphs. In Proceedings of the KDD. 1436–1445.

Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi. 2014. Computing personalized PageRank

quickly by exploiting graph structures. PVLDB 7, 12 (2014), 1023–1034.

Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. 2015. Efficient PageRank tracking in evolving networks.

In Proceedings of the SIGKDD. 875–884.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking: Bringing Order

to the Web. Technical Report. Stanford University, Stanford, CA.

Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. 2013. Fast distributed PageRank computation.

In Proceedings of the ICDCN. 11–26.

Kijung Shin, Jinhong Jung, Lee Sael, and U. Kang. 2015. BEAR: Block elimination approach for random walk with restart

on large graphs. In Proceedings of the SIGMOD. 1571–1585.

Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR: Effective indexing for approximate

personalized PageRank. PVLDB 10, 3 (2016), 205–216. Retrieved from: http://www.vldb.org/pvldb/vol10/p205-wang.pdf.

Sibo Wang and Yufei Tao. 2018. Efficient algorithms for finding approximate heavy hitters in personalized PageRanks. In

Proceedings of the SIGMOD. 1113–1127.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

http://www.vldb.org/pvldb/vol10/p205-wang.pdf

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries 18:37

Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA: Simple and effective approximate single-

source personalized PageRank. In Proceedings of the SIGKDD. 505–514.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu, Xiaoyong Du, and Ji-Rong Wen. 2019. PRSim: Sublinear time

SimRank computation on large power-law graphs. In Proceedings of the SIGMOD. 1042–1059.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong Wen. 2018. TopPPR: Top-k personalized

PageRank queries with precision guarantees on large graphs. In Proceedings of the SIGMOD. 441–456.

Minji Yoon, Jinhong Jung, and U. Kang. 2018. TPA: Fast, scalable, and accurate method for approximate random walk with

restart on billion scale graphs. In Proceedings of the ICDE.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate personalized PageRank on dynamic graphs. In Pro-

ceedings of the KDD. 1315–1324.

Fanwei Zhu, Yuan Fang, Kevin Chen-Chuan Chang, and Jing Ying. 2013. Incremental and accuracy-aware personalized

PageRank through scheduled approximation. PVLDB 6, 6 (2013), 481–492.

Received August 2018; revised March 2019; accepted August 2019

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 18. Publication date: October 2019.

