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Abstract—Personalized PageRank (PPR) is a classic measure of the relevance among different nodes in a graph, and has been

applied in numerous systems, such as Twitter’s Who-To-Follow and Pinterest’s Related Pins. Existing work on PPR has mainly

focused on three general types of queries, namely, single-pair PPR, single-source PPR, and all-pair PPR. However, we observe that

there are applications that rely on a new query type (referred to as batch one-hop PPR), which takes as input a set S of source nodes

and, for each node s 2 S and each of s’s neighbor v, asks for the PPR value of v with respect to s. None of the existing PPR algorithms

is able to efficiently process batch one-hop queries, due to the inherent differences between batch one-hop PPR and the three general

query types. To address the limitations of existing algorithms, this paper presents Baton, an algorithm for batch one-hop PPR that

offers both strong theoretical guarantees and practical efficiency. Baton leverages the characteristics of one-hop PPR to avoid

unnecessary computation, and it incorporates advanced mechanisms to improve the cost-effectiveness of PPR derivations. Extensive

experiments on benchmark datasets show that Baton is up to three orders of magnitude faster than the state of the art, while offering

the same accuracy.

Index Terms—Personalized PageRanks, query performance, graph algorithms
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1 INTRODUCTION

GIVEN two nodes s and t in a graph G, the Personalized
PageRank (PPR) of twith respect to s, denoted as pðs; tÞ,

is defined as the probability that a randomwalk (with decay)
from swould terminate at t. PPR is a classic approach tomea-
sure the relevance of t with respect to s, and has been
adopted in numerous systems. For example, Twitter utilizes
PPR to recommend users to other users [11], and Pinterest
applies PPR for content recommendations [13].

The importance of PPR has motivated numerous solu-
tions [1], [2], [8], [9], [15], [19], [26], [30], [31], [33] that aim to
improve the efficiency of PPR computation. Existing solu-
tions mainly address three types of PPR queries:

� single-pair PPR, which returns pðs; tÞ for a given pair
ðs; tÞ;

� single-source PPR, which returns pðs; vÞ for a given s
and every node v in G;

� all-pair PPR, which returns pðu; vÞ for all possible
node pairs ðu; vÞ.

Although these generic query types cover a number of
applications (e.g., [11], [12], [13], [21]), we observe that there
is often a need for more specialized form of PPR queries. In
particular, we consider a problem that we encounter in

Tencent’s massive online gaming platform with a social net-
work G of billions of users. The platform has a PPR-based
mechanism that aims to attract inactive users back to the plat-
form, and it works as follows. First, for each inactive user s,
the platform inspects her friends in the social network, and
identifies the ones who are active and have large PPR values
with respect to s. Then, the platform asks each v of those
friends to send a message to s to invite her back, and gives v
a reward if s returns to the platform upon receiving the mes-
sage. A/B tests show that this PPR-based mechanism is
much more effective than other mechanisms considered
(Detailed statistics can be referred to Section 4.3). Nonethe-
less, the computation of PPR poses a significant challenge for
deploying the PPR-based mechanism in Tencent, as the
number of inactive users can be up to billions. That is, given
a large subset S of the nodes in G, we need an efficient
method to compute, for each node s 2 S, the PPR values of
s’s neighbors with respect to s. We refer to this type of
queries as batch one-hop PPR queries.

A naive solution to process batch one-hop PPR is to
answer the query using existing algorithms for single-pair,
single-source, or all-pair PPR queries; nevertheless, this
incurs tremendous computation overheads. In particular, if
we are to answer a batch one-hop query using a single-
source algorithm, then we need to invoke the algorithm once
for each node in S. Assuming that jSj ¼ 108 and that each
invocation of the algorithm requires 100 seconds (which is
typical for the state of the art [31]), the total processing cost
would be 1010 seconds (� 317 years), which is prohibitive
even if we can distribute the computation to a large number
of machines. Similarly, answering the query using a single-
pair PPR algorithmwould result in efficiency issues, because
(i) we need to apply the algorithm once for each edge
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adjacent to the nodes in S, and (ii) the number of such edges
is often two orders of magnitude larger than jSj. All-pair
PPR algorithms are inapplicable, either, as their Oðn2Þ space
overheads restrict their application to small graphs only.

Contributions. This paper presents a comprehensive
study on batch one-hop PPR queries, and proposes Baton,1

an algorithm that offers both strong theoretical guarantees
and practical efficiency. Given a set S of source nodes and
parameters pf ; � 2 ð0; 1Þ, Baton returns one-hop PPR for
each node s 2 S, such that with at least 1� pf probability,
all PPR values returned have at most � relative error. This
accuracy guarantee matches those provided by the most
advanced methods for single-pair and single-source PPR. In

addition, Baton runs in OðPs2S
dðsÞlog ð1=pf Þ

�2
Þ expected time

(where dðsÞ denotes the degree of s), which is linear to the
total number of edges adjacent to the nodes in S.

Baton is built upon FORA [31] (i.e., the state-of-the-art
approach for single-source PPR), but incorporates three
new techniques that yield significantly improved perfor-
mance for batch one-hop queries. The first technique is
based on a careful analysis of the characteristics of one-hop
PPR, and it enables us to tighten the accuracy bounds of
Baton without extra computation overheads. The second
technique is an adaptive graph traversal mechanism that
considerably improves the cost-effectiveness of Baton in
deriving one-hop PPR values, and we prove that the mecha-
nism is a local minimum among a general class of similar
approaches. The third technique is based on vertex covers,
and it significantly reduces Baton’s computation overheads
on undirected graphs.

We experimentally evaluate Baton on 10 datasets (includ-
ing various Tencent datasets and public datasets) with up to
74.3 million nodes and 1.5 billion edges. Our results show
that Baton outperforms the state of the art by several orders
of magnitude in terms of running time, while offering the
same degree of accuracy. In particular, on a billion-edge
Tencent game-user social network, Baton requires only
2.48 milliseconds on average to process each node s 2 S in a
batch one-hop query.

A preliminary version of this work appears in [18]. This
paper is a significant extension of [18] in the following
aspects. First, we give a much deeper theoretical analysis on
the Baton algorithm. We show the complexity of Baton
(Lemma 3), and prove that this is close to optimal. We intro-
duce the concept of generic-baton that generalizes FORA and
Baton. We show that the Baton algorithm is a local optimum
(Lemma 4), which gives evidence why Baton could be better
than FORA in batch one-hop queries. Second, we present
new techniques. We discuss the random walk reusing
technique in Section 3.3, and propose new optimization
approach for undirected graphs in Section 3.4. Third, we
extend the Baton algorithm to run on multi-core servers
(Section 3.5). Finally, we give abundant experiments, inclu-
ding tests on new datasets, new experiments to show that
Baton offers strong NDCG accuracy in approximating
PageRank values, as well as the A/B test performed on the
Tencent platform (in Section 4.3) to show the superiority of
the one-hop PPR based method (e.g., Baton) over four other
approaches in social network applications.

The remainder of the paper is organized as follows.
Section 2 defines the problem and discusses some related
work. Section 3 explains the details of Baton. Section 4
presents experimental results. Finally, Section 5 concludes the
paper.

2 PRELIMINARIES

In this section we present the problem definition of the
batch one-hop queries and the related works.

2.1 Problem Definition

Let GðV;EÞ be a directed graph with node set V and edge
set E. Given a source node s 2 V and a decay factor a, a ran-
dom walk from s is a traversal of G starting from s, such
that at each step of the traversal, it terminates with a proba-
bility and, with the other 1� a probability, moves to a ran-
domly selected out-neighbor of the current node. For any
node t, the Personalized PageRank [21] of t with respect to s,
denoted as pðs; tÞ, is defined as the probability that a ran-
dom walk from s stops at t.

We aim to answer batch one-hop PPR querieswith accuracy
guarantees, defined as follows.

Definition 1 (Approximate Batch One-Hop PPR
Queries). Given a set S of nodes in a graph G, a threshold d,
an error bound �, and a failure probability pf , an approximate
batch one-hop PPR query returns an estimated PPR p̂ðs; vÞ for
every node pair ðs; vÞ such that s 2 S and v is an out-neighbor
of s, such that for all pðs; vÞ � d,

jpðs; vÞ � p̂ðs; vÞj � � � pðs; vÞ (1)

holds with a probability at least 1� pf .

Our accuracy guarantee (i.e., ensuring � relative error
whenever pðs; vÞ � d) is consistent with those of the state-of-
the-art solutions for single-pair and single-source PPR [15],
[16], [30], [31]. As suggested in [15], [16], [30], [31], d is typi-
cally set to d ¼ Oð1=nÞ, because for any fixed s, the average
value of pðs; vÞ over all possible v 2 V is 1=n. Table 1 shows
the notations that we frequently use in this paper.

TABLE 1
Frequently Used Notations

Notation Description

GðV;EÞ Input graph
n Number of nodes in G
m Number of edges in G
pðs; uÞ PPR of node uwith respect to node s
d Average node degree in G
dðsÞ Out-degree of node s
� PPR relative accuracy guarantee
pf Failure probability

d Threshold of PPR values
NoutðvÞ The set of out-neighbors of v
C Vertex cover of G
rðs; uÞ Residue of node u, with respect to source node s
p�ðs; uÞ Reserve of node u, with respect to source node s
p̂ðs; uÞ Estimate of pðs; uÞ

1. BatchOne-Hop Personalized PageRanks.
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2.2 Main Competitors

Monte-Carlo. The Monte-Carlo (MC) method [8] is a simple
and classical solution for PPR estimation. It generates a
number of random walks starting at s to estimate pðs; tÞ for
every node t. In particular, if v random walks are generated
and v0 of them terminate at t, then v0

v
is an unbiased estimate

of pðs; tÞ. It has been shown in [8] that, to achieve the accu-
racy guarantee in Equation (1), we should have v ¼
Vðlog ð1=pf Þ

�2d
Þ.

Algorithm 1. Forward-Push(G, s, rmax, a)

Input: Graph G, probability a, source node s, residue
threshold rmax

Output: p�ðs; uÞ, rðs; uÞ for all u 2 V
1 for u 2 V do
2 rðs; uÞ ¼ 0, p�ðs; uÞ ¼ 0, dðuÞ ¼ out degree of u
3 rðs; sÞ ¼ 1
4 while exists u 2 V such that rðs; uÞ > rmax � dðuÞ do
5 Push-Step(G, s, a, u)

Algorithm 2. Push-Step(G, s, a, u)

1 for each v that is an out-neighbor of u do

2 rðs; vÞ ¼ rðs; vÞ þ ð1� aÞ � rðs;uÞdðuÞ
3 p�ðs; uÞ ¼ p�ðs; uÞ þ a � rðs; uÞ
4 rðs; uÞ ¼ 0

Forward Push. Forward push [2] is a method for answer-
ing single-source PPR queries (see Algorithm 1 for a
pseudo-code). It maintains, for each node u 2 V , a reserve
p�ðs; uÞ and a residue rðs; uÞ, which are dynamically updated
by a propagation process from the source node s. Initially,
all reserves and residues are set to 0, except that the residue
of s is set to 1. The propagation is then repeatedly con-
ducted based on Algorithm 1. In brief, conducting a forward
push on node u transfers a portion of its residue to its
reserve, while the remaining ð1� aÞ portion is equally dis-
tributed to the out-neighbors of u. It can be shown that for-
ward push runs in Oð1=rmaxÞ time, and that when the
residue threshold rmax is set close to 0, the final reserves are
close to the actual PPR scores. However, as pointed out
in [31], forward push has one main deficiency: it can either
compute the exact single-source PPR results at a high cost,
or terminate early but with no guarantee on the result
quality.

BiPPR and HubPPR. BiPPR [15] is a method for single-
pair PPR queries that improves over MC and forward push.
Given a node pair ðs; tÞ, BiPPR conducts a number of ran-
dom walks from s as well as a reverse push [1] from t, and
then combines the information obtained to derive an estima-
tion of pðs; tÞ. The reverse push algorithm is similar in spirit
to the forward push method, except that (i) it follows the
incoming edges of each node instead of the outgoing edges,
and (ii) it derives the residue and reserve of each node in a
different manner. It is shown in [15] that for randomly cho-

sen t, BiPPR requires Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pf Þ

n�2d

q
Þ expected time to

achieve the accuracy guarantee in Equation (1), which is a
significant improvement over MC and forward push.
HubPPR [30] is an enhancement of BiPPR that it (i)

improves query efficiency with indexing and (ii) retains the
theoretical guarantees of BiPPR.

FORA. FORA [31] is the state-of-the-art method for single-
source PPR queries, and it is based on a combination of MC
and forward push. Specifically, it first conducts a forward
push with threshold rmax from the source node s, and then
performs random walks from each node v, such that the
number of random walks from v is proportional to its resi-
due. It is proved in [31] that, for each node u 2 V , the esti-
mate p̂ðs; uÞ ¼ p�ðs; uÞ þ cðuÞ=K is an unbiased estimate of
pðs; uÞ, where p�ðs; uÞ is the reserve of u, K is the total num-
ber of random walks that should be performed if only using
MC, and cðuÞ is the number of randomwalks that end at u. It

is also shown that, by setting K ¼ Oðrsum � ð2�=3þ2Þlog ð2=pf Þ
�2d

Þ,
FORA achieves the accuracy guarantee in Equation (1),
where rsum is the sum of residues of nodes when the forward
push terminates.

The key of FORA is to determine a good threshold rmax

to balance the costs of the forward push phase and the
random walk phase. Wang et al. [31] suggest setting

rmax ¼ Oð �ffiffiffi
m

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
ð2�=3þ2Þlog ð2=pf Þ

q
Þ, so that the total cost of

forward push and random walks is optimized as

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�=3þ2Þmlog ð2=pf Þ

�2d

q
Þ. In addition, Wang et al. [31] also pro-

pose an indexed version of FORA, referred to as FORA+,
that offers high query efficiency at the costs of space and
preprocessing.

Adaptation to Batch One-Hop PPR. MC and FORA are
single-source PPR algorithms, and hence, they can be
adopted to answer batch one-hop queries by performing one
single-source query for each nodes in S. Meanwhile, both
BiPPR andHubPPR are single-pair PPRmethods; if we are to
apply them to process batch one-hop queries, then we need
to perform one single-pair query for each node pair ðs; vÞ,
such that s 2 S and v is an out-neighbor of s. As we demon-
strate in our experiments (Section 4), such adoptions result in
inferior efficiency, due to the inherent differences between
batch one-hop and single-pair/-source queries.

2.3 Other Related Work

Besides the algorithms mentioned in Section 2.2, a lot of
research effort has been spent on answering single-pair,
single-source, or all-pair PPR queries. However, the existing
studies are either difficult to be applied to the batch one-
hop PPR queries due to prohibitive complexities, or not as
efficient as HubPPR or FORA.

Single-Source PPR. Many studies on single-source PPR
queries leverage the matrix-form of the PPR as ps ¼
a � es þ ð1� aÞ � ps �D�1A, where A 2 f0; 1gn	n is the
adjacency matrix for the input graph G, and D 2 Rn	n is a
diagonal matrix whose ith diagonal element equals to the
out-degree of vi. It can be shown that the solution vector ps

of the matrix-form has its ith element equal to pðs; viÞ.
Hence, a typical matrix-based solution to evaluating ps is to
conduct power iteration: 1) start with an initial guess of ps,

e.g., f1ng1	n; 2) iteratively refine the guess of ps with matrix-
form equation. Simply using the power iteration is costly
due to many rounds of matrix-multiplications required.
Therefore, there are a number of studies [9], [19], [24], [26],
[33] that leverage this basic idea of power iteration, but with
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various improvements. Among them, the BEAR algorithm
proposed by Shin et al. [26] is the state-of-the-art algorithm.
BEAR reorders the adjacency matrix to obtain several sparse
submatrices, which are less costly to conduct invert ope-
rations. The sub-matrices are then indexed, and used to
answer PPR queries. In a recent work [30], however, BEAR
is shown to be inferior to HubPPR in terms of query effi-
ciency and accuracy.

Single-Pair PPR. There are a number of earlier studies
that can be applied to improve the efficiency of evaluating
single-pair PPR queries, based on the sampling (or Monte-
Carlo) framework. Fogaras et al. [8] propose to index the
results of random walks, for faster query processing. Never-
theless, it incurs excessive space consumption for large
graphs. Later, Lofgren et al. propose FastPPR [16]. Similar
to BiPPR [15] and HubPPR [30] mentioned in Section 2.2,
the key of FastPPR is to employ a bidirectional estimator
that combines the sampling from the source s and reverse
frontier discovery from the target t. However, FastPPR is
less efficient compared with BiPPR, as indicated in [14], [15].

All-Pair PPR and Others. There are also studies on all-pair
PPRs [26], [28], [29]. However, their complexities for the all-
pair PPR queries are all Vðn2Þ, making them prohibitive to
be applied to very large graphs. Besides, many problems
that are related to PPR queries have significantly different
problem settings. Therefore, there are different technical
challenges compared with the batch one-hop PPR queries
addressed in this paper. For example, Refs. [6], [10], [17],
[25] study the problem of answering PPR queries in a dis-
tributed cluster of machines. Refs. [20], [32] considers effi-
cient tracking of the PPRs in evolving graphs. Ref [5]
discusses generalizations of Personalized PageRank with
node-dependent restart. Ref [4] also proposes a PageRank
estimation using the entire random walk path. This version
of random walks gives the same computation complexity as
the ending node based estimation.

3 OUR SOLUTION

In this section, we present efficient algorithms for the batch
one-hop PPR queries. We introduce a tightened lower
bound for one-hop PPR values in Section 3.1, which is fun-
damental to our proposed Baton algorithm described in
Sections 3.2, 3.3, 3.4. In Section 3.5, we introduce a parallel
algorithm for the batch one-hop PPR queries, which
improves practical efficiency by multiple CPU cores.

3.1 Lower Bound for One-Hop PPR

Let ðs; vÞ be any node pair in G, and suppose that we are to
estimate pðs; vÞ with � relative error. Intuitively, the estima-
tion is more difficult when pðs; vÞ is small, since the margin
of error decreases with pðs; vÞ. (This also explains why the
time complexities of MC, BiPPR, HubPPR, and FORA are
all inverse proportional to the PPR threshold d.) On the
other hand, if we know in advance that pðs; vÞ is large, then
we could be less stringent in our estimation of pðs; vÞ, as
there is more room for error. This motivates us to derive a
lower bound for one-hop PPR values, so as to guide our
algorithm for batch one-hop PPR. In particular, we have the
following lemma (All the proofs of lemmas can be found in
Section 6).

Lemma 1. For any node s and any out-neighbor t of s, we have
pðs; tÞ � að1� aÞ=dðsÞ, where dðsÞ denotes the out-degree of s.
The above lower bound, albeit simple, could be exploited

to significantly reduce the overhead of batch one-hop PPR
queries. For example, consider the FORA algorithm (dis-
cussed in Section 2.2), which answers any single-source

PPR query from a node s in Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pf Þ

�2d

q
Þ expected time,

and ensures � relative error for any pðs; vÞ � d. Applying
FORA to answer a batch one-hop query would require one
single-source query for each node s 2 S, leading to a total

expected cost of OðjSj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pf Þ

�2d

q
Þ.

As mentioned in Section 2, d is typically set to Oð1=nÞ,
which could be much smaller than að1� aÞ=dðsÞ. Therefore,
if we are to invoke FORA for a batch one-hop query, we can
set d ¼ að1� aÞ=dðsÞ instead. By Lemma 1, FORA would
still ensure � relative error in the estimation of pðs; vÞ, as
long as v is an out-neighbor of s. As such, the expected cost
of using FORA to process the query is

O
X
s2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pfÞ

�2ðað1� aÞ=dðsÞÞ

s !
¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pfÞ

�2

r X
s2S

ffiffiffiffiffiffiffiffiffi
dðsÞ

p !
:

In contrast, setting d ¼ Oð1=nÞ would result in a total

expected cost of Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log ð1=pf Þ

�2

q
� jSj ffiffiffinp Þ, which is inferior

since jSj ffiffiffinp
>
P

s2S
ffiffiffiffiffiffiffiffiffi
dðsÞp

holds.

Similarly, we can incorporate the lower bound in
Lemma 1 into HubPPR, so as to reduce their expected time
complexities for batch one-hop queries. Particularly, we
denote the residue threshold for conducting reverse push
by rmax, which is similar in spirit to the threshold for the for-
ward push. For each pair ðs; tÞ, the original HubPPR should

sample Oð3rmax log ð2=pf Þ
�2d

Þ random walks from the source node

s, where d is set to Oð1nÞ typically [15], [30]. Similar to
the aforementioned improvement for FORA, we can replace
d with að1� aÞ=dðsÞ so that there requires only

Oð3dðsÞrmaxlog ð2=pf Þ
�2að1�aÞ Þ random walks started at the source node s

to ensure � relative error in the estimation of pðs; vÞ, as long
as v is an out-neighbor of s. Hence the expected cost of ran-

dom walks is Oð3dðsÞrmax log ð2=pf Þ
�2að1�aÞ Þ. Also, by the techniques

provided in [15], the reverse push has an expected cost

Oð�d=rmaxÞ. Therefore, by Lagrange optimization techniques

to optimize the total cost Oð3dðsÞrmax log ð2=pf Þ
�2að1�aÞ Þ þOð�d=rmaxÞ,

one can set rmax ¼ Oð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mað1�aÞ
dðsÞn log ð1=pf Þ

q
Þ to achieve the mini-

mum, giving the expected cost of computing a single-pair

pðs; tÞ to be Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdðsÞlog ð1=pf Þ

n�2að1�aÞ

r
Þ. The total expected cost of

batch one-hop PPR is therefore OðPs2S dðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdðsÞlog ð1=pf Þ

n�2að1�aÞ

r
Þ.

As shown in our experiments (in Section 4), the above
respective improved FORA and HubPPR perform signifi-
cantly better than their original versions in processing batch
one-hop PPR. Nevertheless, their time complexities are still
unsatisfactory due to the

ffiffiffiffiffi
m

p
factor (for the improved

FORA) and
P

s2S dðsÞ1:5 factor (for the improved HubPPR).
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In the following, we will address this issue with a new solu-
tion whose time complexity is independent of m and only
linear to

P
s2S dðsÞ, while it has a much better performance

than the improved FORA and HubPPR.

3.2 The Baton Method

To better utilize the lower bound in Lemma 1, we present
the Baton method shown in Algorithm 3 for batch one-hop
PPR queries. At the first glance, Baton may seem similar to
FORA as they both perform forward push from each node
s 2 S, followed by generating randomwalks from the nodes
with non-zero residues. There is one crucial difference,
however: Baton’s forward push phase performs a push step
on a node uwhenever

rðs; uÞ >
dðuÞ

a �KðsÞ ; (2)

where KðsÞ ¼ ð23�þ2ÞdðsÞlog ð2=pf Þ
�2að1�aÞ is a constant that increases

with the out-degree dðsÞ of s (see Lines 2-4 in Algorithm 3);
in contrast, FORA’s forward push phase applies a push step
on uwhenever

rðs; uÞ > dðuÞ � rmax; (3)

where rmax ¼ Oð �ffiffiffi
m

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
ð2�=3þ2Þlog ð2=pf Þ

q
Þ is a constant indepen-

dent of s. In other words, Baton is more likely to “push”
when dðsÞ is large, whereas FORA does not consider dðsÞ
when deciding whether a push step is needed. In what fol-
lows, we will explain (i) the rationale between these two
design choices, (ii) why our design is non-trivial with
respect to FORA, and (iii) how our design could lead to sig-
nificantly improved performance.

First, it is known that when the “push condition” in
Equation (3) is adopted, the forward push method (i.e.,
Algorithm 1) runs in Oð1=rmaxÞ time [2]. FORA relies on this
result to bound the computation cost of its forward push
phase [31], and hence, it also adopts Equation (3). As such,
changing the push condition fromEquations (3) to (2) invalid-
ates the time complexity analysis in [31], and requires new
analytical results to be derived for the revised forward push
method.

Second, the reason that Baton uses the push condition in
Equation (2) is that it helps Baton achieve improved asymp-
totic performance by striking a better balance between forward
push and random walks. To explain, let us consider a generic
version of Baton (denoted that is identical to Algorithm 3,
except that the push condition in Line 3 is changed arbitrarily).
In other words, the algorithm performs a number of push
steps based on certain push condition, and then generates ran-
dom walks following Lines 7-12 in Algorithm 3 to estimate
one-hop PPR. (Note that both FORA and Baton are special

cases of this generic approach.) We first establish the accuracy
guarantee of this algorithm (referred to asGeneric-Baton).

Algorithm 3. Baton(G, S, �, pf , a)

Input: Graph G, source node set S, PPR relative accuracy
guarantee �, failure probability pf , probability a

Output: PPR estimate p̂ðs; uÞ, for all s 2 S, u 2 NðsÞ
1 fors 2 S do

2 KðsÞ ¼ ð23�þ2ÞdðsÞlog ð2=pf Þ
�2að1�aÞ

3 while exists u such that rðs; uÞ > dðuÞ
a�KðsÞ do

4 Push-Step(G, s, a, u) (by Algorithm 2)
5 for t 2 NoutðsÞ do
6 p̂ðs; tÞ ¼ p�ðs; tÞ
7 for v 2 V and rðs; vÞ > 0 do
8 for i ¼ 1 to ðrðs; vÞ �KðsÞÞ do
9 Conduct a random walk from v
10 if the random walk terminates at t then
11 if t 2 NoutðsÞ then
12 p̂ðs; tÞ ¼ p̂ðs; tÞ þ 1

KðsÞ

Lemma 2. For all s 2 S and all out-neighbors v of s, Generic-
Baton returns an estimated PPR p̂ðs; vÞ that satisfies
Equation (1) with at least 1� pf probability.

By Lemma 2, all instantiations of Generic-Baton provide
the accuracy guarantee that we require for batch one-hop
PPR queries. As such, a natural question is: which instantia-
tion could offer us a high efficiency? To answer this ques-
tion, we need to examine the cost and benefit of each push
step, since the push condition is the only differentiating fac-
tor in different Generic-Baton instantiations.

Suppose that we encounter, in the forward push phase, a
node u with reserve p�ðs; uÞ and residue rðs; uÞ. If we choose
not to perform a push step on u, then according to Lines 8-12
in Algorithm 3, the random walk phase would need to gener-
ate rðs; uÞ �KðsÞ random walks from u. On the other hand, if
we apply a push step on u, then u’s out-neighbor’s total resi-
due is increased by ð1� aÞ � rðs; uÞ, and then u’s residue is
reset to 0; in that case, the random walk phase needs to gener-
ate ð1� aÞ � rðs; uÞ �KðsÞ random walks from u’s out-
neighbors, but does not require any random walk from u.
Therefore, performing the push step on u reduces the number
of random walks required by a � rðs; uÞ �KðsÞ, at the cost of
OðdðuÞÞ computation (since each of u’s out-neighbor needs to
be visited). This explains why Baton’s push condition is
rðs; uÞ > dðuÞ=ða �KðsÞÞ: it ensures that dðuÞ < a � rðs; uÞ�
KðsÞ, which roughly indicates that a push step on u could
reduce the total computation cost of the forward push and ran-
domwalk phases.We illustrate this strategywith an example.

Example 1. Fig. 1 illustrates several typical steps of Baton.
Suppose that KðsÞ ¼ 8 and a ¼ 0:5. If no push step is

Fig. 1. Illustration of Baton’s push strategy.

LUO ET AL.: BATON: BATCH ONE-HOP PERSONALIZED PAGERANKSWITH EFFICIENCY AND ACCURACY 1901

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:59:16 UTC from IEEE Xplore.  Restrictions apply. 



conducted, then Baton requires KðsÞ ¼ 8 random walks
from the source node s, as illustrated in Fig. 1a. Now con-
sider that we are to decide whether or not to perform a
push step on s, i.e., the only node with non-zero residue.

In that case, we compute the value of dðsÞ
a�KðsÞ, and compare

it against rðs; sÞ. Observe that rðs; sÞ ¼ 1, while
dðsÞ

a�KðsÞ ¼ 1
0:5	8 ¼ 0:25, and hence, rðs; sÞ > dðsÞ

a�KðsÞ, due to

which the push step will be performed, and the result is
illustrated in Fig. 1b. In particular, an a fraction of s’s resi-
due is added to its reserve, resulting in an increased
reserve (from 0 to að¼ 0:5Þ). After that, the residue of
node s is reset to 0, meaning that at this state, no random
walk from s is needed. As a tradeoff, we need
8 � ð1� aÞ ¼ 4 more random walks from w, which is
the only out-neighbor of s. Next, we consider whether a
push step is needed on w. From Fig. 1b, we have
dðwÞ
a�KðsÞ ¼ 2

0:5	8 ¼ 0:5 � rðs; wÞ. In that case, Baton would not

apply a push step on w.

Based on the push strategy of Baton, we establish its time
complexity as follows.

Lemma 3. Given a set S of source nodes, Baton runs in

OðPs2S
dðsÞlog ð1=pf Þ

�2
Þ expected time.

Note that the expected complexity of Baton is near-
optimal. To explain, observe that a batch one-hop PPR
query should return an estimation of pðs; vÞ for each s 2 S
and each out-neighbor v of s. As there exist O

P
s2S dðsÞ

� �
such node pairs ðs; vÞ, the time complexity of any batch one-
hop PPR algorithm is VðPs2S dðsÞÞ. In comparison, Baton’s

expected time complexity is only a factor of Oðlog ð1=pf Þ
�2

Þ
larger, which is logarithmic to n for a typical setting of
pf ¼ 1=n and � ¼ 0:5 [15], [30], [31].

Apart from the above result concerning Baton’s efficiency
for worst-case inputs, we can also show that for any input
graphG, the computation cost of Baton is a close to a localmini-
mum in a certain sense. In particular, let P ¼ fu1; . . . ; uhg
denote the sequence of nodes on which Baton performs push
steps in its forward push phase, and R be the set of random
walks conducted after that. In that case, we have jRj ¼
rsumðPÞ �KðsÞ, where rsumðPÞ denotes the sum of all nodes’
residues after the push steps in P. We quantify the cost of the
forward push phase as costðPÞ ¼Pu2P dðuÞ � cp, and the cost

of the random walk phase as costðRÞ ¼ jRj � cr, where cp and
cr are two constants that denote the cost of changing a node’s
residue or reserve and the expected cost of a random walk,
respectively. In other words, the total cost of Baton is quanti-
fied as

costðP;RÞ ¼
X

u2P dðuÞ � cp|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
cost of P

þ rsumðPÞ �KðsÞ � cr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cost of R

: (4)

We have the following result.

Lemma 4. Let P
 be the sequence of push steps performed by an
instantiation of Generic-Baton given G, and R
 be the set of
random walks that it generates. Further let P and R be those of
Baton. If P is a prefix of P
 or P
 is a prefix of P, then
costðP
;R
Þ � minf1; crcp ;acp; crg � costðP;RÞ.

Intuitively, Lemma 4 shows that if an instantiation of
Generic-Baton conducts strictly more (or strictly less) for-
ward push than Baton, then its total cost cannot be lower
than Baton’s by more than a constant factor. This indicates
that Baton’s computation cost is close to a local minimum.

3.3 Reusing of RandomWalks

Recall that for each node s 2 S, Baton needs to generate a
number of randomwalks from those nodeswith non-zero res-
idues at the end of the forward push phase. In addition, a
node u 2 V may have non-zero residues in the forward push
phases from two different nodes s1; s2 2 S. In that case, we
can improve Baton’s efficiency by reusing randomwalks from
u when processing s1 and s2. For example, suppose that we
first process s1 and generate x random walks from u during
the random walk phase, after which we proceed with s2 and
find that the random walk phase requires y > x random
walks from u. Then, instead of performing y new random
walks from u, we take the xwalks that were generated during
the processing of s1, and add only y� x new random walks.
This approach could considerably reduce the computation
overhead of Baton due to the reduced cost of random walk
generation. The only issue is that, for each node u 2 V , we
need to record all random walks that have generated from u
(so as to facilitate reusing in subsequent steps), which leads to
some space overhead. Fortunately, the total space cost
incurred is only OðmÞ. To explain, recall that for any node
s 2 S, Baton’s random walk phase generates rðs; uÞ �KðsÞ
from any node u, where rðs; uÞ denotes u’s residue after the
forward push phase ends. Meanwhile, Baton’s push condi-
tion ensures that rðs; uÞ � dðuÞ=ða �KðsÞÞ. As a consequence,
rðs; uÞ �KðsÞ � dðuÞ=a, i.e., we need to record at most dðuÞ=a
randomwalks from u. Therefore, the total number of random
walks required is

P
u2V dðuÞ=a ¼ m=a, leading to a space

overhead ofOðmÞ.

3.4 Vertex Cover Based Optimization

Wepresent an optimization technique for online gaming user
networks. These networks are typically undirected graphs. In
addition, the source set S in a batch one-hop PPRmay contain
OðnÞ nodes (which is the case for the online gaming platform
discussed in Section 1). For such graphs, we can further
improve the performance of Baton by exploiting the charac-
teristics of undirected PPR. In particular, our solution is
based on the following result from existingwork [3].

Lemma 5 ([3]). For any two nodes s and v in an undirected
graph, pðs; tÞ � dðsÞ ¼ pðt; sÞ � dðtÞ.
By Lemma 5, given an estimation p̂ðt; sÞ of pðt; sÞ, we can

easily obtain an estimation p̂ðs; tÞ of pðs; tÞ by setting

p̂ðs; tÞ ¼ p̂ðt; sÞ � dðtÞ
dðsÞ : (5)

In addition, if p̂ðt; sÞ ensures � relative error, then p̂ðs; tÞ also
guarantees � relative error. This motivates us to answer a
batch one-hop PPR query with S containing OðnÞ nodes as
follows. First, we compute a vertex cover C of V using the
standard 2-approximation algorithm [22]. Then, we perform
a batch one-hop query using C as the source set, which pro-
vides us an approximate PPR p̂ðc; vÞ for any c 2 C and any v
that is c’s neighbor. Note that these PPR approximations
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include the results for any one-hop PPR query with
s 2 S \ C. Meanwhile, for any node s 2 S n C, its neighbors
must be all in C (since C is a vertex cover). Accordingly, for
any neighbor t of s, we obtain an approximate PPR p̂ðs; tÞ
using Equation (5). Algorithm 4 presents the pseudo-code
of this approach.

Algorithm 4. Baton-VC(G, S, �, pf , a)

Input: Graph G, source node set S, PPR relative accuracy
guarantee �, failure probability pf , probability a

Output: PPR estimate p̂ðs; uÞ, for all s 2 S, u 2 NðsÞ
1 Compute a vertex cover C of G
2 Invoke Baton(G, C, �, pf , a)
3 for each s 2 fS n Cg do
4 for each neighbor v of s do
5 p̂ðs; vÞ ¼ p̂ðv; sÞ � dðvÞdðsÞ

However, the above approach has one potential issue
when one takes the value of d for further pruning. Recall
that in the definition of the batch one-hop PPR query
(Definition 1), only the PPRs larger than d are considered to
be guaranteed with an � relative error. Hence, in the case
where d > að1� aÞ=dðsÞ, one can use d directly as the lower
bound of the one-hop PPR. When Baton incorporates this
kind of d-based pruning, Baton only ensures � relative error
for those PPR values no smaller than d. In other words, if for
nodes c 2 C and v 2 V we have pðc; vÞ < d, then p̂ðc; vÞ
do not guarantee � relative error. In that case, if we use
Equation (5) to compute p̂ðv; cÞ ¼ p̂ðc; vÞ � dðcÞdðvÞ ; then p̂ðv; cÞ
would not ensure � relative error, either. This would be an
issue when pðv; cÞ > d, since we are supposed to make sure
that all PPR at least d should have at most � relative error.

To remedy this, one can do the following. When answer-
ing one-hop PPR query for a node v which is not in the ver-
tex cover C, we first check whether all the PPRs of its one-
hop neighbors are of the accuracy indicated in Equation (1).
In particular, if for any of v’s neighbor c, we have að1�
aÞ=dðcÞ � d, then we are sure that any estimated p̂ðc; vÞ is of
the accuracy guarantee in Equation (1). Then, using the
aforementioned approach to compute p̂ðv; cÞ using p̂ðc; vÞ
maintains the same accuracy.

3.5 Multi-Core Parallelization

Parallelizing Baton with multiple cores is relatively simple
since the one-hop queries for different source nodes in S are

independent. In our implementation, we put the jSj
one-hop queries into a queue, and create one thread per
core to process the queries one by one. For load balancing,
we order the jSj queries in descending order of the degrees
of their source nodes, since the processing cost of a query is
linear to the degree of the source node (see Lemma 3). In
particular, we have the following results.

Lemma 6. Suppose that the last query processed by the ith thread
takes tðiÞ seconds, and that the ith thread accomplishes all of its
queries in T ðiÞ seconds. Then,

max
1�i�q

T ðiÞ � min
1�j�q

T ðjÞ � max
1�p�q

tðpÞ;

where q is the total number of threads.

Intuitively, the lemma states that the maximum work-
load difference among any two threads is bounded by the
maximum time required by the last queries assigned to the
threads. This explains why we order the queries in descend-
ing order of their estimated costs.

4 EXPERIMENTS

In this section, we experimentally study the efficiency and
accuracy of Baton, compared with the state-of-the-art meth-
ods, on various public benchmark datasets and Tencent
datasets. We also evaluate the performance of parallel ver-
sion of Baton introduced in Section 3.5. Finally, we present
the results of an A/B test we conducted at Tencent platform,
which demonstrate the effectiveness of the PPR based
mechanism compared with other methods.

4.1 Settings

Datasets. We performed experiments on 10 real graphs.
Among them, DBLP, Stanford Web (abbreviated as Web-
St), Pokec, LiveJournal (abbreviated as LJ), Orkut, Twitter
are used in recent works [15], [30], [31] as benchmark data-
sets for evaluating the efficiency and accuracy of PPRs.
Tencent-x1 � Tencent-x4 are four user networks from four
representative Tencent games. The details of the datasets
are shown in Table 2.

Methods and Queries. We compare Baton with MC [8],
HubPPR [30], FORA+ [31], and the respective optimized
versions of the state-of-the-art algorithms FORA-OPT and
HubPPR-OPT using the tightened accuracy bounds
(Lemma 1). FORA-OPT and HubPPR-OPT are the improved
methods we described in Section 3.1. We name the method
FORA-OPT (resp. HubPPR-OPT) to distinguish it with the
original FORA (resp. HubPPR). We also show the improve-
ment of multi-core Baton (introduced in Section 3.5) over
Baton (using a single core). Note that, when we compare
Baton with other baseline algorithms, we always report
single-core performance for all the methods for fairness, as
there are no existing parallelized versions of the baseline
algorithms. The implementations of HubPPR [30] and
FORA+ [31] are obtained from their respective authors. We
implement the other algorithms by ourselves. All the meth-
ods are implemented by C++. For each dataset, we choose
1000 source nodes uniformly at random to compute the
1000 one-hop PPR queries, whose running times are aver-
aged and reported. Following previous work [15], [16], [30],
[31], we set d ¼ 1=n, pf ¼ 1=n, and � ¼ 0:5 by default. Our

TABLE 2
Datasets. (K ¼ 103,M ¼ 106, B ¼ 109)

Name n m Type Additional Info.

DBLP 613.6K 2.0M undirected dblp.com
Web-St 281.9K 2.3M directed stanford.edu
Pokec 1.6M 30.6M directed pokec.azet.sk
LJ 4.8M 69.0M directed livejournal.com
Orkut 3.1M 117.2M undirected orkut.com
Twitter 41.7M 1.5B directed twitter.com
Tencent-x1 26.1M 485.6M undirected Tencent graphs
Tencent-x2 50.1M 792.0M undirected Tencent graphs
Tencent-x3 58.2M 1.1B undirected Tencent graphs
Tencent-x4 74.3M 1.5B undirected Tencent graphs

LUO ET AL.: BATON: BATCH ONE-HOP PERSONALIZED PAGERANKSWITH EFFICIENCY AND ACCURACY 1903

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:59:16 UTC from IEEE Xplore.  Restrictions apply. 

dblp.com
stanford.edu
pokec.azet.sk
livejournal.com
orkut.com


experiments are conducted on a Linux machine with an
Intel 2.6 GHz CPU and 64 GB memory.

4.2 Performance

We first investigate the performance on public datasets.
Fig. 2a shows the per-query efficiency of the methods. We
do not report the running times of HubPPR, HubPPR-OPT
and MC for the largest Twitter dataset, because 1) MC fails
to finish within 500 seconds per query; 2) We are not able to
build the index of HubPPR/HubPPR-OPT for the billion-
edge graph, due to the excessively large memory required.

As expected, the classic algorithm MC runs relatively
slow, and if S is a large subset of V , it would fail to handle a
moderate sized graph Pokec. For example, let us set
jSj ¼ 1M. Then, if to estimate the overall cost based on the
scaled average query time, MC takes 89s 	1 M=2.8 years to
compute the batch one-hop PPRs for Pokec, which is not sat-
isfactory. The state-of-the-art algorithms, i.e., FORA and
HubPPR, significantly outperform MC. However, they are
still much slower compared with their respective optimized
algorithms, i.e., FORA-OPT andHubPPR-OPT. The improve-
ment of FORA-OPT and HubPPR-OPT is expected because
the tightened bound indicated in Lemma 1 allows the num-
ber of random walks to be significantly reduced, while still
maintaining theworst-case accuracy guarantee.

Baton consistently outperforms the other algorithms, on all
the datasets. In particular, Baton is around 3 orders of magni-
tude faster than FORA and HubPPR. Even compared with
FORA-OPT andHubPPR-OPT, Baton is still around one order
of magnitude faster. That means, among all the methods we
compare, Baton is the most suitable to process batch one-hop
queries, due to its significant improvement in efficiency.

As we analyzed in Section 3.1, Baton employs an opti-
mized mechanism to minimize the overall cost. To further
illustrate this point by experiments, we summarize the aver-
age costs of forward push phase and randomwalk phase for
FORA-OPT and Baton on the representative datasets in
Table 3. The push cost is defined by the number of executing
Line 2 in Algorithm 2. For example, when a push-step
(Algorithm 2) is performed on node u, Line 2 is executed
dðuÞ times, and therefore dðuÞ reflects the cost of conducting
a push step. The cost of random walks, as we mentioned in

Section 3.2, is reflected by the number of random walks.
From Table 3 we observe that FORA-OPT is overly using
push. One can refer to the numbers of Baton for LJ dataset,
which indicates that by conducting pushes at a cost of 1064,
the remaining workload of random walks becomes 5918.
However, FORA-OPT uses 166220/1064=156 times more
push costs than Baton, only to reduce the workload of ran-
dom walks by ð5918� 3134Þ=5918 ¼ 47%. This over-use of
push renders FORA-OPT being significantly outperformed
by Baton. In particular, as shown in Fig. 2a, Baton is
25.4 times faster than FORA-OPT in DBLP, and 67.5 times
faster in LJ. The superiority of Baton over FORA-OPT agrees
well with our analysis in Section 3.1.

To further investigate Baton’s performance on Tencent
graphs, we compare the performance between FORA-OPT
and Baton. For clarify, we only remain the closest competi-
tor FORA-OPT from now on, because 1) MC, HubPPR and
FORA have been shown to be significantly slower than
FORA-OPT (see Fig. 2a) and fail to efficiently handle batch
one-hop PPR query on large graphs; 2) HubPPR-OPT fails
to scale to billion-edge graphs while many Tencent graphs
are of billion-edge scale.

As shown in Fig. 2b, Baton also performs significantly
better than the best competitor FORA-OPT on Tencent
graphs, by around two orders of magnitude. This means the
superiority of Baton is robust to various public graphs and
Tencent graphs, which exhibit significantly different charac-
teristics (e.g., average degree, degree distributions).

Fig. 3 shows that the performance of Baton is consistently
better than FORA-OPT, with respect to various values
of relative error �, on four representative datasets. As
expected, all the methods have better performance when �
is set to larger values, e.g., 0.9, since fewer pushes and
randomwalks are required to achieve the required � relative
error. Fewer pushes and random walks, however, also typi-
cally makes it more difficult to balance the costs of forward
push and random walks. Interestingly, our results show
that the relative improvement of Baton over FORA-OPT is
more significant when � is large, demonstrating that in this
case the push condition employed in Baton is much more
effective than that of FORA-OPT. Take Tencent-x4’s case as
an example, Baton runs 37.8 times faster than FORA-OPT
for � ¼ 0:1, and 246.7 times faster when � ¼ 0:9.

Accuracy. Recall that the main application of the batch
one-hop PPR queries is about ordering the one-hop neigh-
bors in terms of their PPR scores. A classic measure of the
ordering quality is the Normalized Discounted Cumulative
Gain (NDCG) [7], which is frequently employed to measure
the difference between the returned ordering and the actual
ordering (e.g., [23]). To compute the NDCG for a methodM,
we sample 100 source nodes, and for each of them we

Fig. 2. Efficiency.

TABLE 3
Statistics of Two Phases in FORA-OPT and Baton

Dataset (method) Push cost Random walk cost Total

DBLP (FORA-OPT) 29,956 746 30,702
DBLP (Baton) 607 1,864 2,471
LJ (FORA-OPT) 166,220 3,134 169,354
LJ (Baton) 1,064 5,918 6,982
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compute the ordering of its one-hop neighbors based on the
computed PPR scores using M. With the NDCG formulae,
this ordering is compared against the actual ordering based
on the ground truth of PPR scores.2 If the estimated ordering
is close to the actual ordering, then the NDCG accuracy is
close to 100 percent (We refer interested reader to [7], [23] for
more details). Table 4 shows Baton’s NDCG accuracies, com-
paring to FORA-OPT, the closest competitor in terms of effi-
ciency and scalability. We perform the tests on 5 of our
datasets (We omit the other datasets due to the prohibitive
time required to compute the ground truth). The test shows
that both Baton and FORA-OPT have very high NDCG
accuracies.

Effect of Vertex Cover. We evaluate the effectiveness of
vertex cover based approach, i.e., Algorithm 4. As men-
tioned in Section 3.4, the approach helps reduce the cost
when jSj ¼ OðnÞ. We therefore test the case where S ¼ V ,
on two representative undirected graphs, DBLP and Orkut.
We compute the total running time of Baton (Algorithm 3)
and Baton-VC (Algorithm 4). By employing the techniques
of vertex cover, the total running time for the batch one-hop
queries for DBLP (resp. Orkut) has improved 1.52 (resp. 1.4)
times respectively. The improvement is expected, as Baton-
VC can reduce up to half of the cost by employing Lemma 5.

Mulit-Core Baton. We evaluate the performance of the
multi-core Baton in Section 3.5. We run the algorithm for a
batch one-hop query on two largest public graphs, i.e., Twit-
ter and Orkut, with a randomly selected source set S such
that jSj ¼ 106. Table 5 shows the speed-up ratio of the per-
formance of multi-core Baton compared with the single-
core Baton. The results show that the speed-up ratio is in
general reversely proportional to the number of CPU cores
used, demonstrating that the workloads on each core are
quite well balanced and the computation resources of each
core are highly utilized.

4.3 A/B Test for Effectiveness of PPR

We have conducted an A/B test on the Tencent platform,
which demonstrates that the PPR based method (mentioned
in Introduction) is more effective than the other four meth-
ods we considered for attracting back the inactive game
users. Each method M
 is tested as follows. First, for each
inactive user s, the platform inspects her friends in the social
networkG formed by the game users, and identifies the ones
who are active and important to s where the importance is
measured by M
. Then, the platform asks each v of those

friends to send a message to s to invite her back, and gives v
a reward if s returns to the platform upon receiving the mes-
sage. The following are the fivemethodswe consider to mea-
sure the importance of a friend v (with respect to s).

� PPR. The importance of v equals to PPR(s, v) in G.
� TAP (Topical Affinity Propagation) [27]. Measures the

importance of v based on the influence of v to s using
TAP. This method is the one originally employed by
the Tencent platform before the PPR method is
introduced.

� PR (Global PageRank). The importance of v is mea-
sured by the global PageRank score of v in G.

� Degree. The importance of v is based on the number
of friends v has in G.

� Proximity.The importance of v ismeasured by the total
number of themonthly gaming interactions between s
and v, where the interactions include three activities:
1) game battle; 2) chatting and 3) reward sharing.

The A/B test is conducted on a game with about
220 million players, among which around 42 million
monthly active players are identified to participate in the test
to send invitations to their inactive friends. The test has a
duration of 18 days, which are from April 4 to April 21 in
2018. Two classic metrics including the click rate C and
through rate T are considered, where C is the percentage of
the users who click the invitation link among those who
view the invitation messages, and T is the percentage of the
users who futher log in the game through the invitation link
among thosewho click the invitation link.

The results are shown in Table 6. The PPR based method
is more effective than all the others in both click rate and
through rate. The improvement is significant for business.
Consider that there are around 180 million inactive users in
the game. Based on the result shown in Table 6, replacing

Fig. 3. Varying accuracy guarantee �.

TABLE 4
NDCG Accuracy

Dataset DBLP Web-St Pokec LJ Orkut

FORA-OPT 100% 100% 99:8% 100% 100%
Baton 100% 100% 100% 100% 100%

TABLE 5
Speed-up Ratio versus Number of Cores

Datasets 5 cores 10 cores 15 cores

Twitter 4.8 9.0 12.1
Orkut 4.5 8.5 11.4

2. Following [30], [31], the ground truth of PPR scores is computed
by power iteration method. We set the absolute PPR error of power iter-
ation method to be 10�9.
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the TAP based method with the PPR based method would
attract back roughly 180M � ð39:94% � 3:91%� 37:88% � 3:27%Þ �
5:8	 105 more inactive users.

One reason for the less effectiveness of PR and Degree is
that they are more of global measures than measures that are
personalized to s. Personalization, however, is crucial in our
application. For example, a friend user v with a large degree
inG can be popular among all users but this does not indicate
that v is necessarily the most important to s. Therefore PR
and Degree are not as effective as a personalized measure
like PPR. PPR is also superior to the method Proximity as the
latter suffers from the data sparsity. In the game user network
we tested, each user s only has gaming interaction history
with around 30 percent of her friends. As a result, for the
remaining roughly 70 percent friends of s, the method Prox-
imity cannot distinguish their importance with respect to s.
This lack of information renders the Proximity method to be
less satisfied. Further, we discover that the invitation senders
that are identified for an inactive user s by PPR are quite dif-
ferent from those identified by TAP. Particularly, the senders
suggested by PPR have about 15.3 percent more monthly
gaming interactions with s on average, compared with the
senders identified by TAP. This hints that the senders identi-
fied by the PPR are more close to s in gaming compared with
those suggested by TAP, which could be a reason for the
superiority of PPR over TAP.

5 CONCLUSION

In this paper, we conducted a comprehensive study on the
batch one-hop PPR queries, which is a significant problem
we encountered in deploying the applications on the Ten-
cent online gaming platform with massive user bases. The
motivation of the batch one-hop PPR is the observation that
the PPR based mechanism has a significantly better effec-
tiveness in attracting back the inactive game users, but its
prohibitive computational cost hinders its application. Par-
ticularly, employing the existing state-of-the-art PPR algo-
rithms to address batch one-hop PPR queries fail to scale to
large graphs. To address this issue, we propose Baton, an
adaptive mechanism that answers the batch one-hop PPR
queries cost-effectively. Baton incorporates various optimi-
zations, resulting in a method that is up to 3 orders of mag-
nitude faster than the state-of-the-art algorithms. We also
investigate the solutions for the parallelization of Baton.
This significant efficiency improvement makes the deploy-
ment of the PPR based mechanism feasible.

6 PROOFS

Proof of Lemma 1. Consider any random walk that starts
from s. The walk has ð1� aÞ=dðsÞ probability to move to t

in the first step, after which it has a probability to stop.
Therefore, the walk has at least að1� aÞ=dðsÞ probability
to terminate at t, which proves the lemma.

Proof of Lemma 2.We consider the case for a source node s.
Ref. [31] has shown the following result: If we are given a
source node s, the reserves p�ðs; �Þ and residues rðs; �Þ
resulted from any forward push process started at s, then
we can achieve the PPR accuracy indicated in Equation (1)
for every node u 2 V with pðs; uÞ � d, through the following
procedures: 1) for each node v 2 V , generate rðs; vÞKðsÞ
random walks from v, where KðsÞ ¼ ð23�þ2Þlog ð2=pf Þ

�2d
. 2) After

finishing all the random walks, for each node u, estimate

p̂ðs; uÞ ¼ p�ðs; uÞ þ cðuÞ=KðsÞ, where cðuÞ is the number
of randomwalks that end at u.

With the above result, recall that generic-baton follows
the above procedure but with a different value of KðsÞ
(see Line 2 in Algorithm 3). That is, generic-baton sets

KðsÞ to ð23�þ2ÞdðsÞlog ð2=pf Þ
�2að1�aÞ instead of

ð23�þ2Þlog ð2=pf Þ
�2d

. This modi-

fication of KðsÞ is validated by Lemma 1. To explain,
Lemma 1 says that the PPR of any one-hop neighbor of s
is at least að1� aÞ=dðsÞ. Therefore, in the above proce-
dure, we can replace d with að1� aÞ=dðsÞ without losing
the accuracy guarantees for the one-hop PPRs of s. This

results in KðsÞ ¼ ð23�þ2ÞdðsÞlog ð2=pf Þ
�2að1�aÞ , which is employed by

generic-baton. Hence the lemma holds.

Proof of Lemma 3. For a source node s, the PPR computa-
tion initiated by Baton does not increase the complexity
of directly conducting random walks from s. The reason
is, when a push step is applied on node u, the number of
random walks is reduced by Oða � rðs; uÞ �KðsÞÞ, while
incurring a cost OðdðuÞÞ. Since the expected complexity of
a random walk is Oð1Þ, the cost reduced by a push is
therefore expected Oða � rðs; uÞ �KðsÞÞ. Based on the push
condition of Baton, we have dðuÞ < a � rðs; uÞ �KðsÞ.
Therefore, the complexity will not increase because of
the pushes. On the other hand, if no pushes is conduct,

the cost is OðKðsÞÞ ¼ OðdðsÞlog ð1=pf Þ
�2

Þ. Summing the

cost over every node in S gives OðPs2S KðsÞÞ ¼
OðPs2S

dðsÞlog ð1=pf Þ
�2

Þ.
Proof of Lemma 4.
Case 1. P
 is a prefix of P. We first compare costðPÞ and
costðP
Þ. Let P� ¼ P � P
, then,

costðPÞ ¼ costðP
Þ þ costðP�Þ ¼ costðP
Þ þ
X
u2P�

dðuÞ � cp: (6)

Meanwhile, after the pushes in P
 have been applied, fur-
ther pushes on node u 2 P� still satisfy rðs; uÞ > dðuÞ

a�KðsÞ
(Based on the condition of Baton), which gives

dðuÞ < a � rðs; uÞ �KðsÞ: (7)

Next, we compare costðR
Þ and costðRÞ. When a push step
is applied on a node u 2 P�, the sum of residues is reduced
by a � rðs; uÞ. Hence,

costðR
Þ ¼ costðRÞ þ
X
u2P�

a � rðs; uÞ �KðsÞ � cr: (8)

TABLE 6
Effectiveness in A/B Test

Methods Click rate C Through rate T

PPR 39:94% 3:91%
TAP 37:88% 3:27%
PR 36:77% 3:16%
Degree 36:86% 3:10%
Proximity 36:93% 3:12%
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It then follows that,

costðP
;R
Þ
costðP;RÞ ¼ costðP
Þ þ costðR
Þ

costðPÞ þ costðRÞ
ðBy Eqn: 6Þ

¼ costðP
Þ þ costðR
Þ
costðP
Þ þPu2P�ðdðuÞ � cpÞ þ costðRÞ
ðBy Eqn: 8Þ

¼ costðP
Þ þ costðRÞ þPu2P�ða � rðs; uÞ �KðsÞ � crÞ
costðP
Þ þPu2P�ðdðuÞ � cpÞ þ costðRÞ

ðBy Eqn: 7Þ

>
costðP
Þ þ costðRÞ þPu2P�ða � rðs; uÞ �KðsÞ � crÞ
costðP
Þ þ costðRÞ þPu2P�ða � rðs; uÞ �KðsÞ � cpÞ :

(9)

Now, if cr � cp, then the R.H.S. of Equation (9) is at least 1; if
cr < cp, then R.H.S. of Equation (9) equals

cr
cp
� cpcr ðcostðP
Þ þ costðRÞÞ þ cr

cp

P
u2P�ða � rðs; uÞ �KðsÞ � cpÞ

costðP
Þ þ costðRÞ þPu2P�ða � rðs; uÞ �KðsÞ � cpÞ
cr
cp

�
cp
cr
ðcostðP
Þ þ costðRÞÞ þPu2P�ða � rðs; uÞ �KðsÞ � cpÞ
costðP
Þ þ costðRÞ þPu2P�ða � rðs; uÞ �KðsÞ � cpÞ

>
cr
cp

� 1 ¼ cr
cp
:

Hence, for case 1, costðP
;R
Þ � minf1; crcpg � costðP;RÞ.
Case 2. P is a prefix of P
. Suppose that at time t0 Baton ter-

minates its push phase, whose cost is denoted by C0. Fur-
ther suppose that when the push steps according to P have
been finished, node u’s residue is rðs; uÞ. Based on the push-
termination condition (Line 3 in Algorithm 3), at time t0
every node uwould satisfy

dðuÞ � a � rðs; uÞ �KðsÞ; (10)

whereKðsÞ ¼ ð23�þ2ÞdðsÞlog ð2=pf Þ
�2að1�aÞ .

On the other hand, at time t0 the cost of random walks
attached in node u is rðs; uÞ �KðsÞ, which is the number of
random walks to be performed from u (referred to Line 3 of
Algorithm 3). Note that fP
;R
g is a push-extended version
of fP;Rg, such that it conducts any possible additional
pushes after time t0. Let us compare the costs of fP
;R
g
and fP;Rg. First,

costðP;RÞ ¼ C0 þ
X
u2V

rðs; uÞ �KðsÞ � cr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cost of random walks

: (11)

As for fP
;R
g, we denote V 
 as the set of nodes for which
further push steps are performed after time t0. Then, for the
nodes in V nV 
, no further push steps are performed on
them. At the time when the push steps of P
 have been fin-
ished, the cost of random walks started at nodes in V nV 
 is
at least

P
u2fV nV 
g rðs; uÞ �KðsÞ � cr, because the residues of

nodes in V nV 
 will not decrease after time t0. For node

u 2 V 
, fP
;R
g incurs an additional push cost at least
dðuÞ � cp, because one single push step performed on u costs

dðuÞ � cp. Hence, the push cost due to the nodes in V 
 is at

least
P

u2V 
 dðuÞ � cp. In a nutshell,

costðP
;R
Þ � C0 þ
X
u2V 


dðuÞ � cp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lower bound of cost ðP
Þ

þ
X

u2fV nV 
g
rðs; uÞKðsÞcr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lower bound of cost ðR
Þ

ðby Eqn: 10Þ
�C0 þ

X
u2V 


arðs; uÞKðsÞcp þ
X

u2fV nV 
g
rðs; uÞKðsÞcr

�C0 þ
X
u2V

minfacp; crgrðs; uÞKðsÞ:

(12)
By Equations (11) and (12),

costðP
;R
Þ
costðP;RÞ � C0 þ ðminfacp; crgÞ

P
u2V rðs; uÞKðsÞ

C0 þ
P

u2V rðs; uÞKðsÞ
� minf1;acp; crg:

Hence, for case 2 we have

costðP
;R
Þ � minf1;acp; crg � costðP;RÞ

Combining case 1 and case 2 gives

costðP
;R
Þ � min 1;
cr
cp
;acp; cr

� �
� costðP;RÞ:

Proof of Lemma 6. Suppose that T ðiÞ is the largest
among fT ð1Þ; . . . ; T ðqÞg, and T ðjÞ is the smallest
among fT ð1Þ; . . . ; T ðqÞg. Then we need to prove
T ðiÞ � T ðjÞ � tðkÞ, where tðkÞ is the maximum time
required by the queries that are the last processed quer-
ies at each of the threads. In other words, tðkÞ ¼
max1�p�qtðpÞ. We assume by contradiction that T ðiÞ �
T ðjÞ > tðkÞ. Let Qi be the last processed query at the ith
thread. Given that query Qi runs in tðiÞ seconds, we have

tðkÞ � tðiÞ ) T ðiÞ � T ðjÞ > tðiÞ ) T ðjÞ
< T ðiÞ � tðiÞ: (13)

Equation (13) indicates that, when the jth thread
becomes idle at time T ðjÞ, the ith thread has not obtained
query Qi. As a result, there should be at least one queries
(e.g., Qi) that remain in the queue at time T ðjÞ. It follows
that at time T ðjÞ the jth thread should gain another query
from the queue for processing (the presumption here is
that any reasonable parallelization mechanism won’t let
a thread be idle while there are still tasks to process).
Now the discussion is divided into two cases: (1) if the
jth thread successfully obtains one query from the queue
at time T ðjÞ, then it contradicts to the fact that the jth
thread has accomplished all its queries at time T ðjÞ. (2)
if the jth thread cannot obtain any query from the queue,
then there must be other idle threads at time T ðjÞ, and
these idle threads obtain all the remaining queries in the
queue, including Qi, at time T ðjÞ. Consequently, Qi can-
not be obtained by the ith thread because at time T ðjÞ the
ith thread is still not idle. This contradicts to the fact that
Qi is the last processed query (i.e., the ending task) of the
ith thread. Therefore, in either case, violation ensues.
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