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ABSTRACT
Reachability queries are a fundamental type of queries on graphs
that find important applications in numerous domains. Although a
plethora of techniques have been proposed for reachability queries,
most of them require that the input graph is static, i.e., they are
inapplicable to the dynamic graphs (e.g., social networks and the
Semantic Web) commonly encountered in practice. There exist a
few techniques that can handle dynamic graphs, but none of them
can scale to sizable graphs without significant loss of efficiency. To
address this deficiency, this paper presents a novel study on reacha-
bility indices for large dynamic graphs. We first introduce a general
indexing framework that summarizes a family of reachability in-
dices with the best performance among the existing techniques for
static graphs. Then, we propose general and efficient algorithms for
handling vertex insertions and deletions under the proposed frame-
work. In addition, we show that our update algorithms can be used
to improve the existing reachability techniques on static graphs,
and we also propose a new approach for constructing a reachabil-
ity index from scratch under our framework. We experimentally
evaluate our solution on a large set of benchmark datasets, and we
demonstrate that our solution not only supports efficient updates on
dynamic graphs, but also provides even better query performance
than the state-of-the-art techniques for static graphs.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Given a directed graph G and two vertices s and t in G, a

reachability query asks whether there exists a path from s to t in
G. Reachability queries are a fundamental operation on graphs
and have numerous important applications, such as query process-
ing on social networks, the Semantic Web, XML documents, road
networks, and program workflows. Devising index structures for
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reachability queries is non-trivial, as it requires a careful balanc-
ing act between pre-computation cost, index size, and query pro-
cessing overhead. In particular, if we pre-compute and store the
reachability results for all pairs of vertices, then we can process any
reachability query in O(1) time but suffer prohibitive costs of pre-
processing and space. On the other hand, if we omit indexing and
process reachability queries directly on G using depth-first search
(DFS) or breadth-first search (BFS), then we minimize space and
pre-computation overhead, but fail to ensure query efficiency on
large graphs.
Previous work [3–14,16,19,22–25,27–32] has proposed numer-

ous indexing techniques to efficiently support reachability queries
without significant space and pre-computation overheads. Most
techniques, however, assume that the input graphG is static, which
makes them inapplicable for the dynamic graphs commonly en-
countered in practice. For example, the social graph of Twitter
is constantly changing, with thousands of new users added per
day; the Semantic Web is frequently updated with new concepts
and relations; even road networks are subject to changes due to
road closures and constructions. There exist a few techniques
[4,12,13,16,22,24,32] that are designed for dynamic graphs, but as
we discuss in Sections 3 and 8, none of those techniques can scale
to sizable graphs without significant loss of efficiency. Specifically,
the methods in [4,12,13,16,22,24] incur prohibitive preprocessing
costs on graphs with more than one million vertices. Meanwhile,
the approach in [32] can handle million-vertex graphs, but it offers
a query performance that is generally not much better than a simple
BFS approach, as shown in our experiments.
In summary, no existing method is able to effectively handle

reachability queries on large dynamic graphs. Motivated by this,
we present a comprehensive study on scalable reachability indices
that support updates. We first introduce a total order labeling
(TOL) framework, which summarizes three most advanced meth-
ods [8, 17, 30] for reachability queries on static graphs. TOL has
two important properties: (i) every reachability index under TOL
uniquely corresponds to a total order of vertices in the input graph,
and (ii) the total order solely decides the index’s performances in
terms of preprocessing, space, and queries. Given these properties,
we investigate algorithms that enable us to insert or delete a vertex
in a TOL index without changing the order of the other vertices,
i.e., without significantly degrading the performance of the index.
This results in general algorithms for handling insertions and dele-
tions on indices under TOL. In particular, our insertion algorithm
is optimal in that it leads to the minimum index size after insertion.
Interestingly, we observe that our update algorithms can be uti-

lized to reduce the space consumptions and query costs of a TOL
index, by adjusting the total order pertinent to the index. This leads
to a general approach for improving any index under TOL, includ-
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ing the state-of-the-art techniques [8, 17, 30]. The effectiveness of
our adjusting approach shows that the total orders of the techniques
in [8, 17, 30] leave much room for enhancement, which motivates
us to devise new methods for deriving improved total orders for
TOL indices. As a result, we present a new reachability index, But-
terfly, which offers reduced preprocessing, space, and query costs
than any existing indices under TOL [8,17,30]. We experimentally
evaluate TOL using a large variety of benchmark datasets with up
to twenty million vertices, and we demonstrate the superiority of
TOL against alternative solutions for static and dynamic graphs.
In summary, this paper makes the following contributions:

• We propose general and efficient algorithms that enable any
index under the TOL framework to support large dynamic
graphs (Section 5).

• We develop a technique that can postprocess the state-of-the-
art reachability indices [8, 17, 30] to significantly enhance
their performances in terms of space overheads and query
efficiency (Section 6).

• We devise algorithms to derive improved vertex ordering un-
der TOL, based on which we propose Butterfly, a new reach-
ability index that dominates the states of the art (Section 7).

• We evaluate our solution on a large set of real and synthetic
graphs, and we demonstrate that our solution not only sup-
ports efficient updates on large dynamic graphs, but also pro-
vides even better query performance than the state-of-the-art
techniques for static graphs (Section 8).

2. PRELIMINARIES
Let G = (V,E) be a directed graph with a set V of vertices and

a set E of edges. For any two vertices s and t in V , we say that s
can reach t (denoted as s → t), iff there exists a directed path in G
that starts from s and ends at t. Given s and t, a reachability query
returns TRUE if s → t, and FALSE otherwise. We refer to s and t
as the source vertex and terminal vertex of the query, respectively.
If s → t and t → s both holds, then s and t are strongly con-

nected. Accordingly, a strongly connected component (SCC) of G
is defined as a maximal subset of V where any two vertices are
strongly connected. Observe that a vertex u can reach another ver-
tex v, iff either of the following conditions holds: (i) u and v be-
long to the same SCC, or (ii) there is a path that starts from the SCC
containing u to the SCC containing v. Given this observation, there
exists a simple method that reduces G into a smaller graph G∗ to
improve the efficiency of reachability queries:

1. Compute all SCCs of G. (This can be done in O(|V |+ |E|)
time [26].

2. Map each SCC C to a vertex f(C). For any two SCCs C
and C′, if G contains an edge that starts at a vertex in C and
ends at a vertex in C′, then construct an directed edge from
f(C) to f(C′). Denote the resulting graph as G∗.

3. Given a reachability query from s to t on G, we first retrieve
the SSC S (resp. T ) of G that contains s (resp. t). Then, we
return TRUE for the query, if and only if (i) S and T are the
same or (ii) f(S) can reach f(T ) in G∗.

In the remainder of the paper, we assume that G has been pre-
processed with the above reduction method, i.e., G does not con-
tain any strongly connected component with more than one vertex.
(The same assumption is made in existing work [].) Under this as-
sumption, G should be a directed acyclic graph (DAG). In addition,

Notation Description
G = (V,E) a DAG with a vertex set V and an edge set E
o(v) the topological rank of a vertex v (see Section 2)
Nin(v) the set of v’s in-neighbors
Nout(v) the set of v’s out-neighbors
l(v) the level of v (see Section 4)
L a total order labeling of G
Lin(v) the in-label set of vertex v (see Definition 1)
Lout(v) the out-label set of vertex v (see Definition 1)
Iin(v) the inverted index for v’s in-labels (see Equation 3)
Iout(v) the inverted index for v’s out-labels (see Equation 4)

Table 1: Table of notations.

there exists a total order o on V , such that for any two vertices u
and v in G, if u → v then o(u) < o(v) (but not necessarily vice
versa). Such a total order can be derived in linear time using a DFS
onG [8]. We refer to o as a topological order, and o(u) as the topo-
logical rank of u. For ease of reference, Table 1 lists the notations
that will be frequently used in this paper.

3. RELATED WORK
The existing work on reachability queries can be roughly divided

into three categories (based on their query processing schemes):
pruned depth-first search, transitive closure retrieval, and two-hop
label matching. In the following, we survey the techniques in each
category for static graphs, and then discuss the existing methods on
dynamic graphs.

Pruned Depth-first Search. Techniques [6, 27, 31] in this cate-
gory process each reachabilty query using DFS onG, but they pre-
compute certain auxiliary information on G to prune the search
space of DFS, which helps improve query efficiency. The state-of-
the-art algorithm in this category is GRAIL [31]. It preprocessesG
by assigning an interval to each vertex, such that, for any two ver-
tices u and v, if the interval of u does not fully contain the interval
of v, then u � v must hold. Given such intervals, GRAIL answers
any reachability query using a DFS from the source vertex, and it
avoids visiting any vertex whose interval does not cover the termi-
nal vertex’s interval. GRAIL is shown to incur small overheads of
preprocessing and space, but its query efficiency is generally much
worse than methods in the other two categories.

Transitive Closure Retrieval. The transitive closure of a vertex u
is defined as the set of all vertices that u can reach in G. Methods
based on transitive closure retrieval [3, 7, 8, 10, 14, 19, 25, 28, 29]
pre-compute and compress the transitive closures of each vertex
in G. Given any reachability query, they first retrieve the transi-
tive closure of the source vertex, decompress it, and then check
whether the terminal vertex is contained in the transitive closure.
Such methods are generally efficient for query processing, but they
cannot scale to large graphs due to the significant pre-computation
and space overheads in deriving and storing transitive closures.

2-Hop Label Matching. Techniques in this category [5, 8–11, 23,
30] preprocess G by constructing two sets of labels for each vertex
v, namely, an out-label set Lout(v) and an in-label set Lin(v).
Specifically, each label in Lout(v) is a vertex inG that v can reach,
while Lin(v) contains a subset of the vertices inG that can reach v.
The label sets are created in a way such that, for any two vertices s
and t, we have s → t if and only if Lout(s)∩Lin(t) �= ∅. In other
words, any reachability query can be simply answered by taking
the intersection of the source vertex’s out-label set and the terminal
vertex’s in-label set. This leads to high query efficiency, when the
label sets are small.
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Figure 1: DAG G.

Cohen et al. [11] present the first study on 2-hop labelling tech-
niques. They prove that it is generally NP-hard to minimize the
total size of label sets, and they propose a (log |V |)-approximate
solution to the problem. However, the approximate solution re-
quires O(|V | · |E| log(|V |2/|E|)) preprocessing time, which ren-
ders it inapplicable for sizable graphs. Motivated by this, numer-
ous heuristic techniques [2, 5, 8–10, 15, 18, 23, 30] have been pro-
posed to improve the practical efficiency of 2-hop labelling, albeit
discarding the approximation guarantee of Cohen et al.’s method).
Among those techniques, the most advanced ones are TF-Label [8],
Distribution Labeling (DL) [17], and Pruned Landmark Labeling
(PLL) [30], as they are shown to provide better overall performance
than other existing methods (including the ones based on pruned
DFS or transitive closure retrieval). In Section 4, we will present a
framework that summarizes TF-Label, DL, and PLL.

Methods for Dynamic Graphs. While the aforementioned tech-
niques all focus on static graphs, there also exist a few studies
[4,12,13,16,21,22,24] on reachability indices for dynamic graphs.
In particular, [12, 13, 21, 22] propose algorithms for incrementally
maintaining transitive closures on dynamic graphs. Those algo-
rithms, however, cannot scale to graphs with more than a few thou-
sand vertices, as shown by Krommidias et al. [20]. There also exist
two methods [4, 24] that extend Cohen et al.’s 2-hop labeling ap-
proach [11] to handle updates. Nevertheless, the method in [24]
is restricted to XML graphs, while [4] is unable to handle any of
the million-node graphs used in our experiments. In addition, [16]
presents an algorithm for performing updates on a reachability in-
dex, but the index itself incurs tremendous preprocessing costs on
large graphs. Very recently, Yildirim et al. propose Dagger [32],
an extension of GRAIL [31] that supports dynamic graphs. As we
show in Section 8, however, Dagger’s query performance is up to
107 times worse than the solution in this paper, and is generally not
much better than a simple BFS approach.

4. TOTAL ORDER LABELING
This section presents total order labeling (TOL), a reachability

indexing framework that can be instantiated into various 2-hop la-
beling indices. The instantiation of TOL requires two input pa-
rameters, namely, a DAG G = (V,E) and a strict total order l
on V . We refer to l as a level order. For any vertex v, we define
l(v) ∈ [1, |V |] as the rank of v in l, and refer to l(v) as the level of
v. In addition, we say that v has a higher (resp. lower) level than
another vertex u, if l(v) < l(u) (resp. l(v) > l(u)).

Definition of TOL Indices. Given G and l, TOL uniquely defines
a 2-hop labeling index L on G as follows:
DEFINITION 1 (TOTAL ORDER LABELING L). Given a

DAG G = (V,E) and a level order l, a TOL index L is a 2-hop
labeling index where each vertex is associated with an in-label
set Lin(v) and an out-label set Lout(v), such that Lin(v) (resp.
Lout(v)) contains every vertex u satisfying all of the following
constraints:

• Reachability Constraint: u → v (resp. v → u);

• Level Constraint: l(u) < l(v);

TOL index L1 TOL index L2

v l1(v) Lin(v) Lout(v) l2(v) Lin(v) Lout(v)

a 1 ∅ ∅ 7 ∅ {b,c,d,f,g,h}
b 2 {a} ∅ 4 ∅ {c,f}
c 3 {a,b} ∅ 2 {g} ∅
d 4 {a} {c} 5 ∅ {c,f}
e 5 ∅ {a} 8 ∅ {a,b,c,d,f,g,h}
f 6 {a,b,d} {c} 3 ∅ {c}
g 7 {a} {c} 1 ∅ ∅
h 8 {a} {b} 6 ∅ {b,c,f}

Table 2: Two TOL indices for the DAG G in Figure 1.

• Path Constraint: No simple path from u to v (resp. from v to
u) in G contains a vertex w with l(w) < l(u).

We illustrate Definition 1 with the following example.

EXAMPLE 1. Given the DAG G shown in Figure 1, Table 2
shows two TOL indices on G (i.e., L1 and L2) with level orders l1
and l2, respectively. Consider vertex g in G. Its in-label set in L1

contains a since (i) a can reach g, (ii) a has a higher level than g,
and (iii)G contains only one simple path from a to g, and the path
does not contain any vertex with a higher level than a. In addition,
g’s in-label set does not contain any vertex other than a, since the
path from any other vertex to g must pass through a, whereas a
has the smallest level in l1, i.e., adding any other vertex to Lin(g)
violates the Path Constraint in Definition 1.
In contrast, g’s in-label set in L2 is ∅. This is because g has the

smallest level in l2, due to which we cannot add any vertex into g’s
in-label set without violating the Level Constraint in Definition 1.
In general, the label sets in L1 are drastically different from their
counterparts in L2, due to the differences between l1 and l2. �

As demonstrated in Example 1, the level order l used to instan-
tiate TOL has a profound effect on resulting reachability index.
Therefore, if we are to obtain a TOL index with high efficiency, it
is essential that we choose an appropriate level order l. In Sections
5 and 7, we will discuss how a good level order can be derived and
incrementally maintained for dynamic graphs. For convenience,
we define the size of a TOL index L as the total size of the label
sets in L, i.e.,

|L| =
∑
v∈V

(|Lin(v)|+ |Lout(v)|
)
.

Query Algorithm. Given a reachability query from a vertex s to
another vertex t, a TOL index L processes the query in the same
way as other 2-hop labeling methods do. In particular, L first re-
trieves the out-label sets of s and the in-label set of t, and then
computes a witness set as follows:

W (s, t) =
(
Lout(s) ∪ {s}) ∩ (

Lin(t) ∪ {t}). (1)

If the witness set is empty, then L returns FALSE for the query;
otherwise, L returns TRUE. The following lemma shows the cor-
rectness of the above query processing approach.

LEMMA 1. Given any two vertices s and t, we have W (s, t) �=
∅ iff s → t in G.

PROOF. We first prove that W (s, t) �= ∅ implies s → t. Ob-
serve that, when W (s, t) �= ∅, at least one of the following three
cases must hold: (i) t ∈ Lout(s), (ii) s ∈ Lin(t), and (iii)
Lin(t) ∩ Lout(s) �= ∅. By Definition 1, both t ∈ Lout(s) and
s ∈ Lin(t) indicate that s → t. Meanwhile, if Lout(s)∩Lin(t) �=
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∅, then for any u ∈ Lout(s) ∩ Lin(t), we have s → u and u → t,
which leads to s → t.
Next, we show that if s → t, thenW (s, t) �= ∅. Consider the set

of all simple paths from s to t in G. Let v be the vertex with the
highest level among all vertices on those paths. We differentiate
three cases: (i) v = t, (ii) v = s, and (iii) v �= s and v �= t. If
v = t, then by Definition 1, we have t ∈ Lout(s), in which case
W (s, t) contains t, i.e., W (s, t) �= ∅. Meanwhile, if v = s, then
s ∈ Lin(t) holds, which leads toW (s, t) ⊇ {s} �= ∅. Finally, if
v �= s and v �= t, then v must appear in both Lout(s) and Lin(t),
in which caseW (s, t) ⊇ {v} �= ∅.
Interestingly, the label sets in any TOL index L are minimal, in

the sense that no label can be removed without affecting the cor-
rectness of TOL’s query processing algorithm:

LEMMA 2. Let L be a TOL index on G with a level ordering
l. For any vertex u, if we remove a vertex v1 from Lout(u), then
W (u, v1) = ∅ but u → v1. Meanwhile, if we remove a vertex v2
from Lin(u), then W (v2, u) = ∅ but v2 → u.

PROOF. Consider vertex v1. Given that v1 ∈ Lout(u), we have
u → v1 and l(u) > l(v1) by Definition 1. Since l(u) > l(v1), we
have u /∈ Lin(v1) by the Level Constraint in Definition 1.
Assume on the contrary that, after v1 is removed from Lout(u),

W (u, v1) �= ∅. Then, by Equation 1 and u /∈ Lin(v1), there
must exist a vertex w ∈ Lout(u) ∩ Lin(v1). In that case, G must
contain a simple path from u to v1 via w, and w must have a higher
level than both u and v1. This contradicts the Path Constraint in
Definition 1 since v1 ∈ Lout(u) initially holds. The case for vertex
v2 can be established in a similar manner.

Existing Instantiations of TOL. By Definition 1, TOL defines a
family of 2-hop labeling approaches that satisfy the Reachability,
Level, and Path Constraints. This index family does not include all
existing 2-hop labeling methods (as many of them violate the afore-
mentioned constraints), but it captures the three most advanced 2-
hop labeling techniques, i.e., TF-Label [8], DL [17], and PLL [30].
In particular, TF-Label utilizes a topological order o of the vertices
in G (see Section 2 for the definition of o). It constructs indices
in way such that (i) a label set of a vertex v only contains vertices
u with o(v) < o(u), and (ii) the label sets are minimal. It can be
shown the TF-Label corresponds to a TOL index that uses o as the
level order (with ties broken arbitrarily when multiple vertices have
the same rank in o).
Meanwhile, DL sorts the vertices in G in descending order of

their degrees, and it follows the sorted order to inspect vertices in
G and constructs label sets accordingly. Specifically, each time it
examines a vertex v, it uses two constrained BFSs on G to identify
a number of vertices that (i) are connected to v and (ii) rank lower
than v in the sorted order; then, it adds v into the label sets of those
vertices. It can be proved that DL is equivalent to a TOL index
where the level order ranks vertices in descending order of their
degrees. Finally, as PPL is shown to be equivalent to DL [17], it is
also an instantiation of TOL.
It is noteworthy that, if we modified the vertex order in DL, and

use the modified order to construct a reachability index based on
DL’s preprocessing algorithm, then the resulting index is equiva-
lent to a TOL index adopting the same modified order. In other
words, any TOL index can be obtained using a modified version
of DL’s pre-computation algorithm. Nevertheless, the paper that
describes DL [17] does not summarize the Reachability, Level, and
Path Constraints (see Definition 1) that underpin TOL. The summa-
rization of those constraints is crucial in the context of our paper,
as they are imperative in our analysis on how TOL indices can be
incrementally updated (see Section 5).

5. INCREMENTAL UPDATES
In this section, we study how a TOL index L can be incremen-

tally updated when a vertex is inserted into or deleted from G. Our
objective is twofold:

1. L should remain a TOL index after any update, i.e., it should
always satisfy the constraints in Definition 1. This is to en-
sure the correctness of L’s query algorithm and the minimal-
ity of L’s label sets

2. Inserting or deleting a vertex should not change the level
order l on the other vertices. Intuitively, this reduces the
amount of changes required in the label sets of L, and helps
retain the performance of L after the update, since a TOL in-
dex’s label sets (and thus, its performance) are solely decided
by its level order.

5.1 Insertion Algorithm
Consider that we insert a new vertex v into G and connect v

with some existing vertices in G. Let G′ = (V ′, E′) be the graph
obtained after the insertion. Following previous work [4, 32], we
assume that G′ is also a DAG. The case when G′ is not a DAG can
be handled by incrementally maintaining the strongly connected
components in G, as discussed in [32]. Let L be a TOL index on
G with a level order l. As mentioned, our objective is to update L
into a TOL index L′ on G′ with a level order l′, such that for any
two vertices u1, u2 ∈ V , l(u1) < l(u2) iff l′(u1) < l′(u2).
In a nutshell, our insertion algorithm runs in two steps: In Step

1, it decides the value of l′(v), and then sets l′(u) for any vertex u
in G as follows:

l′(u) =
{

l(u) if l(u) < l′(v)
l(u) + 1 otherwise

(2)

Then, in Step 2, it updates the label sets in L according to l′, which
transforms L into L′. For ease of exposition, we will first elaborate
Step 2, assuming that l′ has been constructed.

5.1.1 Step 2: Updating Label Sets
Given G′, L, and l′, the second step of our insertion algorithm

is further divided into two sub-steps. In Step 2.1, we create the
label sets L′

in(v) and L′
out(v) for the new vertex v, and insert v

into the label sets of other vertices. Then, in Step 2.2, we further
refine the label sets of the vertices in V , so as to convert L into
L′. Throughout the algorithm, for each vertex u, we maintain two
inverted lists Iin(u) and Iout(u), such that

Iin(u) = {w | u ∈ Lin(w)}, (3)

Iout(u) = {w | u ∈ Lout(w)}. (4)

In other words, if u appears in the in-label (resp. out-label) set of
a vertex w, then w is recorded in the inverted list Iin(u) (resp.
Iout(u)). These inverted lists enable us to efficiently identify the
label sets that are affected by any vertex u. In addition, they can be
easily maintained with respect to changes in the label sets.

Step 2.1. Algorithm 1 shows the pseudo-code for the first sub-step.
The algorithm first creates a candidate set Cin(v) (Lines 1-4), and
then refines it into the in-label set L′

in(v) of v (Lines 5-10). In
particular, the candidate set Cin(v) contains all in-neighbors of v
(i.e., the starting vertices of the edges pointing to v), as well as the
in-label sets of those in-neighbors (Line 3-4).
By Definition 1, Cin(v) is a superset of v’s in-labels in L′. To

explain, consider a vertex u that is an in-label of v in L′. By the
Reachability Constraint, there exists a path P from u to v inG′. Let
w be the in-neighbor of v on P . Then, u can reach w. In addition,
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Algorithm 1: INSERT-STEP-2.1

input : G′, L, l′, and v
output: L′

in(v), L
′
out(v), and a modified version of L

1 create two candidate label sets Cin(v) and Cout(v) ;
2 set L′

in(v) = L′
out(v) = Cin(v) = Cout(v) = ∅ ;

3 for each of v’s in-neighbors u do
4 Cin(v) = Cin(v) ∪ Lin(u) ∪ {u} ;
5 for each u ∈ Cin(v) in ascending order of l′(u) do
6 if Lout(u) ∩ L′

in(v) = ∅ then
7 if l′(u) < l′(v) then
8 add u into L′

in(v) ;

9 else
10 add v into Lout(u) ;

11 for each of v’s out-neighbors u do
12 Cout(v) = Cout(v) ∪ Lout(u) ∪ {u} ;
13 Repeat Lines 5-10 with subscripts “in” and “out” exchanged ;
14 return L′

in(v), L
′
out(v), and the label sets in L ;

l(u) < l(w); otherwise, w is a vertex on P with a higher level than
u, which violates the Path Constraint. Finally, all paths from u to
w should contain only vertices with levels lower than u; otherwise,
u should not be an in-label of v in the first place. All of the above
indicates that u is an in-label of w, as it fulfills the three constraints
in Definition 1. Therefore, Cin(v) is superset of v’s in-labels in L′.
To refine Cin(v) into L′

in(v), Algorithm 1 removes the vertices
inCin(v) that violate any of the Level and Path Constraints in Defi-
nition 1 (Lines 5-10). (The Reachability Constraint is ignored as all
vertices in Cin(v) can reach v.) Specifically, the algorithm exam-
ines the vertices in Cin(v) in ascending order of their level values.
For each vertex uwith l′(u) < l′(v) (i.e., u satisfies the Level Con-
straint), the algorithm adds u intoL′

in(v) if Lout(u)∩L′
in(v) = ∅.

The rationale is that, if Lout(u)∩L′
in(v) = ∅, then no vertex with

a higher level than l(u) can connect u to v, in which case u ful-
fills the Path Constraint. Meanwhile, if Lout(u) ∩ L′

in(v) = ∅ but
l′(u) > l′(v), then we add v into u’s out-label set Lout(u) instead.
After L′

in(v) is created, Algorithm 1 constructs L
′
out(v) (Lines

11-13) and then terminates. We omit the discussion on L′
out(v) as

it is similar to the case of L′
in(v).

Step 2.2. Given Step 2.1’s output, Step 2.2 of our algorithm pro-
ceeds to refine the label sets in L, as shown in Algorithm 2. The
rationale is that, since the insertion of v creates new paths among
the vertices in V , we may need to adjust the label sets in L to en-
sure that L remains a TOL index. Specifically, Algorithm 2 first
inspects the vertices in L′

in(v) in ascending order of their level val-
ues (Line 1). For each vertex u, the algorithm examines each vertex
w in L′

out(v) ∪ {v} with lower levels than u (Line 2). Notice that,
for every such pair of vertices u and w, the insertion of v creates a
new path from u tow via v. Accordingly, the algorithm adds u into
w’s in-label set Lin(w) if Lout(u) ∩ Lin(w) = ∅, i.e., if inserting
u into Lin(w) does not violate the Path Constraint in Definition 1
(Lines 3-4). Similarly, the algorithm also inserts u into Lin(x) for
any vertex x ∈ Iin(w), i.e., any vertex x that has w as an in-label
(Line 5-7).
After that, the algorithm proceeds to check whether the opera-

tions in Lines 2-7 have resulted in unnecessary labels (Lines 8-13).
In particular, it examines each pair of vertices x′ ∈ Iout(u) and
y′ ∈ Iin(u), i.e., x′ has u as an out-label and y′ has u as an in-
label. For each pair of x′ and y′, the algorithm checks whether y′

appears in the out-label of x′; if so, it removes y′ from Lout(x
′),

since (i) u has higher level than both x′ and y′ and (ii) u connects

Algorithm 2: INSERT-STEP-2.2

input : G′, l′, v, and the output of Algorithm 1
output: A TOL index L′ for G′ with a level order l′

1 for each vertex u ∈ L′
in(v) in ascending order of l′(u) do

2 for each vertex w ∈ L′
out(v) ∪ {v} with l′(w) > l′(u) do

3 if Lout(u) ∩ Lin(w) = ∅ then
4 Lin(w) = Lin(w) ∪ {u};
5 for each vertex x ∈ Iin(w) do
6 if Lout(u) ∩ Lin(x) = ∅ then
7 Lin(x) = Lin(x) ∪ {u};

8 for each vertex x′ ∈ Iin(u) do
9 for each vertex y′ ∈ Iout(u) do
10 if y′ ∈ Lin(x′) then
11 remove y′ from Lin(x

′);
12 if x′ ∈ Lout(y′) then
13 remove x′ from Lout(y′);

14 Repeat Lines 1-14 with subscripts “in” and “out” exchanged ;
15 return the revised label sets ;

x′ to y′, which leads to a violation of the Path Constraint. Similarly,
if x′ is in the out-label set of y′, and it is removed.
Once the above nested loop is finished, Algorithm 2 enters an-

other nested-loop, where (i) the outer loop linearly scans each ver-
tex u in L′

out(v) in ascending order of level values, and (ii) the
inner loop examines each vertex w in L′

in(v) ∪ {v} with l′(u) <
l′(w). This nested loop complements the previous nested loop, in
that the former processes vertex pairs in L′

in(v) and L
′
out(v) that

are ignored by the latter. Finally, Algorithm 2 terminates and re-
turns the revised label sets, which constitute L′.

5.1.2 Step 1: Deciding Vertex Level
Our algorithms in Section 5.1.1 require that the level l′(v) of

the new vertex v is decided. A straightforward approach is to set
l′(v) = |V | + 1, i.e., give v the lowest possible level. This leads
to relatively small update overheads because, when l′(v) is maxi-
mized, we do not need to insert v into the label sets of any other ver-
tex (due to the Level Constraint in Definition 1). In terms of space
overhead and query efficiency, however, setting l′(v) = |V | + 1
could be highly sub-optimal than other choices l′(v). To address
this issue, we present an alternative solution that sets l′(v) to a
value that minimizes the total size of the label sets. Such a l′(v) is
also likely to improve query efficiency, since the cost of a reacha-
bility query on a TOL index is linear to the sizes of the source and
terminal vertices’ label sets.
Let Lk be the TOL index obtained by inserting v into L with

l′(v) = k. To identify the value of k that minimizesL, we examine
all possible k ∈ [1, |V |+1], but avoid repeatedly using Algorithms
1 and 2 to construct all Lk. Instead, we propose a lightweight ap-
proach for deriving

Δk = |Lk| − |Lk+1| (5)

for any k ∈ [1, |V |]. Once Δk is computed, we can easily deter-
mine the optimal value of l′(v).
The key observation behind our approach is as follows. When

we change l′(v) from k to k − 1, the level order of all vertices re-
main unchanged, except for v and the vertex u with l(u) = k − 1
(since the order between u and v would be reversed). As a conse-
quence, the size difference between Lk and Lk−1 only depends on
the label sets that concern u and v. Intuitively, tracking the changes
in those label sets is much simpler than creating a TOL index from
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Algorithm 3: INSERT-STEP-1

input : G = (V, E), L, l, and v
output: the value for l′(v) that minimizes |L′|

1 set l′(v) = |V |+ 1 ;
2 construct L′

in(v), L
′
out(v), I

′
in(v), and I

′
out(v) as in Algorithm 1

(without materializing any changes to L) ;
3 for k = |V |, |V | − 1, · · · , 1 do
4 Δk = 0 ;
5 let u be the vertex with l(u) = k ;
6 if u ∈ L′

in(v) then
7 remove u from L′

in(v) and add it into I
′
out(v) ;

8 for each vertex w ∈ I′in(v) such that u ∈ Lin(w) do
9 Δk = Δk − 1 ;

10 for each vertex w′ ∈ Iout(u) such that v /∈ Lout(w) do
11 Δk = Δk + 1 ;
12 add w′ into I′out(v) ;

13 repeat Lines 6-12 with subscripts “in” and “out” exchanged ;

14 initialize variables θ1, θ2, . . . , θ|V |+1 ;
15 θ|V |+1 = 0 ;
16 for k = |V |, |V | − 1, · · · , 1 do
17 θk = θk+1 +Δk ;

18 return argmink{θk} ;

scratch, and hence, deriving Δk can be much more efficient than
constructing Lk.
Algorithm 3 shows the pseudo-code of our approach. It first sets

l′(v) = |V | + 1, and applies Algorithm 1 to compute, for v, two
label sets L′

in(v) and L′
out(v) and two inverted lists I

′
in(v) and

I ′out(v) (Lines 1-2). The subsequent part of the algorithm consists
of |V | iterations (Lines 3-14). In the (|V | − k+1)-th iteration, the
algorithm considers the case when l′(v) changes from k + 1 to k,
and evaluates the corresponding changes in the label sets, based on
which it derivesΔk.
Specifically, the algorithm first setsΔk = 0 and inspects the ver-

tex u with l(u) = k, i.e., the vertex whose level is to be exchanged
with v when l′(v) is decreased from k + 1 to k. Observe that, if
the exchange between u and v leads to changes in some label sets,
then u ∈ L′

in(v) ∪ L′
out(v) should hold. The reason is that, when

u /∈ L′
in(v)∪L′

out(v), either (i) there is no path between u and v or
(ii) all paths between u and v contain at least one vertex with higher
level than u and v. In either case, switching levels between u and
v would not lead to violations of the Reachability, Level, or Path
Constraint in any label sets. Therefore, if u /∈ L′

in(v) ∪ L′
out(v),

then no label set would be affected by swapping u and v’s levels.
Based on this analysis, Algorithm 3 sets the final value ofΔk to 0,
whenever u /∈ L′

in(v) ∪ L′
out(v) (Lines 4-13).

Now consider that u ∈ L′
in(v). After we exchange u and v’s

levels, u should be removed from L′
in(v), and v should become an

out-label of u. This explains Line 7 in Algorithm 3. Meanwhile,
for any vertex w ∈ I ′in(v) (i.e., w has v as an in-label), we check
if u is an in-label of w (Line 8). If u ∈ Lin(w), then after the
levels of u and v are swapped, u should be removed from Lin(w)
due to the Path Constraint, which reduces the size of Lin(w) by
one. Accordingly, Algorithm 3 decreases Δk by 1 for each such
vertex w (Line 9). In addition, for any vertex w′ ∈ Iout(u) (i.e., u
is an out-label for w′), we examine if v is not out-label of w′ (Line
10). If v /∈ Lout(w

′), then after we swap u and v’s levels, v will
become an out-label of w′, i.e., the size of Lout(w

′) is increased
by one. Therefore, for each such vertex w′, Algorithm 3 increases
Δk by 1 and inserts w′ into I ′out(v) (Lines 11 and 12). It can be
verified that, apart from the label sets mentioned above, no other
label sets would be affected by the exchange between u and v.

Although the above discussion assumes u ∈ L′
in(v), it can

be easily extended to the case when u ∈ L′
out(v) (Line 13).

Once all Δk are obtained, Algorithm 3 derives |V | + 1 variables
θ1, θ2, . . . , θ|V |+1, such that θ|V |+1 = 0 and θk = θk+1 + Δk

(k ∈ [1, |V |]). By the definition of Δk, the value of k that min-
imizes θk should also minimize |Lk|. Accordingly, Algorithm 3
terminates by returning argmink{θk} (Line 18).
5.1.3 Correctness and Complexity
We first show the correctness of our insertion algorithm in

Lemma 3, and then analyze its complexity.

LEMMA 3. Given G and a new vertex v, Algorithms 1 and 2
produces a TOL index on G′, and Algorithm 3 computes a level for
v that minimizes the label size of L′.

PROOF. We start by proving that the index L′ produced by Al-
gorithm 1 and 2 is a TOL index on G′. In particular, we first show
that Algorithm 1 and Lines 1-7 in Algorithm 2 create label sets that
are supersets of corresponding label sets in the TOL onG′, and then
show that Lines 8-13 in Algorithm 2 remove all redundant labels.
Recall that we have shown the correctness of L′

in(v) and
L′

out(v) created by Algorithm 1 in Section 5.1.1. In the following,
we prove that, for any vertex u other than v, Lines 1-7 in Algo-
rithm 2 create an in-label set that is a superset of u’s in-label set in
the TOL on G′. Given two vertices u and x, according to Defini-
tion 1, the insertion of v causes u to become an in-label of x, only
if all of the following conditions hold: (i) l′(u) < l′(x); (ii) u can
reach v inG′ and v can reach x inG′; (iii) no simple path from u to
x contains a vertex that has a higher level than u. Accordingly, in
Line 1, we omit any vertex u that is not in L′

in(v). This is because
if u is not in L′

in(v), then for the vertex z with the highest level
among all the paths from u to v, we have z �= u. In addition, z is
also on the path from u to any x that can be reached by v. In that
case, condition (iii) is violated, and hence, u will never become an
in-label of any vertex inG′.
Next, consider any vertex x eliminated by Line 2. If x has a

higher level than u, then it should be eliminated as it violates con-
dition (i). On the other hand, if x has lower level than u, then x is
not in L′

out(v)∪{v}. In that case, for the vertex z with the highest
level in all the paths from v to x be z, we have z ∈ L′

out(v). If
l′(z) > l′(u), then x is examined in the loop when w = z. If
l′(z) < l′(u), then there is a path from u to x that contains a ver-
tex (i.e, z) that has higher level than u, violating condition (iii). In
addition, Line 3 and Line 6 also guarantee that the newly created
labels do not violate condition (iii). In summary, Lines 1-7 only
omits vertices that will never lead to a label creation, and hence,
the set of in-label sets created in Lines 1-7 are supersets of the cor-
responding in-label sets in the TOL on G′.
After adding u into Lin(x), some existing labels related to x

may become redundant. By Definition 1, neither the Level Con-
straint nor the Reachability Constraint would be affected for an
existing label, i.e., the only possible violation is on the Path Con-
straint. In particular, u may be an out-label of a vertex y, such that
y is an in-label of x or x is an out-label of y, either of which leads
to a violation of the Path Constraint since (i) there is a path from y
to x with u on it, and (ii) u has higher level than both y and x. To
address this issue, Algorithm 2 enumerates all relevant x and y in
Lines 8 and 9, and remove redundant labels in Lines 10-13.
After that, we repeat the above procedure (Line 14) with “in” and

“out” exchanged to update the in-label sets of the vertices that can
reach v, as well as the out-label sets of the vertices that v can reach.
Summarizing the above discussion, Algorithms 1 and 2 result in a
TOL on G′.
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Finally, as Algorithm 3 precisely evaluates the size differences
between consecutive levels for v, i.e., Δi, i = 1, ..., |V | (as shown
in Section 5.1.2), it identifies a level k for v, such that the size of
the resulting index is minimized.

Complexity Analysis. To analyze our algorithm, we consider the
complexity step by step. In Step 1, given a vertex v for insertion,
Algorithm 3 inspects all the vertices u ∈ L′

in(v) ∪ L′
out(v), and

derives Δk by computing all vertices w ∈ Iin(u) ∪ Iout(u), each
with one set operation, i.e., Lines 8 and 10. Let β be the cost of
one set operation, then the complexity of Step 1 is bounded by
O(|V |2β). In Step 2.1, Algorithm 1 incurs |Cin(v)| + |Cout(v)|
number of set operation in Line 6, therefore, its cost is bounded
by C2 = O((|Cin(v)| + |Cout(v)|)β). In Step 2.2, Algorithm 2
performs the set operations for each pair of vertices in the worse
case, resulting a complexity of O(|V |2β). Note that, Lines 9-14
inspects the vertices in Iin(u) ∩ Lin(x

′) and Iout(u) ∩ Lout(y
′),

which can be implemented in set operations as well. Hence, the
complexity for our entire insertion algorithm is O(|V |2β).

5.2 Deletion Algorithm
Next, we discuss our algorithm handling deletion inG. LetG′ =

(V ′, E′) be the graph obtained by removing a vertex v fromG. As
with the case of insertion, we assume that G′ is a DAG, and we
aim to transform L into a TOL index L′ on G′, such that the level
orders of L and L′ sort the vertices in V ′ in the same order.
Algorithm 4 presents the pseudo-code of our deletion method.

It first removes v from every label set that it appears (Lines 1-4).
Then, it refines the label sets in L to convert it into L′ (Lines 5-22).
In particular, it first retrieves the set B+(v) of all vertices that v
can reach, using a BFS from v that follows the outgoing edges of
each vertex. Then, it inspects the vertices in B+(v) in ascending
order of their topological ranks (see Section 2), and reconstructs
the in-label set of each vertex. (Note that the out-label sets of those
vertices are not affected by the deletion of v.)
For each vertex u ∈ B+(v), the algorithm first creates a candi-

date set Cin(u) (Line 8). Then, for each of u’s in-neighbors z such
that z �= v, the algorithm inserts the in-labels of z into Cin(u)
(Lines 9-10). It can be proved that Cin(u) is a superset of the
in-labels of u in L′. To refine Cin(u) into u’s in-label set, the al-
gorithm examines each vertex w in Cin(u) in ascending order of
l(w) (Line 12). If l(w) < l(u) and Lout(w) ∩ Lin(u) = ∅, then
we identify w as an in-label of u in L′ (Line 14). Subsequently, we
remove the labels that become redundant due to the insertion of w
intoLin(u) (Lines 15-17). In particular, for each vertex s having w
as an out-label, if u is also in the out-label set of s, then we remove
u from the out-label of s.
Once all vertices in B+(v) are processed, the algorithm derives

the set B−(v) of vertices that can reach v, by applying a BFS from
v that follows the incoming edges of each vertex. After that, it
reconstructs the out-label set of each vertex in B−(v), in a way
similar to the case of B+(v) (Lines 18-21). Finally, it returns the
modified label sets for all vertices expect v, i.e., the label sets that
form L′.

Correctness Proof. Lemma 4 proves the correctness of our dele-
tion algorithm.

LEMMA 4. Given G and a vertex v to be deleted, the updated
labeling L′ produced by Algorithm 4 is a TOL on G′.

PROOF. We first prove that the candidate set Cin(u) generated
in Lines 8-10 is a superset of L′

in(u). Then, we show that redun-
dant labels in L′

in(u) are removed in Lines 12-19.

Algorithm 4: DELETE

input : G = (V, E), L, and v ∈ V
output: L′

1 for each x ∈ Iout(v) do
2 remove v from Lout(x) ;

3 for each y ∈ Iin(v) do
4 remove v from Lin(y) ;

5 identify the set B+(v) of vertices that v can reach, using a BFS from
v that follows the outgoing edges of each vertex ;

6 for each u ∈ B+(v) in ascending order of o(u) do
7 let Nin(u) be the set of in-neighbors of u ;
8 create a candidate set Cin(u) = ∅ ;
9 for each z ∈ Nin(u) such that z �= v do
10 Cin(u) = Cin(u) ∪ Lin(z) ∪ {z};
11 Lin(u) = ∅ ;
12 for each w ∈ Cin(u) in ascending order of l(w) do
13 if l(w) < l(u) and Lout(w) ∩ Lin(u) = ∅ then
14 add w into Lin(u) ;
15 for each s ∈ Iout(w) do
16 if u ∈ Lout(s) then
17 remove u from Lout(s) ;

18 identify the set B−(v) of vertices that can reach v, using a BFS from
v that follows the incoming edges of each vertex ;

19 for each u ∈ B−(v) in descending order of o(u) do
20 let Nout(u) be the set of out-neighbors of u ;
21 repeat Lines 8-17 with subscripts “in” and “out” exchanged ;

22 return the label sets of all vertices except v ;

Consider each vertex x that is an updated in-label of u (i.e. x ∈
L′

in(u)). By the Reachability Constraint and the Path Constraint in
Definition 1, we know that there is a path from x to u in G′, and
x is the highest-level vertex on the path. Let z be the in-label of
u on the path. Then, either x = z or x is an updated in-label of
z (i.e., x ∈ L′

in(z)). To understand this, assume on the contrary
that x �= z and x /∈ L′

in(z). Then, there must be a path P from
x to z that contains a vertex with a higher level than both x and z.
Consider a path P ′ that goes from x to z via P , and then from z
to u. Observe that P ′ connects x to u and contains a vertex with
a level higher than x. This contradicts the Path Constraint since
x ∈ L′

in(u). In summary, for any vertex x in L
′
in(u), it is either an

in-neighbor of u or an in-label of an in-neighbor of u. Accordingly,
Lines 8-10 constructs the candidate setCin(u) by combining all the
in-neighbors of u as well as the in-labels of those in-neighbors. In
addition, since we construct L′

in(u) in the ascending order of o(u),
we ensure that the in-label sets of the in-neighbors of u are updated
before the construction of Cin(u), which guarantees that Cin(u) is
a superset of L′

in(u).
Next, for each vertex w in Cin(u), we add it into L′

in(u) if
l(w) < l(u) and Lout(w) ∩ L′

in(u) = ∅. This guarantees the
Level and Path Constraints. Since the Reachability Constraint is
already ensured in the construction of the candidate sets, we know
that adding w to L′

in(u) does not affect the TOL properties. How-
ever, some existing labels related to w and u may become redun-
dant. By Definition 1, neither the Level Constraint nor the Reach-
ability Constraint will be affected, and the only possible violation
is on the Path Constraint. In particular, if w is also an out-label of
a vertex s and if u is in the out-label of s, then u violates the Path
Constraint, since there is a path from s to u that contains w, and w
has higher level than u. On the other hand, the case that s is an in-
label of u never occurs, since we add w into L′

in(u) in ascending
order of l(w).
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Summarizing the above discussion, for each vertex u, we first
generate a superset of L′

in(u), and then construct the L
′
in(u) by

adding vertices from the superset. In addition, for each w that
is added into L′

in(u), we remove, on the fly, all redundant labels
caused by w. As such, Algorithm 4 results in a TOL on G′.

Complexity Analysis. The complexity of computing B+(v) and
B−(v) is equivalent to the complexity of BFS in G, which is
O(|E|). Next, consider the computation cost for a vertex u in
B+(v). In Lines 9-10, as we merge the updated in-label sets of
the in-neighbors of u to form the candidate set for u, the complex-
ity is bounded by |V |β, where β is the complexity of a set opera-
tion. Then, for each vertex x in the candidate set Cin(u), it takes a
constant number of set operations to add x to Lin(u) and remove
redundant labels. Thus, the total computation cost on u is bounded
by O(|V |β). As such, the complexity of the deletion algorithm is
O(|V |2β).

6. ITERATIVE LABEL REDUCTION
The update algorithms in Section 5 retains the level order on the

vertices in G, which, as mentioned, helps ensure that the perfor-
mance of L does not significantly degrade after updates. As the
initial level order l is retained during updates, however, it is essen-
tial that l is chosen carefully. Otherwise, if l renders L inefficient,
then this inefficiency is likely to persist even after updates.
A straightforward solution to choose the initial l is to enumer-

ate all possible level orders (i.e., all permutations of vertices in V ),
then construct a TOL index based on each order, and finally se-
lect the one that optimizes performance. However, this approach
is far from practical due to the enormous number of possible level
orders. As an alternative solution, one may select an initial level
order l using some heuristic approach (e.g., using the existing TOL
instantiations [8, 17, 30]), and then adjusts the level order l to im-
prove L. Interestingly, our update algorithms can be utilized for
such adjustments of l.
Specifically, given L, we can first remove a vertex v using Al-

gorithm 4, and then insert v back using the insertion algorithm in
Section 5.1. By the properties of the insertion algorithm, when v is
re-inserted, its level l(v) is set to a value that minimizes |L|, i.e., the
total size of the label sets in L. Therefore, |L| is likely to decrease
(and will never increase) after the deletion and re-insertion of v. By
repeating this process for each vertex v, we can obtain an improved
version of L with a (much) reduced total size. This decrease in
|L| not only reduces space consumption, but also improves query
efficiency (as L process queries by scanning label sets). In Sec-
tion 8, we experimentally show that this label reduction approach
can significantly enhance the performance of existing TOL instan-
tiations [8, 17, 30].

7. CONSTRUCTION OF INITIAL L
Although the label reduction algorithm improves the perfor-

mance of L, we observe from our experiments that it incurs sub-
stantial computation costs on large graphs. This motivates us to
investigate more efficient methods for choosing a good initial level
order l. In the following, we first present a new algorithm for con-
struct an initial l (Section 7.1), and then discuss the construction of
L given l (Section 7.2).
7.1 Deciding Vertex Level
Given a G and a vertex v ∈ V , let Sin(v,G) be the set of ver-

tices that can reach v inG, and Sout(v,G) be the set of vertices that
v can reach inG. Suppose that we set the level of v higher than the

level of any vertex in Sin(v,G) ∪ Sout(v,G). Then, in the corre-
sponding TOL index, we need to add v to the in-label sets of the
vertices in Sin(v,G), as well as the out-label set of the vertices in
Sout(v,G). In that case, v contributes |Sin(v,G)|+ |Sout(v,G)|
labels in L.
On the other hand, if we set the level of v to a lower level than

all vertices in Sin(v,G) ∪ Sout(v,G), then we need to (i) add
each vertex in Sin(v,G) into Lin(v), and (ii) add each vertex in
Sout(v,G) into Lout(v). Furthermore, if v happens to be the only
vertex that connects vertices in Sin(v,G) to those in Sout(v,G),
then in the worst case, we have to add every vertex in Sout(v,G)
to the out-label set of every vertex in Sin(v,G). In that scenario, v
contributes |Sin(v,G)| · |Sout(v,G)|+ |Sin(v,G)|+ |Sout(v,G)|
labels in L.
We define |Sin(v,G)| and |Sout(v,G)| as the in-score and out-

score of v, respectively. In addition, we define a score function f
as follows:

f(v,G) =
|Sin(v,G)| · |Sout(v,G)|+ |Sin(v,G)|+ |Sout(v,G)|

|Sin(v,G)|+ |Sout(v,G)| .

In the pathological case when |Sin(v,G)| + |Sout(v,G)| = 0,
we define f(v,G) = 0. Intuitively, if f(v, G) is large, then v
should be given a higher order than the vertices in Sin(v,G) ∪
Sout(v,G), so as to avoid the worst-case space cost of |Sin(v,G)|·
|Sout(v,G)|+ |Sin(v,G)|+ |Sout(v,G)|.
Based on the above intuition, we can design an algorithm to de-

rive a good level order l as follows. Given G, we first identify the
vertex v1 that maximizes f(v1, G), and then set l(v1) = 1, i.e., we
assign v1 to the highest level. After that, we remove v1 from G,
and proceed to identify the vertex v2 that maximizes f(v2, G) in
the modified G, then set l(v2) = 2. We repeat this process until all
vertices are removed fromG, i.e., until each vertex is given a level.
Although the above algorithm is intuitively, it is difficult to im-

plement efficiently, as (i) the computation of f(v, G) requires us
to derive the in-score and out-score of v using BFS (or DFS) on
G, and (ii) the in-score and out-score of a vertex need to be re-
computed whenever another vertex is removed from G. To address
this deficiency, we propose to approximate the in-scores and out-
scores of the vertices in G.
Let S�

in(v) and S�
out(v) be the approximate in-score and out-

score of a vertex v, respectively. For each vertex w in G with
no in-neighbor (resp. out-neighbor), we set S�

in(w) = 0 (resp.
S�
out(w) = 0) to zero; note that this is also the exact in-score
(resp. out-score) of w. After that, based on those vertices w, we re-
cursively compute the approximate in-score and out-score of each
remaining vertex v as follows:

S�
in(v) =

{∑
u∈Nin(v)

(
S�
in(u) + 1

)
, if Nin(v) �= ∅;

0, otherwise.

S�
out(v) =

{∑
u∈Nout(v)

(
S�
out(u) + 1

)
, if Nout(v) �= ∅;

0, otherwise.

where Nin(v) and Nout(v) denote the sets of in-neighbors and
out-neighbors of v, respectively. It can be verified that S�

in(v)
and S�

out(v) are upperbounds of v’s in-score and out-score, respec-
tively. As an alternative solution, we also consider using a lower-
bound of v’s in-score (resp. out-score), denoted as S⊥

in(v) (resp.
S⊥
out(v)), for approximation. In particular, S

⊥
in(v) = 0 if v has no

in-neighbor, and S⊥
out(v) = 0 if v has no out-neighbor. For any

other vertex, we have:

S⊥
in(v) =

⎧⎨
⎩
∑

u∈Nin(v)
S⊥
in(u)+1

|Nout(u)| , if Nin(v) �= ∅;
0, otherwise.
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S⊥
out(v) =

⎧⎨
⎩
∑

u∈Nout(v)
S⊥
out(u)+1

|Nout(u)| , if Nout(v) �= ∅;
0, otherwise.

Note that we can compute S�
in(v) for all vertices v in G, using

a linear scan of the vertices. Specifically, we inspect the vertices v
in ascending order of their topological ranks o(v) (see Section 2).
As G is a DAG, the vertices with the smallest ranks must have no
in-neighbors, and hence, we have S�

in(u) = 0 for any of those ver-
tices. By the definition of topological ranks, when we inspect any
other vertex w, the S�

in values of w’s in-neighbor must have been
computed. Therefore, S�

in(w) can be easily derived. In summary,
we can compute S�

in(v) for all vertices v inO(|V |+|E|) time. The
same algorithm can be easily extended to compute S⊥

in(v). Mean-
while, we can derive S�

out(v) and S
⊥
out(v) for all vertices v, using

a linear scan of the vertices in G in descending order of their topo-
logical ranks.

7.2 Labeling Algorithm
As discussed in Section 4, a level order l uniquely decides a TOL

index L. In this section, we introduce an algorithm for construct-
ing L given a level order l computed using the methods in Sec-
tion 7.1. Similar approaches have been proposed in [2, 17] for spe-
cific instantiations of TOL (with specific level orderings), but the
correctness analysis therein is not immediately applicable under the
general TOL framework. Therefore, we present our algorithm and
analysis for the sake of completeness.

Algorithm. Algorithm 5 presents our method (referred to as But-
terfly for constructing L given a level order l on G. The algorithm
first creates a copy of G (referred to as G1), and then it runs in
|V | iterations. In the k-th iteration, it removes from Gk the ver-
tex v with l(v) = k, and inserts v into the label sets of other
vertices. In particular, we first obtain the set B+(v) of vertices
in Gk that v can reach, using a BFS from v that follows the out-
going edges of each vertex. Then, for each vertex w ∈ B+(v),
if Lout(v) ∩ Lin(w) = ∅, then we add v into Lin(w). After
that, we perform a BFS on Gk from v following the incoming
edges of each vertex, to identify the set B−(v) of vertices that can
reach v in Gk. For each u ∈ B−(v), we insert v into Lout(u) if
Lout(u) ∩ Lin(v) = ∅. At the end of the iteration, we remove v
from Gk, and denote the resulting graph as Gk+1. After that, we
proceed to the (k+ 1)-th iteration. Once all iterations are finished,
Algorithm 5 returns the label sets constructed, which form a TOL
index L on G.
Correctness and Complexity. We prove the correctness of Algo-
rithm 5 by the following lemma.

LEMMA 5. Given a DAG G = (V,E) and a vertex level, Algo-
rithm 5 outputs a TOL index of G.

PROOF. Observe that, for any two vertices u and v, Algorithm 5
inserts u into the in-label (resp. out-label) set of v, only when
l(u) < l(v) and u can reach v (v can reach u). Therefore, the
index constructed by Algorithm 5 never violates the Rechability or
Level Constraint in Definition 1.
By contradiction, assume that the output of Algorithm 5 is not

a TOL index. Then, there exist two vertices u and v such that (i)
u is in the in-label or out-label of v, and (ii) u violates the Path
Constraint. We first discuss the case when u is in the in-label of
v, i.e., u → v, and the same discussion can be extended to the
alternative case.
Since u does not fulfill the Path Constraint, there exists a vertex

w in the path from u to v, such that the level of w is higher than
the levels of u and v. In case that there exist several such paths,

Algorithm 5: BUTTERFLY
input : G and a level order l
output: a TOL index L

1 let G1 = G ;
2 for k = 1, · · · , |V | do
3 let v be the vertex whose level is k ;
4 identify the set B+(v) of vertices that v can reach in Gk , using a

BFS from v that follows the outgoing edges of each vertex ;
5 identify the set B−(v) of vertices that can reach v in Gk , using a

BFS from v that follows the incoming edges of each vertex ;
6 for each vertex u in B+(v) do
7 if Lout(v) ∩ Lin(u) = ∅ then
8 add v to Lin(u) ;

9 for each vertex u in B−(v) do
10 if Lout(u) ∩ Lin(v) = ∅ then
11 add v to Lout(u) ;

12 remove v and Gk and denote the resulting graph as Gk+1 ;

13 return the label sets of all vertices in G ;

we let w be the vertex with highest level in all those paths. Since
the level of w is higher than the levels of u and v, w is removed
before the removals of u and v. Then, when Algorithm 5 removes
w, it must add w into the out-label set of u and the in-label set
of v. Now observe that, when Algorithm 5 removes u, it adds u
into the in-label set of v, only if Lout(u) ∩ Lin(v) = ∅. However,
sincew has been inserted into bothLout(u) andLin(v), Lout(u)∩
Lin(v) �= ∅. This indicates that u should not be in Lin(v), leading
to a contradiction.

We now discuss the complexity of Algorithm 5. Let Gk =
(Vk, Ek) be the input graph to the k-th iteration, and denote the
vertex with highest vertex level in Gk by v. The complexity of
forward and backward BFS is bounded by |Ek|, and total size of
B−(v) andB+(v) is bounded by |Vk|. Besides, the size of in-label
or out-label of any vertex at k-th iteration is at most k since only
the vertices whose levels are higher than v are added the current
labels. As such, the complexity of each operation, intersection or
addition, can be bounded by O(k). In sum, we bound the complex-
ity at k-iteration as O(|Ek| + k|Vk|). Note that, as we remove a
vertex from Gk at the end of the k-th iteration, the graph for com-
puting becomes smaller and smaller, that is, the complexity at the
k-th iteration decreases significantly when k increases.

8. EXPERIMENTS
This section experimentally evaluates our solution against the

state of the art. We implement our algorithms in C++, and we adopt
the C++ implementations of all competitors provided by their au-
thors. All of our experiments are conducted on a machine with an
Intel Xeon 2.4GHz CPU and 48GB RAM, running Ubuntu 12.4. In
each experiment, we measure the performance of each method for
5 times, and we report the average measurement. If a method re-
quires more than 24 hours or more than 48GB RAM to preprocess
a dataset D, we omit the method from the experiments onD.

Datasets and Queries. Table 3 shows the datasets used in our
experiments. Among them, RG5, RG10, RG20, and RG40 are
synthetic DAGs generated using the method in experiments in [8],
varying the average degree of vertices from 5 to 40, setting the
topological level to 8 (see [8] for details). The other 11 datasets are
the largest DAGs that have been adopted in the literature. In par-
ticular, uni-22m, uni-100m, uni-150m, wiki, citeseerx, go-uniprot,
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dataset |V | |E| avg. deg.

RG5 1.0M 5.0M 5.00
RG10 1.0M 10.0M 10.00
RG20 1.0M 20.0M 20.00
RG40 1.0M 40.0M 40.00

uniprot22m (uni-22m) 1.6M 1.6M 1.00
uniprot100m (uni-100m) 16.1M 16.1M 1.00
uniprot150m (uni-150m) 25.0M 25.0M 1.00
wiki 2.3M 2.3M 1.01
Twitter 16.6M 18.4M 1.10
Yago2 16.1M 25.7M 1.59
Web-UK 20.4M 37.8M 1.85
citeseerx 6.3M 14.8M 2.36
GovWild 8.0M 23.7M 2.95
patent 3.7M 15.7M 4.27
go-uniprot 7.0M 34.8M 4.99

Table 3: Datasets (M = 106).

and patents are from [8, 17], while GovWild, Yago2, Twitter, and
Web-UK are used in [25].
On each datasetG, we generate a set of 106 reachability queries.

In particular, we first derive a topological order on the vertices in
G. Then, for each query q, we randomly select two vertices from
G, and we choose the vertex with lower (resp. higher) topological
rank as the source (resp. terminal) vertex s (resp. t). This method of
query generation ensures that none of the queries can be answered
by trivially checking whether the terminal vertex has a lower topo-
logical rank than the source vertex1.
For each experiment on updates onG, we randomly remove 104

vertices one by one fromG, and measure the average deletion time
of each method. After that, we insert the deleted vertices back into
G, in reverse order of their removal. During this process, we eval-
uate the average insertion time of each algorithm.

Experiments on Dynamic Graphs. Our first set of experiments
evaluates our solution against existing techniques for dynamic
graphs. As mentioned in Section 3, there exist a few methods
[4, 12, 13, 16, 22, 24, 32] for handling updates on reachability in-
dices. Among them, [12,13,22] are shown to be restricted to small
graphs with at most a few thousand vertices [20], while [24] only
handles XML graphs. We test the remaining methods, and find
that only Dagger [32] is able to run on more than one datasets in
our experiments. Therefore, we choose Dagger as our competi-
tor. In addition, we evaluate two versions of our solution, namely,
Butterfly-U (BU) and Butterfly-L (BL), such that BU adopts S�

in

and S�
out as its score functions, and BL adopts S

⊥
in and S

⊥
out (see

Section 7).
Figure 2 shows the average insertion time of BU, BL, and Dag-

ger. Observe that BU is more efficient than Dagger in most cases.
In particular, on Twitter, BU’s insertion time is lower than that of
Dagger by four orders of magnitude. Meanwhile, BL is evidently
less efficient than BU, although it still outperforms Dagger on half
of the datasets. (Note that we omit BL on RG40, as it incurs ex-
cessive memory consumption on the graph.) The performance gap
between BU and BL indicates that the vertex ordering adopted by
BU is superior to that by BL. Meanwhile, Dagger considerably out-
performs BU and BL on uni-22m, uni-100m, and uni-150m, since

1We have also experimented with alternative query sets that disre-
gard the topological ranks of vertices; the experimental results are
qualitatively similar to those reported in this paper, and are included
in our online technical report [1].

(i) each of those three graphs is a tree, and (ii) Dagger is particu-
larly efficient on trees [32].
Figure 3 illustrates the total query time (for processing 106

queries) of BU, BL, Dagger, as well as a simple baseline approach.
In particular, given a reachability query q on a graph G, the base-
line approach performs a BFS from the source vertex of q (follow-
ing the outgoing edges of each vertex), as well as a BFS from the
terminal vertex of q (following the incoming edges of each ver-
tex). The two BFSs take turns to traverse the vertices in G, until
a common vertex is visited by both BFSs (i.e., when a path from
the source vertex to the terminal vertex is found). As shown in Fig-
ure 3, BU consistently outperforms Dagger and the BFS approach,
and BL’s query time is slightly worse than BU’s in general. On the
other hand, Dagger is only slightly better than the BFS approach
on most datasets, and is more than 900 (resp. 700) times slower
than the latter on Wiki (resp. Twitter). This shows that Dagger is
not a favorable approach for handling updates on dynamic graphs,
as it incurs significantly higher update overheads than the BFS ap-
proach without providing substantially better query performance.
(Note that the BFS approach entails zero update costs as it does not
maintain any index.)
Finally, Figure 4 shows the average deletion time of each

method. BU and BL’s performance is generally comparable to Dag-
ger’s, except on RG40 and wiki. The slightly inferior performance
of BU on deletion is justified by its superior efficiency on insertions
and queries.

Experiments on Static Graphs. Our second set of experiments
compares BU and BL with three state-of-the-art methods for static
graphs, namely, TF-label (TF) [8], hierarchical labeling (HL) [17],
distribution labeling (DL) [17]. For completeness, we also include
Dagger in the experiments. Figure 5 illustrates the space consump-
tion of each method. Observe that BU and BL generally outperform
both TF and DL. To explain, recall that BU, BL, TF, and DL are all
instantiations of the TOL framework. As such, their performance
are solely decided by the vertex orderings that they adopt. The ver-
tex ordering in DL (resp. TF), however, simply ranks vertices based
on their degrees (topological ranks). In contrast, both BU and BL
rank vertices based on advanced score functions that take into ac-
count the characteristics of the input graphs. As such, the vertex
orderings employed by BU and BL are superior to those by TF and
DL, and hence, lead to smaller index sizes. In particular, on RG10,
the space overhead of BU is 5 times smaller than that of DL. Mean-
while, the space cost of HL is always higher than that of DL, which
is consistent with the experimental results in [17].
Figure 6 illustrates the preprocessing time of each method. The

relative performance of BU, BL, TF, HL, and DL are similar to the
case of Figure 5, since a smaller index size indicates fewer labels
in the label sets, and hence, the construction cost for the label sets
is generally smaller. We omit HL and DL on RG20 and RG40,
since their memory consumptions on those graphs exceed 48GB.
On RG10, the preprocessing costs of HL, DL, and TF are at least
an order of magnitude higher than that of BU, which indicates that
the former are more sensitive to the average degree of the input
graph. Figure 7 plots each algorithm’s total query time for 106

random queries. Again, BU and BL consistently outperform TF
and DL, due to their improved vertex orderings. In particular, on
RG10, the query time of BU is 4 (resp. 7) times less than that of TF
(resp. DL). Meanwhile, the query cost of HL is comparable to that
of DL.

Experiments on Label Reduction. Our last set of experiments
evaluates the label reduction approach presented in Section 6.
Specifically, we first use DL and TF to construct reachability in-
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Figure 3: Total query time on dynamic graphs.
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Figure 4: Average deletion time on dynamic graphs.

DL TF
ΔL(MB) ΔL/|L| time (s) ΔL(MB) ΔL/|L| time (s)

RG5 98.91 51.94% 986.3 877.22 82.79% 2.9K
RG10 1.63K 81.61% 98.9K — — —
uni-22m 0.00 0.00% 0.1 0.00 0.01% 0.3
uni-100m 0.71 0.96% 3.6 2.26 3.89% 5.5
uni-150m 3.14 2.46% 201.1 4.77 10.59% 324.2
wiki 0.00 0.00% 0.1 0.01 0.74% 0.3
Twitter 0.00 0.00% 3.7 0.02 8.41% 6.5
Yago2 0.00 0.00% 18.9 0.00 0.00% 18.8
Web-UK 38.69 21.80% 456.3 820.17 47.02% 12.7K
citeseerx 9.14 13.95% 773.2 192.71 96.23% 1.5K
GovWild 20.69 16.24% 844.1 2.40K 94.62% 59.3K
patent 255.09 48.92% 3.0K 3.69K 93.27% 186.5K
go-uniprot 53.24 26.91% 2.9K 104.61 66.38% 5.4K

Table 4: Performance of label reduction (K = 103).

dices L on each graph, and then apply our label reduction algo-
rithm on L to obtain an improved index L∗. Then, we measure the
difference ΔL between the sizes of L∗ and L, and we divide ΔL
by the size of L to derive the ratio of space reduction. Observe that
the ratio of space reduction is up to 81.61% and 96.23% for DL and
TF, respectively. This demonstrates the effectiveness of our label
reduction approach. Nevertheless, the label reduction process in-
curs significant computation overheads on some of the graphs (e.g.,
patent). This indicates that one should not overly rely on the label
reduction approach to improve the performance of a TOL index,
but should adopt a good initial vertex order (e.g., the ones adopted
by BU and BL). Note that no result is presented for TF on RG10,
since the label reduction process takes excessive time on the graph.
In addition, we omit RG20 and RG40 from the experiments, since
both DL and TF incur prohibitive memory consumption on those
two datasets.

9. CONCLUSIONS
This paper presents a novel study on reachability queries on large

dynamic graphs. We propose general and efficient algorithms for
processing vertex insertions and deletions on reachability indices,
and we show that our algorithms can also be used to improve the
performance of existing techniques for static graphs. In addition,
we devise a new algorithm for constructing an efficient reachability
index on an input graph from scratch. We evaluate our solution on
a large set of real and synthetic graphs, and we demonstrate that
our solution not only supports efficient updates on large dynamic
graphs, but also provides even better query performance than the
state-of-the-art techniques for static graphs. To our knowledge,
we are the first in the literature to present a reachability index that
can efficiently handle updates while offering superior query perfor-
mance. For future work, we plan to investigate how our solutions
can be extended to massive graphs that do not fit in main memory.
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