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Abstract

Due to the convenience of mobile devices, the online games have
become an important part for user entertainments in reality,
creating a demand for friend recommendation in online games.
However, none of existing approaches can effectively incorporate
the multi-modal user features (e.g., images and texts) with the
structural information in the friendship graph, due to the following
limitations: (1) some of them ignore the high-order structural prox-
imity between users, (2) some fail to learn the pairwise relevance
between users at modality-specific level, and (3) some cannot
capture both the local and global user preferences on different
modalities. By addressing these issues, in this paper, we propose
an end-to-end model FROG that better models the user preferences
on potential friends. Comprehensive experiments on both offline
evaluation and online deployment at Tencent have demonstrated
the superiority of FROG over existing approaches. The source code
of this paper can be found at https://github.com/socialalgo/FROG.
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1 Introduction

Due to the convenience of mobile devices, online games have
become a significant component for user entertainments in
reality [2, 8, 12–15, 17, 18, 20, 25–28]. In the online games, a player
𝑢 might want to connect with the other players for the purpose of
sociality to interact with interesting users, or gaming requirements
that encourage players to play the games together [12, 13, 25, 28].
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However, it is difficult for player 𝑢 to search among billions
or millions of players in the online game platforms, which has
prompted a need for friend recommendation in the online games.
Specifically, given a user (i.e., player) 𝑢 in an online game platform,
the friend recommendation task aims to recommend a short list
of new potential friends with whom 𝑢 might be interested to have
a connection. It also has been empirically verified that friend
recommendation in the online games brings the growth of social
network, and further increases the number of active interactions
between users like game-playing or chatting [13, 28], leading to
an increase of the total revenues in the game providers.

To tackle friend recommendation task, a straightforward ap-
proach is to utilize the natural graph structure behind the social
networks where the nodes represent the users in a specific platform,
and the edges between two nodes 𝑢 and 𝑣 denote that users 𝑢 and 𝑣
are friends in the platform. Based on the friendship graph, a plenty
of traditional proximity-based methods can be adopted by firstly
computing the user-user proximity scores based on the topologi-
cal information, and then returning the top-𝑘 users that have the
highest proximity scores with respect to (w.r.t) a given user 𝑢 as the
potential friends for user 𝑢, e.g., Personalized PageRank [10, 12],
the common friends-based triadic closure principle [3] or the path-
based Katz centrality [9]. These proximity-based methods are based
on the rationale that two users are more likely to connect if they
have many common friends. However, this kind of methods fail
to consider the valuablemulti-modal information in the online
games, e.g., the user attributes and the in-game attributes, leading
to inferiority in the performance. The multi-modal information
has an important effect on users’ decision to accept the recom-
mendations. For example, a user whose profile image is a cartoon
character is more likely to be interested in the users who have the
cartoon profile image than those who have the profile image with
natural scenery. Besides, advanced game players with high game
level are more inclined to play with peers of comparable gaming
ability, rather than those with vastly different game levels, as it
leads to a more enjoyable gaming experience. Thus, it is equally im-
portant for friend recommendation to capture the user preferences
by exploiting the multi-modal data.

Nevertheless, utilizing the multi-modal information for friend
recommendation is not trivial due to the following two challenges.
Challenge 1: How to jointly process the multi-modal data

of different scales?Multi-modality data can take various forms
with different scales as they are collected from diverse domains.
Although the use of user profile features has become pervasive in
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Figure 1: Framework of our proposed model FROG.

product/item recommendation applications by learning the interac-
tions between input features explicitly or implicitly, these feature-
based methods [4, 6, 16, 19, 23, 29], e.g., FM [19], DeepFM [4] and
AutoInt [23], struggle to deliver comparable results when applied
to friend recommendation tasks, since they not only ignore the high-
order structural proximity between users revealed from the friendship
graph, but also fail to inject modality-aware signals. While the state-
of-the-art approach GraFRank [21] for friend recommendation
exploits Graph Neural Network (GNN) to fuse the structural infor-
mation, it cannot effectively capture the pairwise relevance between
users since it focuses on the updating of individual user embedding.
Challenge 2: How to effectively discriminate the effect of

eachmodality for personalized recommendation? Each modal-
ity contributes differently to a successful friend recommendation
due to the following two reasons. (i) The information contained
within each modality is distinct, leading to significant variations in
their discriminative capabilities. (ii) The user preferences towards
different modalities are highly personalized, e.g., some users might
focus on the profile images only, while some might be interested
in the game-playing histories. Thus, it necessitates an effective
methodology to discern the attentions of each user on each modal-
ity. Although previous work GraFRank [21] aggregates the neigh-
bor information in a modality-specific manner, it misses the global
preferences on different modality. The case becomes more challeng-
ing when combining the personalized attentions on modalities with
the pairwise relevance between users.

To tackle these issues, we consider to develop an effective model
for multi-modal friend recommendation in online games that have
the following three abilities simultaneously. (1) End-to-end learn-
ing (EE). The model learning should be end-to-end to generate the
probability that any pair users will be friends for final friend recom-
mendation, instead of emphasis on individual user embeddings. (2)
Modality-aware pairwise learning with high-order topological
information (MP). The model can learn the implicit relationships
between users at the fine-grainedmodality-specific level by incorpo-
rating the high-order structural proximity revealed in the friendship
graph. (3) Holistic personalized learning (HP). The model can
learn the personalized user attentions on multi-modalities from
both the local and global views. To the best of our knowledge, all
of existing approaches in friend/item recommendation scenarios
fail to satisfy above three key abilities simultaneously.In this pa-
per, we propose a novel end-to-end model for multi-modal friend
recommendation in online games, termed FROG, that can fulfill the

above three capabilities simultaneously. FROG has been deployed
in the online games in Tencent and supports various friend recom-
mendation scenarios. The following shows our contributions.
• We devise a Matching-Net inside FROG to learn the pairwise
relationship at the fine-grained modality-specific level.

• We combine a Local-Net and a Global-Net inside FROG for holis-
tic personalized learning.

• Comprehensive experiments demonstrated that the proposed
model FROG significantly outperforms the state-of-the-art meth-
ods on two real datasets by up to 15.82% and 14.59% in terms
of Hit-Rate and NDCG, respectively.

• We have developed FROG in a friend recommendation scenario
of an online game in Tencent and conducted online A/B test to
show its superiority over existing approaches.

2 Problem Definition

Given an online game with a massive number of users, let 𝑉 be the
set of all users in the game. In the online game, each user 𝑢 ∈ 𝑉 has
a profile that contains the in-game attributes, such as game levels,
personal descriptions, and profile images. Let𝐺 (𝑉 , 𝐸) denote the
friendship graph, where 𝑉 is the set of users and 𝐸 ⊆ 𝑉 ×𝑉 is the
set of friendship edges between users in 𝐺 . In this paper, we only
consider the static friendship graph that is captured before the daily
model training phase. Let 𝑛 denote the number of users in the game
platform before the daily model training.

Let 𝑡 be the number of modalities used for user features. The
multi-modal data of 𝑢 is denoted by X𝑢 =

[
𝑋 1
𝑢 , 𝑋

2
𝑢 , . . . , 𝑋

𝑖
𝑢 , . . . , 𝑋

𝑡
𝑢

]
,

where 𝑋 𝑖
𝑢 is the data from the 𝑖-th modality of user 𝑢 and 𝑖 is an

integer in [1, 𝑡]. The data from each modality might have differ-
ent forms, e.g., a vector or a graph (which will be elaborated in
Section 3). We formally define the problem of multi-modal friend
recommendation in a large-scale game platform as follows:

Definition 1 (Multi-Modal Friend Recommendation). Given the
multi-modal user features X of all users in 𝑉 , and a user 𝑢 ∈ 𝑉 , it
recommends a list 𝐿 of 𝑘 users from 𝑉 , such that the probability
𝑦𝑢,𝑣 of a user 𝑣 ∈ 𝐿 that 𝑢 would establish a new friendship with 𝑣

is larger than other users that are not in the recommended list 𝐿,
i.e., 𝑦𝑢,𝑣 > 𝑦𝑢,𝑤 for all 𝑣 ∈ 𝐿 and𝑤 ∉ 𝐿.

3 Proposed Method

3.1 Overview

Given two users𝑢 and 𝑣 , and their multi-modal dataX𝑢 andX𝑣 , our
FROG generates the friending probability𝑦𝑢,𝑣 that𝑢 would establish
a new friendship with 𝑣 . Figure 1 shows the overall framework of
our FROG that consists of five key components, i.e., (1) the Emb-Net,
(2) theMatching-Net, (3) the Local-Net, (4) the Global-Net, and (5)
the Joint-Net. To be specific, FROG firstly feeds the multi-modal
data X𝑢 (w.r.t X𝑣 ) into the Emb-Net to transform each modality of
X𝑢 (w.r.t X𝑣 ) into a unified representation for the subsequent steps.
Secondly, the obtained representations M𝑢 (w.r.t M𝑣 ) are coupled
in the Matching-Net to learn the pairwise implicit similarity be-
tween 𝑢 and 𝑣 at the modality-specific level. Specifically, it jointly
learns the mutual relevance between 𝑢 and 𝑣 for each modality,
instead of regarding the modality data of each user individually.
After that, the Local-Net and the Global-Net are processed simulta-
neously where the Local-Net facilitates the personalized preference
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of user𝑢 on user 𝑣 and theGlobal-Net utilizes a shared multi-modal
global attention mechanism (MMGA) to capture the global informa-
tion of all users. Finally, the obtained local and global information
is fused in the Joint-Net, which produces the friending prediction.
3.2 Details of FROG

In this section, we elaborate the five key components one by one.
(1) Emb-Net. The Emb-Net processes the multi-modality features
into a unified representation. Specifically, given the multi-modal
dataX𝑢 of a user𝑢, for the 𝑖-th modality𝑋 𝑖

𝑢 , it generates a modality-
specific embedding𝑀𝑖

𝑢 by considering the properties of the specific
modality. After projecting each modality-specific embedding into a
𝑑-dimensional vector via three full-connected layers, it yields M𝑢

as a new representation of 𝑢 by concatenating all vectors together,
i.e., M𝑢 = {𝑀1

𝑢 , . . . , 𝑀
𝑖
𝑢 , . . . , 𝑀

𝑡
𝑢 } where𝑀𝑖

𝑢 is an 1 × 𝑑 vector. Due
to space limit, more details about how features in each modality
are generated could be found in our technical report [24].
(2)Matching-Net. To satisfy the capability of modality-aware pair-
wise learning, theMatching-Netmodule jointly learns the pairwise
similarity between two users on a specific modality. Specifically,
given a pair of two users 𝑢 and 𝑣 , and their representationsM𝑢 and
M𝑣 returned by the Emb-Net, theMatching-Net outputs a set E𝑢,𝑣
that contains the pairwise similarity embedding E𝑖𝑢,𝑣 between two
users w.r.t the 𝑖-th modality, i.e., E𝑢,𝑣 = {E1𝑢,𝑣, . . . ,E𝑖𝑢,𝑣, . . . ,E𝑡𝑢,𝑣}.

A straightforward approach to learn the pairwise similarity be-
tween two users is to compute the similarity between two represen-
tationsM𝑢 andM𝑣 by using traditional L𝑝 -norm-based similarity
measure, e.g. Euclidean Distance or Inner Product. However, this
approach fails to discover the difference of mutual similarity. That
is, the similarity score of user 𝑢 w.r.t 𝑣 is different from that of
user 𝑣 w.r.t 𝑢 since 𝑢 and 𝑣 might have different preferences in
making friends. To solve this problem, ourMatching-Net module
computes the pairwise similarity embedding by considering the
mutual similarity. Formally, E𝑖𝑢,𝑣 is computed as follows:

E
𝑖
𝑢,𝑣 = 𝑀𝑖

𝑢 ◦ 𝑅𝑖𝑢→𝑣 +𝑀𝑖
𝑣 ◦ 𝑅𝑖𝑣→𝑢 , (1)

where𝑅𝑖𝑢→𝑣 and𝑅𝑖𝑣→𝑢 are the 1×𝑑 relevance vectors of 𝑣 w.r.t𝑢 and
𝑢 w.r.t 𝑣 on the 𝑖-th modality, respectively, and ◦ is Hadamard prod-
uct that performs the element-wise multiplication of two vectors.
Computation of relevance vectors. To avoid being trapped in
the local-level data, we utilize the attention mechanism to better
model the mutual similarity. Specifically, the relevance vectors
𝑅𝑖𝑢→𝑣 and 𝑅𝑖𝑣→𝑢 are computed in three steps. Firstly, we measure
the attention values𝐶𝑖

𝑢 (w.r.t𝐶𝑖
𝑣 ) of the 𝑖-th modality representation

𝑀𝑖
𝑢 (w.r.t𝑀𝑖

𝑣 ) as below:
𝐶𝑖
𝑢 = 𝑃𝑖𝑢𝑀

𝑖
𝑢𝑄

𝑖
𝑢 and 𝐶𝑖

𝑣 = 𝑃𝑖𝑣𝑀
𝑖
𝑣𝑄

𝑖
𝑣, (2)

where 𝑃𝑖𝑢 , 𝑄𝑖
𝑢 , 𝑃𝑖𝑣 and 𝑄𝑖

𝑣 are learnable parameters, 𝑃𝑖𝑢 and 𝑃𝑖𝑣 are
𝑑 × 1 vectors, 𝑄𝑖

𝑢 and 𝑄𝑖
𝑣 are 𝑑 × 𝑑 matrices. Notice that 𝑃𝑖𝑢 and 𝑄𝑖

𝑢

work together to refine the granularity of the relationships inherent
in 𝑀𝑖

𝑢 . Similarly for 𝑃𝑖𝑣 and 𝑄𝑖
𝑣 . Secondly, the affinity matrix 𝐺𝑖

𝑢,𝑣

between 𝑢 and 𝑣 is computed by using the tanh function:

𝐺𝑖
𝑢,𝑣 = 𝑡𝑎𝑛ℎ

(
(𝐶𝑖

𝑢 )𝑇𝐶𝑖
𝑣

)
. (3)

Finally, the relevance vectors are calculated by using the mean-
pooling on the affinity matrix:

𝑅𝑖𝑢→𝑣 = 𝜎1
(
RowMean

(
𝐺𝑖
𝑢,𝑣

))𝑇
, (4)

Dataset #Training #Validation #Testing #Total
Game1 697,979 174,495 3,210,833 4,083,307
Game2 1,085,124 271,281 8,986,352 10,342,757

Table 1: Statistics of the datasets.

𝑅𝑖𝑣→𝑢 = 𝜎1
(
ColMean

(
𝐺𝑖
𝑢,𝑣

))
, (5)

where 𝜎1 (·) is an activation function.
(3) Local-Net. The Local-Net module explores the extent of how
user 𝑢 is interested to be friends with user 𝑣 by considering the
pairwise similarity from the perspective of each modality. Specifi-
cally, given the set E𝑢,𝑣 of pairwise similarity embeddings, a simple
multi-layers perceptron (MLP) [6] is used to generate the local
personalized preference as follows:

𝐷𝑙𝑜𝑐𝑎𝑙
𝑢,𝑣 = 𝑀𝐿𝑃

(
𝜙1≤𝑖≤𝑡 (E𝑖𝑢,𝑣)

)
, (6)

where 𝜙 is a element-wise concatenation function and the output
of 𝜙1≤𝑖≤𝑡 (E𝑖𝑢,𝑣) is an 1 × 𝑡𝑑 vector. Since MLP can handle the
interaction of features in the input data automatically, the locally
discriminative information can be well observed.
(4) Global-Net. However, Local-Net learns the local personalized
preference from a single training instance, which misses the global
preference on different modalities. For example, the image data
might be more important in the success of recommendation than
the textual data, which can be revealed by all users. To address this
issue, we propose the Global-Net module to inject the global user
preferences on different modals by using a shared MMGA mecha-
nism. To be specific, we use a trainable 1 × 𝑑 vector 𝐴 to represent
a global training sample decision plane, namely, 𝐴 is treated as a
global key shared with all training samples. Formally, given the
set E𝑢,𝑣 of pairwise similarity embeddings, it calculates the global
preference𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑢,𝑣 by projecting E𝑢,𝑣 on the global sample decision
plane 𝐴 as follows:

𝐷
𝑔𝑙𝑜𝑏𝑎𝑙
𝑢,𝑣 =

(∑︁
1≤𝑖≤𝑡 E

𝑖
𝑢,𝑣𝐴

𝑇
)
𝐴. (7)

With this paradigm, the global information provided by all users is
integrated into the attention mechanism, augmenting the model
with the capability of capturing the global pattern.
(5) Joint-Net. After obtaining both the local and global user pref-
erences, the Joint-Net module is used to generate the friending
probability 𝑦𝑢,𝑣 that 𝑢 would like to be friends with 𝑣 , as follows:

𝑦𝑢,𝑣 = 𝜎3
(
𝑊2 · 𝜎2

(
𝑊1 · 𝜙 (𝐷𝑙𝑜𝑐𝑎𝑙

𝑢,𝑣 , 𝐷
𝑔𝑙𝑜𝑏𝑎𝑙
𝑢,𝑣 ) + 𝑏2

)
+ 𝑏1

)
, (8)

where 𝜎2 and 𝜎3 are activation functions,𝑊1 and𝑊2 are the train-
able weights while 𝑏1 and 𝑏2 are trainable biases.

3.3 Loss Function and Complexity Analysis

In online games, some users might accept or turn down several the
friend recommendations, which should be well distinguished. To
facilitate that, we exploit the FocalLoss [11] to construct the loss
of prediction 𝑦𝑢,𝑣 , as follows:

𝐿 = −𝛼 (1 − 𝑦)𝛾 𝑙𝑜𝑔 (𝑦) 𝑦 − (1 − 𝛼) 𝑦𝛾 𝑙𝑜𝑔 (1 − 𝑦) (1 − 𝑦) , (9)

where 𝑦 is the true label, 𝑦 represents 𝑦𝑢,𝑣 , 𝛼 ∈ [0, 1] and 𝛾 ≥ 0 are
hyper-parameters.
Complexity. Let𝑇𝑖 be the unit cost for computing𝑀𝑖

𝑢 by Emb-Net
for the 𝑖-thmodality for user𝑢. FROG takes𝑂 (∑𝑡

𝑖=0𝑇𝑖+𝑡𝑑3+(𝑡𝑑)2ℎ+
𝑡𝑑 + (ℎ + 𝑑)2) total time for each pair where ℎ is the number of
dimensions of 𝐷𝑙𝑜𝑐𝑎𝑙

𝑢,𝑣 . See the proof in technical report [24].
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Model Game1 Game2
HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

LR 0.2032 0.2534 0.2382 0.2663 0.2469 0.2777 0.0166 0.0124 0.0189 0.0131 0.0402 0.0210
MLP 0.2043 0.254 0.2395 0.2673 0.2483 0.2779 0.0167 0.0121 0.0191 0.0128 0.0406 0.0215
FM 0.209 0.2555 0.2404 0.2661 0.2477 0.2769 0.0145 0.0106 0.0163 0.0111 0.0357 0.0188
DeepFM 0.2067 0.2549 0.2401 0.2666 0.2487 0.2781 0.0149 0.012 0.0169 0.0126 0.0380 0.0208
AutoInt 0.2082 0.2558 0.2405 0.2669 0.2476 0.2782 0.0188 0.0148 0.0212 0.0155 0.0444 0.0237
DMF 0.2065 0.2543 0.2400 0.2654 0.2465 0.2772 0.0154 0.0115 0.0174 0.0121 0.0364 0.0198
SAGE+Max 0.2056 0.2573 0.2397 0.2656 0.2470 0.2772 0.0173 0.0136 0.0196 0.0143 0.0438 0.0225
SAGE+Mean 0.2074 0.2553 0.2404 0.2667 0.2475 0.2779 0.0176 0.0141 0.0199 0.0148 0.0439 0.0225
GraFRank 0.2088 0.2559 0.2400 0.2659 0.2475 0.2778 0.0182 0.0144 0.0204 0.0151 0.0438 0.0235
EBR 0.209 0.2562 0.2406 0.2668 0.2477 0.2781 0.0181 0.0142 0.0204 0.0149 0.0441 0.0235
FROG 0.2179 0.2637 0.2495

∗
0.2715

∗
0.2582

∗
0.2885

∗
0.0219 0.0163 0.0245

∗
0.0171

∗
0.0493

∗
0.0271

∗
Improvement 4.26% 2.79% 3.70% 1.57% 3.82% 3.70% 16.49% 10.14% 15.81% 10.32% 11.08% 14.59%

Table 2: Recommendation results of evaluated methods. The best and second-best results of each metric are highlighted in a

bold font and underlined, respectively. The improvement is computed as the gains of the best result over the second-best result.

Model Game1
HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

withoutMatching-Net 0.2129 (2.3%↓) 0.2587 (1.9%↓) 0.2415 (3.31% ↓) 0.2669 (1.72% ↓) 0.2487 (3.82% ↓) 0.2787 (3.52% ↓)
without Local-Net 0.2113 (3.1%↓) 0.2553 (3.3%↓) 0.2395 (4.18% ↓) 0.2657 (2.18% ↓) 0.2471 (4.49% ↓) 0.2774 (4.00% ↓)
without Global-Net 0.2127 (2.4%↓) 0.2572 (2.5%↓) 0.2407 (3.66% ↓) 0.2673 (1.57% ↓) 0.2489 (3.74% ↓) 0.2777 (3.89% ↓)

FROG 0.2179 0.2637 0.2495 0.2715 0.2582 0.2885

Table 3: The effect of each module in FROG for friend recommendation performance on Game1 dataset.
Model accRate intRate
AutoInt 42.86% 50.01%
FROG (Ours) 57.14% 62.51%

Table 4: Results of A/B testing in an online game of Tencent.

4 Experiments

4.1 Experiment Setup

Datasets.We used two real datasets [24] collected from Tencent: (1)
Game1 and (2) Game2. Table 1 shows the statistics of each dataset.
Baselines. We compared our method with eleven baselines includ-
ing Logistic Regression (LR) [6], MLP [6] that consists of three fully-
connected layers, Factorization Machine (FM) [19], DeepFM [4], Au-
toInt [23], AutoFIS+DeepFM [16] that removes redundant feature
intersections inside DeepFM, DMF [7], SAGE+Max [5] that uses the
element-wise max pooling in GraphSAGE model, SAGE+Mean [5]
that uses the element-wise sum-pooling in GraphSAGE model,
GraFRank [21] and EBR [22].
Default parameters. We exploit the Adam optimizer for training
the models. Besides, we set the learning rate as 0.001, the max
epochs as 50, and the batch size as 1024. For activation functions
used in FROG, 𝜎1, 𝜎2 and 𝜎3 are the softmax ReLu and Sigmoid
functions, respectively. For a fair comparison, we used the same
embeddings of multi-modal data obtained by Emb-Net and the same
training strategy for both our model and the competitors. Besides,
for each evaluated method, we choose the model that performs the
best in the validation set, to be evaluated for the testing set. Source
code of this paper can be found at [1].
Environment. We run the experiments on a machine with a Tesla
V100 GPU, 22 CPU cores, and 90 GB shared CPU memory. We
implemented each evaluated method by using TensorFlow.
Evaluation metrics. Following previous work [21], we used two
widely-used metrics to evaluate the performance of the proposed
approach, i.e., Hit-Rate (HR@𝑘) and Normalized Discounted Cumu-
lative Gain (NDCG@𝑘), where 𝑘 is varied from {5, 10, 20}. For each
experiment, we repeated 5 times and reported the average results.

4.2 Experimental Results

Overall performance. Table 2 shows the results on two datasets
where the best and second-best results of each metric are high-
lighted in a bold font and underlined, respectively. From the results,

we can see that our proposed model FROG achieves the best per-
formance on all datasets when 𝑘 is varied from 5 to 20. To be
specific, on the largest dataset Game2, FROG has better recom-
mendation performance than the second-best baseline AutoInt by

up to 15.82% and 14.59% in terms of HR and NDCG, respectively.
It is because FROG considers both the pairwise modality-aware
signals between users while AutoInt fails. Moreover, compared
with GraFRank that utilizes both the multi-modalities and the
social topology information, the performance of FROG is higher
no matter how 𝑘 is changed, showing the effectiveness of FROG by
considering both the local and global personalized user preferences
on different modalities.
Ablation study. We evaluated the effect of each module in FROG
with its three degraded variants. Table 3 shows the results on the
Game1 dataset by varying 𝑘 from 5 to 20. It demonstrates that each
module has the essential influence on the friend recommendation,
namely, FROG using all three modules has the best performance
by up to 4.49% and 4.00% in terms of HR and NDCG, respectively.
Online deployment. We deployed it in an online First Personal
Shooter (FPS) game of Tencent, which is is a multiplayer online
game with billions of users. We selected AutoInt as the competitor
since it achieves the second-best results in most of cases. Due to
space limit, the deployment settings could be found in [24]. We used
two evaluation metrics i.e., the acceptance rate (accRate) that user
accepts the recommendations and interaction rate (intRate) that
user interacts with the newly-connected friends after acceptance.
Due to space limit, the formal definitions are in technical report [24].
Table 4 shows the results of A/B tests. FROG outperforms AutoInt
by up to 33.3% and 25.5% in terms of both accRate and intRate,
respectively, showing the effectiveness of FROG in reality.

5 Conclusion

In this paper, we propose an end-to-end model FROG for multi-
modal friend recommendation in online games. The model focuses
on the modality-aware pairwise learning from both local and global
user preferences by utilizing the multi-modal user features. Com-
prehensive experiments have demonstrated its effectiveness for
friend recommendation scenarios in real-world online games.



FROG: Effective Friend Recommendation in Online Games via Modality-aware User Preferences SIGIR ’25, July 13–18, 2025, Padua, Italy

References

[1] 2024. Source codes of FROG. https://github.com/socialalgo/FROG.
[2] Linah Aburahmah, Hajar AlRawi, Yamamah Izz, and Liyakathunisa Syed. 2016.

Online social gaming and social networking sites. Procedia Computer Science 82
(2016), 72–79.

[3] David Easley, Jon Kleinberg, et al. 2012. Networks, crowds, and markets. Cam-
bridge Books (2012).

[4] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
IJCAI. 1725–1731.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NeurIPS 30 (2017), 1024–1034.

[6] Trevor Hastie, Jerome H. Friedman, and Robert Tibshirani. 2001. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer.

[7] Di Hu, Chengze Wang, Feiping Nie, and Xuelong Li. 2019. Dense multimodal
fusion for hierarchically joint representation. In ICASSP. IEEE, 3941–3945.

[8] Melinda Jacobs and Tanja Sihvonen. 2011. In perpetual beta? On the participatory
design of Facebook games. In Proceedings of DiGRA 2011 Conference: Think Design
Play.

[9] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[10] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020.
Index-free approach with theoretical guarantee for efficient random walk with
restart query. In ICDE. 913–924.

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In ICCV. 2980–2988.

[12] Wenqing Lin. 2019. Distributed Algorithms for Fully Personalized PageRank on
Large Graphs. In WWW. 1084–1094.

[13] Wenqing Lin. 2021. Large-Scale Network Embedding in Apache Spark. In SIGKDD.
3271–3279.

[14] Wenqing Lin, Xin Chen, Haoxuan Xie, Sibo Wang, and Siqiang Luo. 2025. Finding
Near-Optimal Maximum Set of Disjoint k-Cliques in Real-World Social Networks.
CoRR abs/2503.20299 (2025).

[15] Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng, and Hongyun Cai. 2020. Ini-
tialization for Network Embedding: A Graph Partition Approach. In WSDM.
367–374.

[16] Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xi-
uqiang He, Zhenguo Li, and Yong Yu. 2020. Autofis: Automatic feature interaction

selection in factorization models for click-through rate prediction. In SIGKDD.
2636–2645.

[17] Chang Liu, Qiwei Wang, Wenqing Lin, Yue Ding, and Hongtao Lu. 2024. Beyond
Binary Preference: Leveraging Bayesian Approaches for Joint Optimization of
Ranking and Calibration. In SIGKDD. ACM, 5442–5453.

[18] Chang Liu, Yuwen Yang, Yue Ding, Hongtao Lu, Wenqing Lin, Ziming Wu, and
Wendong Bi. 2024. DAG: Deep Adaptive and Generative K-Free Community
Detection on Attributed Graphs. In SIGKDD. ACM, 5454–5465.

[19] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[20] Luca Rossi. 2010. Playing your network: gaming in social network sites. Available

at SSRN 1722185 (2010).
[21] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks

for friend ranking in large-scale social platforms. In WWW. 2535–2546.
[22] Jiahui Shi, Vivek Chaurasiya, Yozen Liu, Shubham Vij, Yan Wu, Satya Kanduri,

Neil Shah, Peicheng Yu, Nik Srivastava, Lei Shi, Ganesh Venkataraman, and
Jun Yu. 2023. Embedding Based Retrieval in Friend Recommendation. In SIGIR.
3330–3334.

[23] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In CIKM. 1161–1170.

[24] Qiwei Wang, Dandan Lin, Wenqing Lin, and Ziming Wu. 2025. FROG: Effective
Friend Recommendation in Online Games via Modality-aware User Preferences.
arXiv:2504.09428 [cs.SI] https://arxiv.org/abs/2504.09428

[25] Shiqi Zhang, Yiqian Huang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, and Bo
Tang. 2023. Capacity Constrained Influence Maximization in Social Networks. In
SIGKDD. 3376–3385.

[26] Shiqi Zhang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, Yiqian Huang, and Bo
Tang. 2024. Information Diffusion Meets Invitation Mechanism. In WWW. ACM,
383–392.

[27] Shiqi Zhang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, and Bo Tang. 2022. Mea-
suring Friendship Closeness: A Perspective of Social Identity Theory. In CIKM.
ACM, 3664–3673.

[28] Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang. 2023. Constrained
Social Community Recommendation. In SIGKDD. 5586–5596.

[29] Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong,
Ruiming Tang, and Rui Zhang. 2023. Final: Factorized interaction layer for ctr
prediction. In SIGIR. 2006–2010.

https://github.com/socialalgo/FROG
https://arxiv.org/abs/2504.09428
https://arxiv.org/abs/2504.09428

	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Method
	3.1 Overview
	3.2 Details of FROG
	3.3 Loss Function and Complexity Analysis

	4 Experiments
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Conclusion
	References

