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ABSTRACT
Influence maximization (IM) is a classic problem that aims to iden-

tify a small group of critical individuals, known as seeds, who can

influence the largest number of users in a social network through

word-of-mouth. This problem finds important applications includ-

ing viral marketing, infection detection, and misinformation con-

tainment. The conventional IM problem is typically studied with

the oversimplified goal of selecting a single seed set. Many real-

world scenarios call for multiple sets of seeds, particularly on social

media platforms where various viral marketing campaigns need

different sets of seeds to propagate effectively. To this end, previous

works have formulated various IM variants, central to which is the

requirement of multiple seed sets, naturally modeled as a matroid

constraint. However, the current best-known solutions for these

variants either offer a weak (1/2 − 𝜖)-approximation, or offer a

(1 − 1/𝑒 − 𝜖)-approximation algorithm that is very expensive. We

propose an efficient seed selection method called AMP, an algo-

rithm with a (1 − 1/𝑒 − 𝜖)-approximation guarantee for this family

of IM variants. To further improve efficiency, we also devise a fast

implementation, called RAMP. We extensively evaluate the perfor-

mance of our proposal against 6 competitors across 4 IM variants
and on 7 real-world networks, demonstrating that our proposal

outperforms all competitors in terms of result quality, running time,

and memory usage. We have also deployed RAMP in a real industry

strength application involving online gaming, where we show that

our deployed solution significantly improves upon the baselines.
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1 INTRODUCTION
Given a social network, the problem of influence maximization (IM)
seeks to find a small group of users who can (directly or indirectly)

influence as many users in the network as possible. It has been ap-

plied in various domains, including viral marketing [16, 35], efficient

infection detection [37], andmisinformation containment [9, 45, 53],

among others. Viral marketing, for instance, typically involves a

company setting up a campaign to promote a product by incentiviz-

ing a set of influential users (called “seeds”), aiming to maximize the

number of influenced users (referred to as “spread”) by triggering a

cascade of adoptions through word-of-mouth. Existing work on IM
has mostly focused on this setting of single seed set.

Real-world scenarios of viral marketing are often more com-

plex, requiring multiple sets of seeds, to optimize the overall spread

produced by these sets. This complexity is clearly evident in the

rise of influencer marketing platforms, including the official cre-

ator marketplaces of social media platforms such as Instagram [33],

TikTok [52], and Douyin [22], as well as over 80 third-party plat-

forms [32]. These platforms act as intermediaries, aligning adver-

tisers with key influencers for social advertising campaigns and

aiding influencers in monetizing their online presence. E.g., the

Douyin Xingtu platform reported a substantial user base of over 1.9

million advertisers and 3.2 million creators as of June 2022 [21]. A

critical task for them is coordinating diverse advertiser campaigns

and determining optimal seed sets such that the content created by

the seeds can reach a broader audience through word-of-mouth.

The above viral marketing scenarios that seek multiple seed

sets can be modeled as an IM problem subject to a general matroid
constraint (IM-GM). A general matroid (formal definition in § 2.2)

represents constraints that an IM solution must adhere to. It is

defined as a pair (𝑈 ,I), where𝑈 is a ground set of elements from

which seeds are selected, and I is a collection of subsets of𝑈 (called

independent sets), representing feasible solutions to the problem.

For example, we show an instance of IM-GM in the context of revenue
maximization.

Example 1.1 (Revenue Maximization). Consider the scenario of

incentivized social advertising [2, 29] where we need to coordinate

𝑇 viral marketing campaigns, such that seed sets 𝑆𝑖 , 𝑆 𝑗 selected for

different campaigns 𝑖 ≠ 𝑗 do not overlap, and the sum of spread
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produced by all campaigns is maximized. This scenario cannot be

trivially treated as independently running IM𝑇 times, as a seed can

contribute to more than one campaign, motivating the introduction

of a matroid. In this case, the ground set𝑈 comprises all possible

combinations of users and campaigns, while I corresponds to all

feasible solutions (𝑆1, ..., 𝑆𝑇 ) which satisfy 𝑆𝑖 ∩ 𝑆 𝑗 = ∅, 𝑖 ≠ 𝑗 . □

The IM-GM formulation also captures numerous other real-world

applications [15, 41, 46, 47, 57]. We illustrate two such applications:

multi-round IM and adversarial attacks on IM.

Example 1.2 (Multi-Round IM). In the recruitment-based cam-

paign of the Xingtu mobile app [10], service providers select seeds

from a candidate pool in multiple rounds, such that each round’s

seed set has a size ≤ 𝑘 and the spread across all rounds is maximized;

this cardinality constraint can be captured using a matroid. □

Example 1.3 (Adversarial Attacks on IM). In combating the spread

of illicit activities such as pyramid scheme scams [23], money laun-

dering [34], and phishing scams [56], authorities identify not only

malicious users but also suspicious relationships for blocking in order
to control further spread of such activities. Owing to the sensitivity

of blocking, in practice there are limits on the number of users and

relationships that can be blocked. This problem can be modeled as

an instance of IM-GM, with a matroid constraining the maximum

number of identified users and relationships for blocking. □

There exist a number of solutions to IM-GM [2, 12, 15, 17, 19,

29, 41, 46, 47, 49, 57], most of which utilize the greedy approach

introduced by Fisher et al. [24]. The greedy approach iteratively

selects the element with the largest improvement of the objective

function under the matroid constraint, resulting in a (1/2 − 𝜖)-
approximation for any given 𝜖 > 0. Subsequent work [11] improves

upon this result and presents a (1 − 1/𝑒 − 𝜖)-approximation algo-

rithm for submodular maximization under a matroid constraint.

Unlike the greedy approach, it first iteratively searches for a frac-

tional solution which contains a fraction for each element in 𝑈 ,

with each fraction representing the probability that the element

is selected. It then converts the fractional solution into a discrete

one, by randomly rounding each fraction to either 0 or 1. However,

this algorithm incurs significant computational cost and fails to

handle even datasets with a few hundred users (see § 4.1), because

it requires sampling a large number of random subsets of 𝑈 in the

evaluation of candidate fractional solutions.

To address this issue, we propose AMP, an algorithm that en-

sures (1−1/𝑒 −𝜖)-approximation for IM-GMwhile offering superior
efficiency. AMP shares a similar framework as mentioned above

but performs the search and rounding steps deterministically. The
linchpin lies in the fact that AMP avoids expensive random sam-

pling in the assessment of fractional solutions by utilizing a new

estimation method, which reduces computation costs by exploiting

the characteristics of fractional solutions in IM-GM. We also present

RAMP, an algorithm that further improves AMP’s efficiency by

adapting the doubling strategy from Tang et al. [48], but with care-

ful redesign to ensure the correctness for IM-GM. We experimentally

evaluate the performance of AMP and RAMP against 6 competitors

across 4 IM-GM instances, on 7 real-world networks ranging in size

from thousands of nodes and edges to millions of nodes and billions

of edges. Notably, AMP outperforms all competitors by up to 871%

in terms of result quality. Besides, RAMP surpasses the state-of-

the-art by up to 1, 000× in running time and 10× in memory usage,

respectively. In addition, we have deployed our solution RAMP on

a Tencent online gaming platform, and observed that it attracted

160,000 more user engagements compared to the control group

using the current state-of-the-art solution.

To summarize, we make the following contributions in this work:

• We propose an efficient (1 − 1/𝑒 − 𝜖)-approximation solution

AMP for IM-GM (§ 4).

• We provide a scalable implementation RAMP for further improv-

ing the efficiency of AMP (§ 5).

• Our extensive experiments show that AMP and RAMP can effi-

ciently scale to datasets with billions of edges (§ 6).

• We deploy our solution to a Tencent online game and signifi-

cantly improve on the state of the art in user engagement (§ 7).

2 PRELIMINARIES
We provide basic terminology and notations in § 2.1, followed by

formulating influence maximization subject to a general matroid

constraint (IM-GM) in § 2.2. We review typical instances of IM-GM
and their solutions in § 2.3 and § 2.4, respectively.

2.1 Terminology and Notations
Social networks. A social network is a directed graph G = (𝑉 , 𝐸),
where 𝑉 is a set of nodes representing users and 𝐸 is a set of edges

representing relationships. Each directed edge 𝑒𝑖, 𝑗 ∈ 𝐸 is associated

with 𝑝𝑖, 𝑗 ∈ [0, 1], and indicates that 𝑣 𝑗 can be influenced by 𝑣𝑖
with probability 𝑝𝑖, 𝑗 . We say 𝑣𝑖 (resp. 𝑣 𝑗 ) the in-neighbor (resp. out-

neighbor) of 𝑣 𝑗 (resp. 𝑣𝑖 ), and denote the set of in-neighbors (resp.

out-neighbors) of 𝑣𝑖 as 𝑁
𝑖𝑛
𝑖

(resp. 𝑁𝑜𝑢𝑡
𝑖

).

Monotone and submodular functions. Given a set 𝑈 , a non-

negative set function 𝑓 is monotone if ∀𝑋 ⊆ 𝑌 ⊆ 𝑈 , 𝑓 (𝑋 ) ≤ 𝑓 (𝑌 ).
𝑓 is submodular if ∀𝑋 ⊆ 𝑌 ⊆ 𝑈 and 𝑢𝑖 ∈ 𝑈 \𝑌, 𝑓 (𝑢𝑖 |𝑋 ) ≥ 𝑓 (𝑢𝑖 |𝑌 ),
where 𝑓 (𝑢𝑖 |𝑋 ) = 𝑓 (𝑋 ∪ {𝑢𝑖 }) − 𝑓 (𝑋 ) denotes the marginal gain
of 𝑓 after adding 𝑢𝑖 to 𝑋 . As an example, given a collection R of

subsets of𝑈 , the coverage function of a set 𝑆 ⊆ 𝑈 , defined as

ΛR (𝑆) =

𝑅∈R I(𝑆 ∩ 𝑅 ≠ ∅), (1)

where I(·) is the indicator function, is monotone and submodular.

Notations. Throughout this paper, an upper-case letter 𝐴 (resp. a

calligraphic upper-case letterA) denotes a set (resp. a collection of

sets). For a ground set 𝑈 , a boldface lower-case letter x ∈ [0, 1]𝑈
represents a vector corresponding to 𝑛 elements of 𝑈 , where x[𝑖]
denotes the value associated with the element 𝑢𝑖 ∈ 𝑈 . As a special

case, 1𝑖 (resp. 1𝑆 ) signifies the indicator vector with value 1 for 𝑢𝑖
(resp. for each element 𝑢𝑖 ∈ 𝑆) and value 0 otherwise. Table 1 lists

the frequently used notations.

2.2 Problem Formulation
Given a graph G = (𝑉 , 𝐸) and a set 𝑆 ⊆ 𝑉 of chosen nodes (called

seeds), a diffusion model describes the process by which information

spreads from 𝑆 to other nodes via social connections in G. In this

work, we consider the well-known Independent Cascade (IC) [25]
and Linear Threshold (LT) [26] models, where a diffusion instance

captures the stochastic diffusion process from 𝑆 and unfolds in

discrete steps. At the beginning of a diffusion instance L of IC



Table 1: Frequently used notations.

Notation Description

G = (𝑉 , 𝐸 ) A graph G with node set𝑉 and edge set 𝐸.

M = (𝑈 , I) A matroidM with ground set𝑈 and collection I of independent sets.

𝑛 The number of elements in𝑈 .

𝑟, B The rank ofM and the collection of all bases inM.

ℎ,𝑘𝑖 The number of partitions, and the capacity of the 𝑖-th partition inM.

𝑅, R A random RR set and a collection of random RR sets.

ΛR , 𝜎 The coverage function in Eq.(1) and the objective in Definition 2.2.

x The fractional solution of element selection in § 4.

or LT, all seeds in 𝑆 are set to be active at step 0, leaving other

nodes inactive. In IC, at step 𝑡 > 0, each node 𝑣𝑖 activated at step

𝑡 − 1 has one chance to independently activate its inactive out-

neighbor 𝑣 𝑗 with probability 𝑝𝑖, 𝑗 . LT requires that for each node

𝑣 𝑗 , (i)

𝑣𝑖 ∈𝑁 𝑖𝑛

𝑗
𝑝𝑖, 𝑗 ≤ 1, and (ii) a threshold 𝜆 𝑗 ∈ [0, 1] is sampled

uniformly at step 0. At step 𝑡 > 0, an inactive node 𝑣 𝑗 is activated

iff the sum of 𝑝𝑖, 𝑗 w.r.t. 𝑣 𝑗 ’s activated in-neighbors 𝑣𝑖 exceeds 𝜆 𝑗 .

During a diffusion instance L of IC or LT, once a node is activated,
it remains active in all subsequent steps. L terminates if no more

nodes can be activated, and the set of eventually activated nodes is

denoted as ΓL (G, 𝑆). Accordingly, the spread of 𝑆 in 𝐺 is defined as

𝜌G (𝑆) = E[|ΓL (G, 𝑆) |] . (2)

Based on these concepts, Kempe et al. [36] define the influence

maximization (IM) problem as follows.

Definition 2.1 (IM). Given a graph G, a diffusion model and a

cardinality 𝑘 , the IM problem is to select a seed set 𝑆 ⊆ 𝑉 with

|𝑆 | ≤ 𝑘 such that the spread 𝜌G (𝑆) defined in Eq.(2) is maximized.

We next review concepts of matroids and then propose a gener-

alized IM problem, viz., IM subject to a general matroid (IM-GM).
Matroids. A general matroid is a pair M = (𝑈 ,I), where 𝑈 is a

finite set (called the ground set) with |𝑈 | = 𝑛 and I is a collection

of subsets of 𝑈 (called independent sets) satisfying the following

axioms: (i) I ≠ ∅; (ii) if 𝐼 ∈ I and 𝐽 ⊆ 𝐼 , then 𝐽 ∈ I; (iii) if 𝐼 , 𝐽 ∈ I
and |𝐼 | < |𝐽 |, then there exists 𝑢𝑖 ∈ 𝐽\𝐼 such that 𝐼 ∪ {𝑢𝑖 } ∈ I.
Of special interest is the partition matroid, whose ground set𝑈 is

divided into ℎ ≥ 1 disjoint partitions𝑈1, . . . ,𝑈ℎ , each𝑈𝑖 associated

with a positive integer 𝑘𝑖 . The set of independent sets I in the

partition matroid is defined as I = {𝑆 ⊆ 𝑈 : |𝑆∩𝑈𝑖 | ≤ 𝑘𝑖 ,∀𝑖 ∈ [ℎ]}.
In the special case where ℎ = 1, the partition matroid reduces to a

uniform matroid, characterized by I = {𝑆 ⊆ 𝑈 : |𝑆 | ≤ 𝑘}.
Given a matroid M = (𝑈 ,I), any independent set 𝐵 ∈ I with

the largest cardinality, i.e., |𝐵 | = max{|𝐼 | : 𝐼 ∈ I}, is a base and
its cardinality 𝑟 is the rank ofM. E.g., 𝑟 =

ℎ
𝑖=1 𝑘𝑖 in the partition

matroid and 𝑟 = 𝑘 in the uniform matroid. A matroid can have

multiple bases. We denote the collection of all bases ofM as B.
Definition 2.2 (IM-GM). Given a graph G, a diffusion model, and

a matroidM = (𝑈 ,I) where𝑈 is built on G, IM-GM aims to find a

set 𝑆 ∈ I that maximizes a given objective function 𝜎 : 2
𝑈 → R+,

which is associated with the spread function in Eq.(2).

Observe in Definitions 2.1-2.2 that IM is an instance of IM-GM,
where M is a uniform matroid and 𝜎 (𝑆) = 𝜌G (𝑆). Besides IM, a
plethora of IM variants [2, 12, 15, 17, 29, 41, 46, 47, 57] can also be

modeled using IM-GM. The next section will discuss three instances,

obtained from different instantiations ofM and 𝜎 .

2.3 Representative IM-GM Instances
Revenuemaximization (RM) [2, 17, 29].Given a graph𝐺 = (𝑉 , 𝐸),
a diffusion model, and𝑇 campaigns associated with𝑇 unit revenues

𝛼1, . . . , 𝛼𝑇 , the RM problem aims to select seed sets 𝑆1, 𝑆2, . . . , 𝑆𝑇 ⊆ 𝑉
for the 𝑇 campaigns such that the total revenue 𝜎 (𝑆1, 𝑆2, . . . , 𝑆𝑇 ) =𝑇
𝑡=1 𝛼𝑡 · 𝜌𝐺 (𝑆𝑡 ) is maximized. This problem is subject to a user

constraint that each node 𝑣𝑖 ∈ 𝑉 can be included in at most 𝑘𝑖
seed sets, where 𝑘𝑖 ≤ 𝑇 is a number associated with node 𝑣𝑖 . This

constraint corresponds to a partitionmatroidM = (𝑈 ,I), where the
ground set𝑈 = 𝑉 × [𝑇 ] contains all pairs of nodes and campaigns.

𝑈 is partitioned into |𝑉 | disjoint subsets 𝑈1,𝑈2, . . . ,𝑈 |𝑉 | , where
𝑈𝑖 = {(𝑣𝑖 , 𝑡) : 𝑡 ∈ [𝑇 ]}. Accordingly, I = {𝑆 ⊆ 𝑈 : ∀𝑣𝑖 ∈ 𝑉 , |𝑆 ∩
𝑈𝑖 | ≤ 𝑘𝑖 }. As a special case, we have 𝑘𝑖 = 1 for all 𝑣𝑖 ∈ 𝑉 in the

scenario of incentivized social advertising [2, 29].

Non-adaptive multi-round IM (MRIM) [46]. Given a graph 𝐺 =

(𝑉 , 𝐸), a diffusion model, a cardinality 𝑘 and the number of cam-

paign rounds 𝑇 , the non-adaptive MRIM problem aims to select

seed set 𝑆𝑡 ⊆ 𝑉 in each round 𝑡 , with |𝑆𝑡 | ≤ 𝑘 , such that the ex-

pected number of activated nodes over all rounds 𝜎 (𝑆1, 𝑆2, . . . , 𝑆𝑇 )
= E

𝑇
𝑡=1 ΓL𝑡 (𝐺, 𝑆𝑡 )


is maximized, where each diffusion instance

L𝑡 is obtained independently. This constraint can also be viewed

as a partition matroid with the ground set𝑈 = 𝑉 × [𝑇 ]. However,
in contrast with RM, this ground set is partitioned w.r.t. rounds, i.e.,

𝑈𝑡 = {(𝑣𝑖 , 𝑡) : 𝑣𝑖 ∈ 𝑉 }, and I = {𝑆 ⊆ 𝑈 : ∀𝑡 ∈ [𝑇 ], |𝑆𝑡 | ≤ 𝑘}.
Adversarial attacks on IM (AdvIM) [47].Given a graph𝐺 = (𝑉 , 𝐸),
a diffusion model, a set of contagious seeds 𝐴 ⊂ 𝑉 and two cardi-

nalities 𝑘𝑣, 𝑘𝑒 , the AdvIM problem aims to select a blocking set 𝑆

consisting of a blocking node set 𝑆𝑣 ⊆ 𝑉 \𝐴 with |𝑆𝑣 | ≤ 𝑘𝑣 and a

blocking edge set 𝑆𝑒 ⊆ 𝐸 with |𝑆𝑒 | ≤ 𝑘𝑒 , i.e., 𝑆 = 𝑆𝑣 ∪ 𝑆𝑒 , such that

the influence reduction 𝜎 (𝑆𝑣, 𝑆𝑒 ) = 𝜌𝐺 (𝐴) − 𝜌𝐺\𝑆 (𝐴) is maximized,

where 𝐺\𝑆 = (𝑉 \𝑆𝑣, 𝐸\𝑆𝑒 ). The constraint in this problem corre-

sponds to a partition matroid with ground set𝑈 = (𝑉 \𝐴) ∪ 𝐸 and

independent sets I = {𝑆 ⊆ 𝑈 : |𝑆𝑣 | ≤ 𝑘𝑣, |𝑆𝑒 | ≤ 𝑘𝑒 }.

2.4 Approximation Solutions for IM-GMs
Due to the NP-hardness of each IM-GM problem and the inefficiency

of Monte-Carlo simulations, most previous works borrow the idea

of reverse reachable (RR) set sampling [7], originally designed for

vanilla IM. Specifically, an RR set consists of nodes identified by

simulating a reverse diffusion process of a given diffusion model

from a node 𝑣𝑖 selected uniformly at random. For example, the

reverse diffusion process of the IC model is a stochastic breadth-

first search starting from 𝑣𝑖 . For each visited 𝑣𝑎 , it explores each

in-neighbor 𝑣𝑏 ∈ 𝑁 𝑖𝑛𝑎 with probability 𝑝𝑏,𝑎 . Borgs et al. [7] show

that for any seed set 𝑆 ⊆ 𝑉 , the probability that an RR set overlaps

𝑆 equals
𝜌G (𝑆 )
|𝑉 | . That is, if we have a collection R of RR sets, we

can use
|𝑉 |
| R | · ΛR (𝑆) as an unbiased estimator of 𝜌G (𝑆). Accord-

ingly, Borgs et al. [7] propose an approximation solution for IM,
which runs in two main steps: (i) RR set generation: sample a set

R of RR sets, with the size |R | sufficient to achieve the desired

approximation; (ii) element selection: use a greedy algorithm for

solving maximum coverage which returns a set 𝑆 that maximizes

the coverage ΛR (𝑆). Borgs et al.’s framework is also leveraged in

various IM-GM instances [2, 15, 29, 41, 46, 47, 57]. A central role in

determining the approximation is played by various greedy element

selection algorithms used in these works, briefly reviewed below.



Greedy [24]. This algorithm greedily selects elements with the

maximum marginal gain subject to the matroid constraint. Specifi-

cally, it starts with a set 𝑆 = ∅, and then iteratively adds 𝑟 elements

to 𝑆 . In each iteration, it adds𝑢𝑖 to 𝑆 ifΛR (𝑢𝑖 |𝑆) is the largest among

the elements of 𝑈 \𝑆 and the inclusion maintains the matroid con-

straint. This algorithm achieves a 1/2-approximation subject to a

general matroid constraint [24] and is the most commonly adopted

algorithm in prior works for IM-GM problems [2, 15, 29, 46, 47, 57].

Local-Greedy [46]. Designed for the partition matroid constraint,

Local-Greedy selects elements partition by partition. Specifically,

it greedily selects elements in the first partition with capacity 𝑘1.

Once 𝑘1 elements are selected, it proceeds to the second partition,

and so on. This improves the efficiency by pruning the search space

from 𝑈 to each partition. Sun et al. [46] prove that Local-Greedy
achieves a 1 − 𝑒−(1−

1

𝑒
) ≈ 0.46 approximation.

Threshold-Greedy [8]. Unlike Greedy, Threshold-Greedy adds

an element 𝑢𝑖 to 𝑆 if ΛR (𝑢𝑖 |𝑆) exceeds a threshold, which starts

at a predefined value and decreases by (1 − 𝜉) in each iteration.

Compared to Greedy, this algorithm boosts efficiency by reducing

the number of iterations from 𝑟 to𝑂

𝜉−1 · ln(𝑟/𝜉)


, while incurring

a loss term 𝜉 , resulting in an approximation ratio of 1/2 − 𝜉 [8].
Due to the variety of diffusion models and objectives, IM-GM

solutions require two additional steps before RR set generation:

(i) select a strategy of RR set construction for an IM-GM instance,

where an RR set 𝑅 consists of elements in𝑈 instead of nodes in 𝑉 ;

(ii) rewire the coverage ΛR and the objective 𝜎 such that the scaled

ΛR (𝑆) is an unbiased estimator of 𝜎 (𝑆), i.e., 𝜎 (𝑆) = 𝜅
| R | ·E[ΛR (𝑆)],

where the value of constant 𝜅 depends on the given IM-GM instance.
E.g., MRIM [46] first selects a random node 𝑣𝑖 ∈ 𝑉 uniformly, then

independently simulates𝑇 reverse diffusion processes starting from

𝑣𝑖 . Denoting the set of examined nodes in each process 𝑖 as 𝑅′
𝑖
, the

RR set in MRIM is 𝑅′
1
× {1} ∪ · · · ∪ 𝑅′

𝑇
× {𝑇 }, and we have 𝜅 = |𝑉 |.

For the remaining instances, we refer interested readers to [31].

To improve the efficiency of Borgs et al.’s framework for the

vanilla IM, subsequent solutions, e.g., TIM [51], IMM [50],DSSA [43],

andOPIM-C [48], focus on reducing the number of sampled RR sets

while ensuring the same approximation ratio. As of now, OPIM-C
is the state of the art and it has been applied to subsequent solu-

tions [6, 27–29, 57]. Most scalable solutions of other IM-GM instances
also extend the aforementioned ones used in IM. E.g., in RM, [29] uti-
lizes a greedy variant by mixingGreedy and Threshold-Greedy, and
then follows OPIM-C to achieve an approximation not exceeding

1/2 − 𝜖 . Additionally, [46] and [47] offer a (1/2 − 𝜖)-approximation

for MRIM and AdvIM, respectively, by employing Greedy and IMM.

3 RELATEDWORK
Since its introduction in [36], the IM problem has been extensively

researched – see [40] for a comprehensive survey. Here, we mainly

focus on IM under a matroid constraint. Various kinds of matroids

have been considered in previous IM studies. Besides the three

IM-GM instances introduced in § 2.3, partition matroids are also em-

ployed in several IM-GM instances, including capacity constrained

IM [57], IM with fairness constraint [19], the lattice IM with par-

titioned budgets [15], and so forth [12, 49]. Furthermore, other

general matroids are used in previous IM-GM studies to accommo-

date more sophisticated scenarios. For instance, the popularity ratio

maximization problem [41] follows the multiple round setting in

MRIM but aims to significantly surpass competitors’ outreach in

popularity by initiating influence cascades. This paper studies the

intersection of a uniform matroid that restricts the overall car-

dinality with a partition matroid, resulting in a general matroid1

constraint. As another example, the general version of IM for multi-

ple products [17] requires a laminar matroid constraint that models

capacity limits within hierarchical community structures, such as

the maximum number of selected customers in different states and

the cities they contain. While developing different approaches, the

core ideas of these solutions lie in either Greedy, Local-Greedy, or
Threshold-Greedy, all limited to at most a (1/2−𝜖)-approximation.

In theoretical computer science, another line of previous works

aims to maximize a general submodular function under a matroid

constraint. [11] proposed continuous greedy, the first polynomial-

time algorithm with a (1 − 1/𝑒 − 𝜖) approximation guarantee. [4]

later refined it, achieving state-of-the-art results for general ma-

troids. However, adopting these algorithms in IM-GM is highly in-

efficient, as detailed in § 4.1. Subsequent research has focused on

specific categories of matroids [8, 20, 30]. [8] introduce some spe-

cific optimizations for partition matroids, resulting in an 𝑂 (𝑛3/2)-
time algorithm. Prior works [20, 30] further develop algorithms

with 𝑂 (𝑛 · poly(1/𝜖, log𝑛)) time complexity for partition, graphic,

transversal, and laminar matroids. The above approaches cannot

be directly adopted for IM-GM instances, as they do not apply for

general matroids outside the above matroid classes.

In the next two sections, we present our approach for solving

IM-GM. Given that our overall approach is based on generating

a collection of RR sets and then selecting a set that maximizes

coverage, we divide the presentation along the same theme.

4 ELEMENT SELECTION
Given a set of RR sets R, this section proposes an element-wise

Ascent algorithm over Matroid Polytopes for element selection

(AMP), providing a (1− 1/𝑒 −𝜖)-approximation for maximizing the

coverage ΛR subject to the matroid constraint. We first discuss the

challenges in adopting prior (1 − 1/𝑒 − 𝜖)-approximate solutions

and the main idea of AMP (§ 4.1), followed by detailed descriptions

of two core subroutines AMPSearch/AMPSearch-PM (§ 4.2) and

AMPRound (§ 4.3). At last, we provide an analysis of correctness

and time complexity (§ 4.4).

4.1 Overview
Main idea of existing solutions. Several continuous greedy algo-

rithms [4, 11] have been proposed to find (1− 1/𝑒 −𝜖)-approximate

solutions for maximizing any monotone submodular function 𝑓

(e.g., ΛR ) subject to a general matroid constraint. First, these solu-

tions expand the original function 𝑓 to its correspondingmultilinear

extension, defined as follows.

Definition 4.1 (Multilinear Extension). For a set function 𝑓 :

2
𝑈 → R+, its multilinear extension 𝐹 : [0, 1]𝑈 → R+ is defined
as 𝐹 (x) = E [𝑓 (Ω(x))], where Ω(x) is a random set that indepen-

dently includes each element 𝑢𝑖 ∈ 𝑈 from the fractional result x
with probability x[𝑖].

1
It is not a partition matroid, unlike what is claimed in [41]. See [31] for details.
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Figure 1: Illustration of continuous greedy solutions andAMP subject to thematroidwith𝑈 = {𝑢1, 𝑢2, 𝑢3} andI = {𝐼 ⊆ 𝑈 : |𝐼 | ≤ 2}.

Second, these solutions aim to solve the multilinear optimization

problemmaxx∈𝑃I {𝐹 (x)}, where 𝑃I is thematroid polytope defined
as the convex hull (i.e., all convex combinations of elements) of

{1𝐼 : 𝐼 ∈ I}. Notice that, due to themonotonicity of 𝑓 , the fractional

solution x that maximizes 𝐹 (x) is in the base polytope 𝑃B =

x ∈

𝑃I :


𝑖∈[𝑛] x[𝑖] = 𝑟


[18]. To find such a solution x ∈ 𝑃B , given

a parameter 𝜖 , these approaches start from x = 0 and update x
by an iterative hill-climbing search process: at each step 𝑡 , this

process examines basic solution 𝐵𝑡 ∈ B and the corresponding

fractional solution 𝜖 · 1𝐵𝑡 such that 𝐹 (x) can be improved after

adding this fractional solution to x. After 1/𝜖 steps, this process
returns a fractional solution x =


1/𝜖
𝑡=1

𝜖 · 1𝐵𝑡 , which is in 𝑃B by

definition. Finally, upon obtaining x ∈ 𝑃B , these solutions employ a

randomized rounding process that eventually converts x to a discrete
solution 𝑆 ∈ B, thus solving the original problem max𝑆∈I {𝑓 (𝑆)}.

Example 4.2 (Illustrative Example). Consider a matroid with𝑈 =

{𝑢1, 𝑢2, 𝑢3} and I = {𝐼 ⊆ 𝑈 : |𝐼 | ≤ 2}. As depicted in Figure 1(a),

the origin represents x = 0, and the vertices [1, 1, 0], [1, 0, 1], [0, 1, 1]
indicate all bases. Additionally, the polyhedron and the shaded face

correspond to the matroid polytope and base polytope, respectively.

Assuming 𝜖 = 1/3, the three shaded faces shown in Figure 1(b)

represent the feasible spaces for each search step. The solid and

dashed blue lines illustrate the search and rounding process of

previous solutions, respectively. Starting from x = 0, the search
process of Calinescu et al. [11] selects the direction of 𝐵1 (i.e., 1𝐵1 =
[1, 1, 0]) and moves x to x + 𝜖 · 1𝐵1 =


1

3
, 1
3
, 0


at the first step,

reaching the smallest shaded face. Subsequently, it selects 1𝐵2 =

[1, 0, 1] and moves x to x+𝜖 ·1𝐵2 =

2

3
, 1
3
, 1
3


, located in the medium

shaded face. At last, it updates x along the direction of 𝐵3, bringing

x to


1, 2

3
, 1
3


in the base polytope. Upon completing the search, to

round the fractional solution x, the algorithm [13] moves x on the

base polytope in random directions until it reaches a vertex, e.g.,

[1, 1, 0], indicating the final solution 𝑆 = {𝑢1, 𝑢2}. □

Limitations of existing solutions. Existing algorithms suffer

from severe efficiency issues in the hill-climbing search stage, since

computing the multilinear extension 𝐹 of a general monotone sub-

modular function 𝑓 is expensive. Specifically, the multilinear exten-

sion of a set function 𝑓 is

𝐹 (x) =
∑︁
𝑆⊆𝑈

 
𝑢𝑖 ∈𝑆

x[𝑖]


𝑢𝑖 ∈𝑈 \𝑆
(1 − x[𝑖])


· 𝑓 (𝑆). (3)

Computing 𝐹 (x) exactly involves enumerating all 2
𝑛
subsets of 𝑈 .

Previous works leverage random subset sampling to estimate 𝐹 (x),
however they still have a prohibitively expensive time complexity.

E.g., the approach of [11] which selects the 𝑡-th basic solution 𝐵𝑡
that yields an improvement in 𝐹 along the direction of the base 𝐵𝑡 ,

requires𝑂

𝑛7 log(𝑛)


samples. The improved algorithm [4] selects

each basic solution 𝐵𝑡 using Threshold-Greedy, which includes

an element 𝑢𝑖 into 𝐵𝑡 if the partial derivative 𝜕𝐹 (x)/𝜕x[𝑖] exceeds
a pre-defined threshold. This compromises the result quality (see

§ 2.4) yet generates 𝑂 (𝑛𝑟𝜖−4 · log2 (𝑛/𝜖)) samples in total.

Additionally, in the rounding stage, existing randomized tech-

niques [1, 13] focus on the efficiency of maintaining x ∈ 𝑃B rather

than the quality of the rounded result. To elaborate, the state-of-

the-art swap rounding [13] iteratively eliminates each distinct item

𝑢𝑖 from the difference between the current basic solution 𝐵𝑡 and

the previous merged one 𝐵𝑡−1 until all basic solutions are identical.
This is done by accepting 𝑢𝑖 w.p. 1/𝑡 if 𝑢𝑖 ∈ 𝐵𝑡\𝐵𝑡−1 and with

the remaining probability if 𝑢𝑖 ∈ 𝐵𝑡−1\𝐵𝑡 . As proved by [13], swap

rounding returns a discrete set 𝑆 ∈ B satisfying 𝑓 (𝑆) ≥ (1−𝜓 )𝐹 (x)

w.p. at least 1 − 𝑒−
𝐹 (x)𝜓2

8𝐹 ∗ , where 𝐹 ∗ = maxx 𝐹 (x). Due to the ad-

ditional error term 𝜓 , more iterations in the search step or more

RR sets are required to ensure the desired total error 𝜖 , resulting in

significant computational overhead. Furthermore, the failure prob-

ability is 𝑒−
𝐹 (x)𝜓2

8𝐹 ∗ ≥ 𝑒−
𝜓2

8 > 0.88, which can severely compromise

the quality of the rounded result.

Our proposal. To address the above issues, we consider the mul-

tilinear extension of the coverage function ΛR (·) and show that
it can be evaluated efficiently and deterministically. Specifically, by
plugging ΛR (·) defined in Eq.(1) into Eq.(3), we have

𝐹 (x) =
∑︁
𝑅∈R

∑︁
𝑆⊆𝑈



𝑢𝑖 ∈𝑆

x[𝑖]


𝑢 𝑗 ∈𝑈 \𝑆
(1 − x[ 𝑗]) · I(𝑅 ∩ 𝑆 ≠ ∅),

which can be converted to 𝐹 (x) = 
𝑅∈R E [I(𝑅 ∩ Ω(x) ≠ ∅)]. Since

E [I(𝑅 ∩ Ω(x) ≠ ∅)] = 1−
𝑢𝑖 ∈𝑅 (1−x[𝑖]) for a given 𝑅 ⊆ 𝑈 , 𝐹 (x)

can be further rewritten as

𝐹 (x) =
∑︁
𝑅∈R

1 −

𝑢𝑖 ∈𝑅
(1 − x[𝑖]) . (4)

Based on this, we can efficiently calculate the exact value of 𝐹 (x)
by maintaining a collection QR , consisting of the variable

𝑞𝑅 =

𝑢𝑖 ∈𝑅 (1 − x[𝑖]) (5)

for each 𝑅 ∈ R from the first iteration. This enables us to develop

new search and rounding algorithms capable of achieving the de-

sired (1 − 1/𝑒 − 𝜖)-approximation efficiently. It is noteworthy that,

besides instances of IM-GM, Eq.(4) has the potential to improve IM
scenarios that are solved by leveraging the multilinear extension in



Algorithm 1: AMP (M,R, 𝜖)
Input: The matroid M, an RR collection R, 0 < 𝜖 ≤ 1

Output: A discrete set 𝑆 ∈ B maximizing the coverage

1 QR ← {𝑞𝑅 : 𝑅 ∈ R}; ∀𝑅 ∈ R, 𝑞𝑅 ← 1;

2 ∀𝑡 = 1, 2, . . . , 1/𝜖, 𝐵𝑡 ← ∅; x← 0;
3 for 𝑡 = 1, 2, . . . , 1/𝜖 do
4 if M is a partition matroid then
5 𝐵𝑡 , QR ← AMPSearch-PM(R, x, 𝜖, QR ) ;
6 else
7 𝐵𝑡 , QR ← AMPSearch(R, x, 𝜖, QR )
8 x← x + 𝜖 · 1𝐵𝑡 ;

9 𝑆 ← AMPRound(R, 𝜖, QR , 𝐵1, 𝐵2, . . . , 𝐵1/𝜖 ) ;
10 return 𝑆 ;

Eq.(3). This includes IM variants constrained by user groups [55]

and group fairness [54].

As outlined in Algorithm 1, our proposed AMP shares a similar

framework with existing continuous greedy methods but intro-

duces two new search strategies, AMPSearch (Algorithm 2) for the

general matroid and AMPSearch-PM (Algorithm 3) for the partition

matroid, and a deterministic rounding algorithm, AMPRound (Algo-
rithm 4). For ease of presentation, we assume w.l.o.g. that 1/𝜖 is an
integer, since for any given 𝜖′, we can use

1

⌈1/𝜖 ′ ⌉ as 𝜖 . During each

search iteration 𝑡 , AMPSearch and AMPSearch-PM adopt a more

refined approach compared to the coarse-grained search of previous

works [4, 11]. Specifically, they aim for the steepest improvement

in 𝐹 and include the element 𝑢𝑖 with the largest 𝜕𝐹 (x)/𝜕x[𝑖] into
𝐵𝑡 , resulting in quicker convergence and fewer search iterations.

AMPSearch-PM improves the efficiency of AMPSearch further by

pruning the search space 𝑈 to one partition, reducing the num-

ber of evaluations of partial derivatives by a factor of 𝑟/𝑘∗, where
𝑘∗ = max{𝑘1, 𝑘2, . . . 𝑘ℎ}. As for the rounding phase, unlike the

randomized methods, our proposed AMPRound deterministically
decides the elimination of a distinct element 𝑢𝑖 based on the par-

tial derivative w.r.t. x𝑖 . This ensures that 𝐹 (x) does not decrease
throughout rounding until x becomes integral, yielding the rounded

result 𝑆 satisfying ΛR (𝑆) ≥ 𝐹 (x) without failure probability.
For the illustrative example in Figure 1, the red arrowed lines

in Figures 1(c) and (d) trace the movement of x in the search and

rounding process of AMP, respectively. Initially, when x = 0 and
AMP starts to search for 𝐵1,𝑢2 is first included as 𝜕𝐹 (x)/𝜕x[2] is the
largest, updating x to x =


0, 1

3
, 0


. Next, as 𝜕𝐹 (x)/𝜕x[1] becomes

the largest w.r.t. the current x, 𝑢1 is included in 𝐵1, leading to an

update of x to

1

3
, 1
3
, 0


. Analogously,𝑢3 and𝑢2 (resp.𝑢1 and𝑢3) are

selected and the corresponding basic solution is 𝐵2 = {𝑢2, 𝑢3} (resp.
𝐵3 = {𝑢1, 𝑢3}), eventually yielding a fractional result x =


2

3
, 2
3
, 2
3


in the base polytope, as shown in Figure 1(c). After completing

the search, as illustrated in Figure 1(d), AMP moves x to a vertex

by ensuring the directions are towards maximizing 𝐹 (x) (i.e., the
brighter area), thereby guaranteeing 𝐹 (x) is non-decreasing. □

4.2 Element-wise Ascent Search
We first present our element selection algorithm AMPSearch for

the general matroid constraint (pseudocode in Algorithm 2). Specifi-

cally, Line 1 initializes by setting 𝐵 = ∅ and the vector y = x. It then

Algorithm 2: AMPSearch (R, x, 𝜖,QR )
Input: An RR collection R, a fractional solution x ∈ [0, 1]𝑈 ,

0 < 𝜖 ≤ 1, QR defined in Algorithm 1

Output: A basic solution 𝐵 ∈ B, an updated collection QR
1 𝐵 ← ∅; y← x;
2 for 𝑖 = 1, 2, . . . , 𝑟 do

3 𝑢 𝑗 ← arg max

𝑢 𝑗 : 𝑢 𝑗 ∈𝑈 \𝐵, 𝐵∪{𝑢 𝑗 }∈I

 
𝑅∈R: 𝑢 𝑗 ∈𝑅

𝑞𝑅
1−y[ 𝑗 ]


;

4 y[ 𝑗 ] ← y[ 𝑗 ] + 𝜖 ; 𝐵 ← 𝐵 ∪ {𝑢 𝑗 };
5 ∀𝑅 ∈ R : 𝑢 𝑗 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[ 𝑗 ]

1−y[ 𝑗 ]+𝜖 ;

6 return 𝐵, QR ;

proceeds to iteratively populate 𝐵 through 𝑟 iterations, each time

adding an element to construct a basic solution. In Line 3, during

each iteration 𝑖 , AMPSearch examines all elements in the remain-

ing set 𝑈 \𝐵 and selects the element 𝑢 𝑗 that maximizes the value of
𝑅∈R:𝑢 𝑗 ∈𝑅 𝑞𝑅/(1−y[ 𝑗]), while adhering to the matroid constraint.

This value corresponds to the partial derivative 𝜕𝐹 (y)/𝜕y[ 𝑗] as
shown below. All proofs are available in [31].

Lemma 4.3. ∀y ∈ [0, 1]𝑈 and 𝑢𝑖 ∈ 𝑈 , 𝜕𝐹 (y)𝜕y[𝑖 ] =


𝑅∈R:𝑢𝑖 ∈𝑅
𝑞𝑅

1−y[𝑖 ] .

In Lines 4 - 5, AMPSearch updates y[ 𝑗] to y[ 𝑗]+𝜖 and includes𝑢 𝑗
in𝐵, followed bymaintaining the correctness of each𝑞𝑅 value as per

Eq.(5). In particular, for each RR set 𝑅 containing 𝑢 𝑗 , AMPSearch

updates the corresponding 𝑞𝑅 by scaling it with
1−y[ 𝑗 ]

1−y[ 𝑗 ]+𝜖 . This
process removes the outdated factor 1 − y[ 𝑗] + 𝜖 and includes the

latest value of 1 − y[ 𝑗].
We next introduce the algorithm AMPSearch-PM tailored for

the partition matroid constraint. In contrast to AMPSearch which

selects the next element from𝑈 \𝐵, Algorithm 3 selects an arbitrary

partition𝑈𝑙 of𝑈 satisfying |𝐵 ∩𝑈𝑙 | < 𝑘𝑙 , and chooses the element

𝑢 𝑗 from𝑈𝑙\𝐵 during each iteration, thus reducing the search space

and running time of AMPSearch by a factor of 𝑟/𝑘∗, where 𝑘∗ =
max{𝑘1, 𝑘2, . . . 𝑘ℎ}. The following lemma offers a guarantee of both

algorithms, bounding howmuch 𝐹 (x) increases as it approaches the
optimal result 𝑆𝑜 for maximizing ΛR (·) s.t. the matroid constraint.

Lemma 4.4. For any input fractional result x, the output 𝐵 of both
AMPSearch and AMPSearch-PM satisfies ΛR (𝑆𝑜 ) − 𝐹 (x + 𝜖 · 1𝐵) ≤
ΛR (𝑆𝑜 )−𝐹 (x)

1+𝜖 , where 𝑆𝑜 = arg max

𝑆∈I
ΛR (𝑆).

4.3 Element-wise Ascent Rounding
We introduce the rounding algorithm AMPRound, outlined in Al-

gorithm 4. Given the basic solutions 𝐵1, 𝐵2, . . . , 𝐵1/𝜖 , AMPRound
maintains a vector

y =

1/𝜖
𝑙=𝑡+1 𝜖 · 1𝐵𝑙 + 𝑡 · 𝜖 · 1𝐵𝑡 , (6)

which represents the value of the fractional solution (i.e., x) af-
ter merging the first 𝑡 fractional solutions 𝜖1𝐵1 , 𝜖1𝐵2 , . . . , 𝜖1𝐵𝑡 cor-
responding to the basic solutions 𝐵1, 𝐵2, ..., 𝐵𝑡 . It is initialized to

y =

1/𝜖
𝑙=1

𝜖1𝐵𝑙 . AMPRound then scans each pair of successive basic

solutions from (𝐵1, 𝐵2) to (𝐵1/𝜖−1, 𝐵1/𝜖 ). For each pair (𝐵𝑡 , 𝐵𝑡+1),
it iteratively eliminates distinct elements between the two basic



Algorithm 3: AMPSearch-PM (R, x, 𝜖,QR )
Input: An RR collection R, a fractional solution x ∈ [0, 1]𝑈 ,

0 < 𝜖 ≤ 1, QR defined in Algorithm 1

Output: A basic solution 𝐵 ∈ B, an updated collection QR
1 𝐵 ← ∅; y← x;
2 for 𝑖 = 1, 2, . . . , 𝑟 do
3 𝑈𝑙 ← an arbitrary partition such that |𝐵 ∩𝑈𝑙 | < 𝑘𝑙 ;

4 𝑢 𝑗 ← arg max

𝑢 𝑗 :𝑢 𝑗 ∈𝑈𝑙 \𝐵

 
𝑅∈R: 𝑢 𝑗 ∈𝑅

𝑞𝑅
1−y[ 𝑗 ]


;

5 y[ 𝑗 ] ← y[ 𝑗 ] + 𝜖 ; 𝐵 ← 𝐵 ∪ {𝑢 𝑗 };
6 ∀𝑅 ∈ R : 𝑢 𝑗 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[ 𝑗 ]

1−y[ 𝑗 ]+𝜖 ;

7 return 𝐵, QR ;

solutions until 𝐵𝑡+1 is identical to 𝐵𝑡 , and thereby merged with

all preceding basic solutions 𝐵𝑡−1, . . . , 𝐵1. More precisely, AM-
PRound picks an arbitrary element 𝑢𝑖 from 𝐵𝑡\𝐵𝑡+1, then identifies

an element 𝑢 𝑗 ∈ 𝐵𝑡+1\𝐵𝑡 such that swapping 𝑢𝑖 and 𝑢 𝑗 leads to

𝐵𝑡\{𝑢𝑖 } ∪ {𝑢 𝑗 } and 𝐵𝑡+1\{𝑢 𝑗 } ∪ {𝑢𝑖 } being bases of the matroid, as

outlined in Lines 4-5. Notably, the existence of such an element 𝑢 𝑗
is assured by the following matroid exchange property.

Lemma 4.5 (Matroid Exchange property [13]). Let 𝐵1, 𝐵2 be
two bases of M. For any 𝑢𝑖 ∈ 𝐵1\𝐵2, there exists 𝑢 𝑗 ∈ 𝐵2\𝐵1 such
that 𝐵1\{𝑢𝑖 } ∪ {𝑢 𝑗 } and 𝐵2\{𝑢 𝑗 } ∪ {𝑢𝑖 } are also bases.

Upon identifying a conflicting element pair (𝑢𝑖 , 𝑢 𝑗 ), Lines 6-
13 retain the one with the larger partial derivative. If the partial

derivative w.r.t.𝑢𝑖 is not less than that w.r.t.𝑢 𝑗 , AMPRound includes
𝑢𝑖 ∈ 𝐵𝑡\𝐵𝑡+1 into 𝐵𝑡+1 while removing𝑢 𝑗 from it. Correspondingly,

it updates the fractional result y by adding 𝜖 (1𝑖 − 1𝑗 ) as per Eq.(6),
and modifies the values of 𝑞𝑅 for all 𝑅 that include𝑢𝑖 or𝑢 𝑗 based on

Eq.(5). Conversely, if 𝑢 𝑗 is to be preserved, AMPRound updates 𝐵𝑡
by replacing 𝑢𝑖 with 𝑢 𝑗 , and adds 𝑡𝜖 ·


1𝑗 − 1𝑖


to y since the 𝑡𝜖1𝐵𝑡

term in Eq.(6) is outdated. Finally, it updates the corresponding

𝑞𝑅 values. In each iteration, 𝐹 (y) remains non-decreasing and the

quality of the rounded result is guaranteed by the following lemma.

Lemma 4.6. For any 1/𝜖 basic solutions 𝐵1, . . . , 𝐵1/𝜖 with x =

𝜖 ·1/𝜖
𝑡=1

1𝐵𝑡 , AMPRound returns an 𝑆 ∈ B satisfying ΛR (𝑆) ≥ 𝐹 (x).

In the example shown in Figure 1(d), AMPRound takes the basic

solutions 𝐵1 = {𝑢1, 𝑢2}, 𝐵2 = {𝑢2, 𝑢3}, and 𝐵3 = {𝑢1, 𝑢3} as inputs.
Initially, AMPRound sets y to

1

3
·

1𝐵1 + 1𝐵2 + 1𝐵3


=


2

3
, 2
3
, 2
3


. In

the first iteration, (𝑢1, 𝑢3) is the only conflicting pair for merging

𝐵1 and 𝐵2. AMPRound accepts 𝑢3 but removes 𝑢1 from 𝐵1 based

on their partial derivatives, yielding the merged 𝐵1 = 𝐵2 = {𝑢2, 𝑢3}.
AMPRound then updates y = y + 1

3
· (13 − 11) =


1

3
, 2
3
, 1


. In the

second iteration, (𝑢2, 𝑢1) is the only conflicting pair formerging (the

updated) 𝐵2 and 𝐵3. Following similar operations as in the previous

iteration, the merged 𝐵2 = 𝐵3 = {𝑢2, 𝑢3} and the fractional result

becomes y = y + 1

3
· (12 − 11) = [0, 1, 1]. Hence, the final discrete

result after rounding is 𝑆 = {𝑢2, 𝑢3}. □

4.4 Putting It Together

Correctness. Recall in Algorithm 1 that AMP iteratively invokes

AMPSearch or AMPSearch-PM in each iteration 𝑡 . We denote the

Algorithm 4: AMPRound (R, 𝜖,QR , 𝐵1, 𝐵2, . . . , 𝐵1/𝜖 )
Input: An RR collection R, 0 < 𝜖 ≤ 1, QR defined in Algorithm 1,

basic solutions 𝐵1, 𝐵2, . . . , 𝐵1/𝜖
Output: A discrete set 𝑆 ∈ B

1 y← 𝜖 · 1/𝜖
𝑙=1

1𝐵𝑙 ;
2 for 𝑡 = 1, 2, . . . , 1/𝜖 − 1 do
3 while 𝐵𝑡 ≠ 𝐵𝑡+1 do
4 𝑢𝑖 ← an arbitrary element in 𝐵𝑡 \𝐵𝑡+1;
5 𝑢 𝑗 ← an element in 𝐵𝑡+1\𝐵𝑡 s.t. 𝐵𝑡 \{𝑢𝑖 } ∪ {𝑢 𝑗 } ∈ B and

𝐵𝑡+1\{𝑢 𝑗 } ∪ {𝑢𝑖 } ∈ B;
6 if


𝑅∈R: 𝑢𝑖 ∈𝑅

𝑞𝑅
1−y[𝑖 ] ≥


𝑅∈R: 𝑢 𝑗 ∈𝑅

𝑞𝑅
1−y[ 𝑗 ] then

7 𝐵𝑡+1 ← 𝐵𝑡+1\{𝑢 𝑗 } ∪ {𝑢𝑖 }; y← y + 𝜖

1𝑖 − 1𝑗


;

8 ∀𝑅 ∈ R : 𝑢𝑖 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[𝑖 ]
1−y[𝑖 ]+𝜖 ;

9 ∀𝑅 ∈ R : 𝑢 𝑗 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[ 𝑗 ]
1−y[ 𝑗 ]−𝜖 ;

10 else
11 𝐵𝑡 ← 𝐵𝑡 \{𝑢𝑖 } ∪ {𝑢 𝑗 }; y← y + 𝑡𝜖


1𝑗 − 1𝑖


;

12 ∀𝑅 ∈ R : 𝑢 𝑗 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[ 𝑗 ]
1−y[ 𝑗 ]+𝑡𝜖 ;

13 ∀𝑅 ∈ R : 𝑢𝑖 ∈ 𝑅, 𝑞𝑅 ← 𝑞𝑅 · 1−y[𝑖 ]
1−y[𝑖 ]−𝑡𝜖 ;

14 return 𝐵
1/𝜖 ;

fractional result at the end of iteration 𝑡 as x𝑡 = 𝜖 ·
𝑡
𝑖=1 1𝐵𝑖 , with

x0 ← 0. We can then rewrite the improvement of 𝐹 (x𝑡 ) compared to

𝐹 (x𝑡−1) (see Lemma 4.4) as ΛR (𝑆𝑜 ) − 𝐹 (x𝑡 ) ≤ ΛR (𝑆𝑜 )−𝐹 (x𝑡−1 )
1+𝜖 . By

induction, this leads toΛR (𝑆𝑜 )−𝐹 (x𝑡 ) ≤ ΛR (𝑆𝑜 )
(1+𝜖 )𝑡 . Upon completion

of 1/𝜖 search iterations, this inequation becomes 𝐹 (x
1/𝜖 ) ≥


1 −

(1 + 𝜖)−1/𝜖

· ΛR (𝑆𝑜 ). Given this inequation and Lemma 4.6, the

result 𝑆 returned by AMP satisfies the following theorem.

Theorem 4.7. The result 𝑆 of the AMP algorithm satisfies

ΛR (𝑆) ≥

1 − 1

(1+𝜖 ) 1𝜖


ΛR (𝑆𝑜 ) .

As per Theorem 4.7, by taking as input 𝜖𝑠 = max


𝜖𝑠 :

1

𝜖𝑠
∈

N, 1 − (1 + 𝜖𝑠 )−
1

𝜖𝑠 ≥ 1 − 1

𝑒 − 𝜖

where N = {0, 1, 2, . . . }, the AMP

algorithm achieves a (1−1/𝑒−𝜖)-approximation for maximizing the

coverage ΛR (𝑆). This input 𝜖𝑠 can be obtained by binary search.

Running time for the partition matroid. In each iteration,

AMPSearch-PM computes the partial derivativew.r.t. each𝑢 𝑗 from a

given partition𝑈𝑙 , incurring a cost of 𝑂


𝑢 𝑗 ∈𝑈𝑙


𝑅∈R I(𝑢 𝑗 ∈ 𝑅)


.

Upon completion, AMPSearch-PM selects 𝑘𝑙 elements from each𝑈𝑙 ,

leading to a total cost of𝑂

ℎ
𝑙=1


𝑘𝑙 ·


𝑢 𝑗 ∈𝑈𝑙


𝑅∈R I(𝑢 𝑗 ∈ 𝑅)


=

𝑂

𝑘∗ ·𝑅∈R |𝑅 |


, where 𝑘∗ =𝑚𝑎𝑥{𝑘1, 𝑘2, . . . 𝑘ℎ}. AMPRound op-

erates over 1/𝜖 − 1 iterations. In each iteration 𝑡 , it computes partial

derivatives for every conflicting pair (𝑢𝑖 , 𝑢 𝑗 ), with 𝑢𝑖 ∈ 𝐵𝑡\𝐵𝑡+1
and 𝑢 𝑗 ∈ 𝐵𝑡+1\𝐵𝑡 . Hence, the total running time of AMPRound is

𝑂


1/𝜖−1
𝑡=1


𝑅∈R


𝑢𝑖 ∈ (𝐵𝑡 \𝐵𝑡+1 )∪(𝐵𝑡+1\𝐵𝑡 ) I(𝑢𝑖 ∈ 𝑅)


,which equals

𝑂

𝜖−1


𝑅∈R |𝑅 |


. As shown inAlgorithm 1,AMP runsAMPSearch-

PM for 1/𝜖 iterations and invokes AMPRound once. Therefore, the

running time of AMP subject to the partition matroid is

𝑂


𝑘∗ · 𝜖−1 ·

∑︁
𝑅∈R
|𝑅 |


.



As discussed in § 5.2,


𝑅∈R |𝑅 | is nearly linear to the size of the

graph and seed sets. For instance,


𝑅∈R |𝑅 | = 𝑂 (𝑘𝜖−2 |𝑉 | ln |𝑉 |) in

vanilla IM, and this running time becomes 𝑂

𝑘2𝜖−3 |𝑉 | ln |𝑉 |


.

Running time for general matroid. Unlike the partition matroid

case, the general matroid scenario incurs additional cost to con-

firm if 𝐵 ∈ I. Specifically, Line 3 of Algorithm 2 checks whether

𝐵 ∪ {𝑢𝑖 } ∈ I given that 𝐵 ∈ I, and we assume that this operation

can be finished by an incremental independence call in 𝜙𝑖 time. Ad-

ditionally, Line 5 of Algorithm 4 identifies an element 𝑢 𝑗 ∈ 𝐵𝑡+1\𝐵𝑡
satisfying the matroid exchange property for given 𝐵𝑡 , 𝐵𝑡+1 ∈ B.
We assume that each identification can be completed by an ex-
change call in 𝜙𝑒 time. Following [30], we implement AMPSearch
(see Algorithm 2) by examining the elements in 𝑈 in decreasing

order of their partial derivatives and selecting the first 𝑢 𝑗 with

𝐵 ∪ {𝑢 𝑗 } ∈ I. Whenever an element is found to be incompatible,

i.e., adding it breaks independence, we can prune it from the candi-

date list for further iterations. With the above process, AMPSearch
incurs 𝑂 (𝑛) independence calls across all iterations. Notice that
AMPSearch runs in 𝑟 iterations, and each examines the deriva-

tives of all 𝑛 elements. Hence, the time complexity of AMPSearch
is 𝑂


𝑛𝜙𝑖 + 𝑟


𝑢𝑖 ∈𝑈


𝑅∈R I(𝑢𝑖 ∈ 𝑅)

 
= 𝑂


𝑛𝜙𝑖 + 𝑟 ·


𝑅∈R |𝑅 |


.

Regarding AMPRound, as |𝐵𝑡+1\𝐵𝑡 | ≤ 𝑟 , 𝑂 (𝑟 ) exchange calls are
required for finding a feasible𝑢 𝑗 for each of the elements in 𝐵𝑡+1\𝐵𝑡 .
Hence, the entire algorithm requires 𝑂 (𝑟/𝜖) exchange calls. Com-

bining this with the cost analyzed above, AMPRound costs a time of

𝑂

𝜖−1


𝑟𝜙𝑒 +


𝑅∈R |𝑅 |

 
. Therefore, the running time of AMP sub-

ject to the general matroid is 𝑂

𝜖−1


𝑟 ·𝑅∈R |𝑅 | + 𝑛𝜙𝑖 + 𝑟𝜙𝑒

 
.

As an example, in the general version of IM for multiple prod-

ucts [17] subject to the laminar matroid constraint, the cost of

each incremental independence call and exchange call is 𝜙𝑖 =

𝑂 (log𝑛) and 𝜙𝑒 = 𝑂 (log𝑛) [30]. Here, the running time of AMP is

𝑂

𝜖−1


𝑟

𝑅∈R |𝑅 | + (𝑛 + 𝑟 ) log𝑛

 
.

5 RR SET GENERATION SCHEME
Recall in Theorem 4.7 that the proposed AMP offers the desired

approximation guarantee w.r.t. the coverage function ΛR (·). In this

section we present a Rapid version of AMP, called RAMP, which
helps AMP to rapidly determine the required number of RR sets, en-

suring the approximation guarantee for the original objective func-

tion 𝜎 (·). RAMP follows the state-of-the-artOPIM-C approach [48]

but is generalized to IM-GM. In what follows, we briefly introduce

the RAMP algorithm in § 5.1 and its time complexity in § 5.2.

5.1 RAMP
Main idea. RAMP runs iteratively to mitigate the generation of

excessive RR sets. Initially, it generates two distinct collections of

RR sets, denoted as R1 and R2, each with a size of 𝜃1. At each

iteration 𝑖 , the element selection algorithm AMP is performed on

R1. Upon selecting a set 𝑆 , R2 is leveraged to verify whether 𝑆

satisfies 𝜎 (𝑆) ≥ (1− 1/𝑒 − 𝜖) · 𝜎 (𝑆∗), where 𝑆∗ = arg max𝑆∈I𝜎 (𝑆).
If it does, 𝑆 is returned as the solution. If not, RAMP first increases

the sizes of R1 and R2 for the next iteration 𝑖 + 1 by including new

RR sets, such that each size is equal to 𝜃𝑖+1 = 2 ·𝜃𝑖 , and then repeats

the above process. RAMP runs in at most 𝑖𝑚𝑎𝑥 iterations, and the

result 𝑆 in iteration 𝑖𝑚𝑎𝑥 is obtained based on R1 with |R1 | = 𝜃𝑚𝑎𝑥 ,

Algorithm 5: RAMP (G, 𝜅,M, 𝜖, 𝛿)
Input: The graph R, the constant 𝜅 , the matroidM, an error

tolerance 𝜖 , a failure probability 𝛿

Output: An IM-GM solution 𝑆 ∈ I that provides a 1 − 1/𝑒 − 𝜖
approximation w.p. at least 1 − 𝛿

1 𝜖𝑠 ← Eq.(7);

2 𝜃𝑚𝑎𝑥 ← Eq.(8); 𝑖𝑚𝑎𝑥 ← ln𝜅; 𝜃1 ←

𝜃𝑚𝑎𝑥

2
𝑖max


;

3 Generate R1 and R2 with | R1 | = | R2 | = 𝜃1;
4 for 𝑖 = 1, 2, . . . , 𝑖𝑚𝑎𝑥 do
5 𝑆 ← AMP (R1,M, 𝜖𝑠 ) ;
6 Compute 𝜎𝑢 (S∗ ) by Eq.(9) on R1 with 𝑝𝑓 = 𝛿

3·𝑖𝑚𝑎𝑥
;

7 Compute 𝜎𝑙 (S) by Eq.(10) on R2 with 𝑝𝑓 = 𝛿
3·𝑖𝑚𝑎𝑥

;

8 if 𝜎𝑙 (𝑆 )
𝜎𝑢 (𝑆∗ ) ≥ 1 − 1/𝑒 − 𝜖 or 𝑖 = 𝑖𝑚𝑎𝑥 then return 𝑆 ;

9 𝜃𝑖+1 ← 2 · 𝜃𝑖 ;
10 Increase the sizes of R1, R2 such that | R1 | = | R2 | = 𝜃𝑖+1;

where 𝜃𝑚𝑎𝑥 is a carefully-designed constant and ensures that 𝑆 still

provide the desired approximation in this worst case.

Detailed implementation. As illustrated in Algorithm 5, RAMP
takes as input a graph G, an IM-GM instance associated with the

matroid M and the constant 𝜅, an error tolerance 𝜖 , and a failure

probability 𝛿 . Recall in § 2.4 that the constant 𝜅 is the factor to

ensure that ΛR (·) is an unbiased estimator of 𝜎 (·) for given IM-GM
instance. As shown in Table 2, 𝜅 = |𝑉 | in vanilla IM and MRIM,
𝜅 =

𝑇
𝑡=1 𝛼𝑡 · |𝑉 | in RM, and 𝜅 = 𝜌𝐺 (𝐴) − |𝐴| in AdvIM. Akin to the

input 𝜖𝑠 discussed in § 4.4, Line 1 of Algorithm 5 introduces

𝜖𝑠 = max


𝜖𝑠 :

1

𝜖𝑠
∈ N, 1 − (1 + 𝜖𝑠 )−

1

𝜖𝑠 ≥ 1 − 1

𝑒 −
𝜖
2


(7)

for the AMP algorithm, such that its result 𝑆 satisfies ΛR1 (𝑆) ≥
(1 − 1/𝑒 − 𝜖/2) ·ΛR1 (𝑆𝑜1 ), where 𝑆

𝑜
1
= arg max𝑆∈IΛR1 (𝑆). In Line

2, RAMP initializes three constants: (i) the maximum number 𝜃𝑚𝑎𝑥
of required RR sets, (ii) the maximum number of iterations 𝑖𝑚𝑎𝑥 , and

(iii) the number of RR sets 𝜃1 in the first iteration. To ensure that the

result 𝑆 returned in iteration 𝑖𝑚𝑎𝑥 achieves 𝜎 (𝑆) ≥ (1 − 1/𝑒 − 𝜖) ·
𝜎 (𝑆∗) w.p. at least 1 − 𝛿/3, where 𝑆∗ = arg max𝑆∈I𝜎 (𝑆), we set
𝜃𝑚𝑎𝑥 to

𝜃𝑚𝑎𝑥 =

8𝜅


(1 − 1

𝑒 −
𝜖
2
)
√︃
ln

6

𝛿
+

√︃
(1 − 1

𝑒 −
𝜖
2
) (ln |B| + ln 6

𝛿
)

2

𝜖2 · 𝜎𝑙 (𝑆∗)
.

(8)

In Eq.(8), 𝜎𝑙 (𝑆∗) is a lower bound of 𝜎 (𝑆∗). For IM, RM, and MRIM,

𝜎𝑙 (𝑆∗) can be set as𝑘 , max

𝑖≤𝑖≤𝑛
{𝛼𝑖 }· |𝑉 |, and𝑇𝑘 , respectively. In AdvIM,

𝜎 (𝑆∗) can be arbitrarily close to 0 on degenerate instances. Since

we are only interested in problem instances where the influence

reduction is at least 1, i.e., 𝜎 (𝑆∗) ≥ 1, w.l.o.g. we can set 𝜎𝑙 (𝑆∗) ← 1.

At each iteration 𝑖 , upon obtaining R1 and R2 with |R1 | = |R2 | =
𝜃𝑖 , RAMP employs AMP to select a set 𝑆 to maximize the coverage

on R1 (Lines 4-5). To verify whether current 𝑆 achieves the desired

approximation ratio (Lines 6-8), RAMP next computes an upper

bound of the optimal solution 𝜎𝑢 (𝑆∗), and a lower bound of the

current solution 𝜎𝑙 (𝑆) by leveraging R1 and R2, respectively. The
intuition behind this verification is that if

𝜎𝑙 (𝑆 )
𝜎𝑢 (𝑆∗ ) reaches 1−1/𝑒−𝜖 ,



then
𝜎 (𝑆 )
𝜎 (𝑆∗ ) ≥

𝜎𝑙 (𝑆 )
𝜎𝑢 (𝑆∗ ) also satisfies this approximation. By setting

𝜎𝑢 (𝑆∗) =
√︂

Λ𝑢R1 (𝑆
∗) − ln𝑝𝑓

2
+

√︃
− ln𝑝𝑓

2


2

· 𝜅
| R1 | , and (9)

𝜎𝑙 (𝑆) =
√︃

ΛR2 (𝑆) −
2 ln𝑝𝑓

9
−

√︃
− ln𝑝𝑓

2


2

+ ln𝑝𝑓
18


· 𝜅

|R2 |
(10)

with 𝑝 𝑓 = 𝛿
3·𝑖𝑚𝑎𝑥

, we can obtain that 𝜎𝑢 (𝑆∗) is an upper bound of

𝜎 (𝑆∗) w.p. at least 1− 𝛿
3·𝑖𝑚𝑎𝑥

and 𝜎𝑙 (𝑆) is a lower bound of 𝜎 (𝑆) w.p.
at least 1− 𝛿

3·𝑖𝑚𝑎𝑥
. In Eq.(9), Λ𝑢R1 (𝑆

∗) is an upper bound of ΛR1 (𝑆∗),

which can be set to

ΛR
1
(𝑆 )

1− 1

𝑒
− 𝜖

2

. To tighten Λ𝑢R1 (𝑆
∗), we follow the idea

of [48] that computes it based on the current fractional solution x
during the iterations of AMP. See [31] for a detailed explanation.

To summarize, based on the above settings of 𝜃𝑚𝑎𝑥 , 𝜎
𝑢 (𝑆∗), and

𝜎𝑙 (𝑆), by the union bound, the correctness of RAMP follows.

Theorem 5.1. Given a graphG, an IM-GM instance associated with
the matroid M and the constant 𝜅 , an error tolerance 𝜖 , and a failure
probability 𝛿 , RAMP returns a set 𝑆 satisfying 𝜎 (𝑆) ≥ (1 − 1/𝑒 − 𝜖) ·
𝜎 (𝑆∗) with probability at least 1 − 𝛿 , where 𝑆∗ = arg max

𝑆∈I
𝜎 (𝑆).

5.2 Time Complexity Analysis
Denote the expected time of generating an RR set as 𝐸𝑃𝑇 , and the ex-

pected size of an RR set as 𝐸𝑃𝑆 . In each iteration 𝑖 , the computational

overhead of RAMP comes from (i) generating RR sets in 𝑂 (E[𝜃𝑖 ·
𝐸𝑃𝑇 ]), and (ii) an invocation of AMP in𝑂


𝑘∗ · 𝜖−1𝑠 ·


𝑅∈R1 |𝑅 |


=

𝑂

𝑘∗ · 𝜖−1𝑠 · E[𝜃𝑖 · 𝐸𝑃𝑆]


for the partition matroid, as analyzed in

§ 4.4. Let 𝑖′ be the iteration where RAMP stops. As proved in [50],

E[𝜃𝑖′ · 𝐸𝑃𝑇 ] = E[𝜃𝑖′ ] · 𝐸𝑃𝑇 and E[𝜃𝑖′ · 𝐸𝑃𝑆] = E[𝜃𝑖′ ] · 𝐸𝑃𝑆 .
Thus, the time complexity of RAMP for the partition matroid

is 𝑂


E

𝑖′
𝑖=1 𝜃𝑖

 
𝐸𝑃𝑇 + 𝑘∗𝜖𝑠 · 𝐸𝑃𝑆


, where 𝑘∗ = max{𝑘1, . . . 𝑘ℎ},

and E
𝑖′

𝑖=1 𝜃𝑖


is bounded as follows.

Lemma 5.2. When 𝛿 ≤ 1/2, RAMP totally generates 𝑂 ((ln |B| +
ln (1/𝛿))𝜅𝜖−2/𝜎 (𝑆∗)) RR sets in expectation.

Given this lemma and 𝜖𝑠 = 𝑂 (𝜖), when 𝛿 ≤ 1/2, the expected
time complexity of RAMP subject to the partition matroid is

𝑂


(ln | B |+ln (1/𝛿 ) )𝜅𝜖−2

𝜎 (𝑆∗ ) ·

𝐸𝑃𝑇 + 𝜖−1 · 𝑘∗ · 𝐸𝑃𝑆

 
.

Akin to the above analysis, when 𝛿 ≤ 1/2, the time complexity of

RAMP for the general matroid is

𝑂


(ln | B |+ln (1/𝛿 ) )𝜅𝜖−2

𝜎 (𝑆∗ ) ·

𝐸𝑃𝑇 + 𝜖−1𝑟 · 𝐸𝑃𝑆


+ (𝑟 ·𝜙𝑒+𝑛 ·𝜙𝑖 ) ·ln𝜅𝜖


.

For IM, [50] shows that 𝐸𝑃𝑇 = 𝑂


|𝐸 |
|𝑉 | 𝜌

∗

and 𝐸𝑃𝑆 = 𝑂 (𝜌∗) under

IC and LT models, where 𝜌∗ = max𝑣𝑖 ∈𝑉 𝜌G ({𝑣𝑖 }). Besides IM, the
original works of RM, MRIM, and AdvIM [29, 46, 47] also provide

analyses for 𝐸𝑃𝑇 and 𝐸𝑃𝑆 , which are summarized in Table 2. Since

they are related to 𝜌∗ and 𝜌∗ ≤ 𝜎 (𝑆∗), the above complexities can be

further simplified. E.g., for MRIM with 𝜅 = |𝑉 | and |B| =
 |𝑉 |
𝑘

𝑇
, the

time complexity is 𝑂

𝑇 2𝑘𝜖−2𝑡 (ln |𝑉 | + ln (1/𝛿)) · ( |𝐸 | + 𝑘𝜖−1 |𝑉 |)


.

Table 2: 𝜅, 𝐸𝑃𝑇 , and 𝐸𝑃𝑆 in instances (𝜌∗ = max

𝑣𝑖 ∈𝑉
𝜌G ({𝑣𝑖 })).

Name 𝜅 𝐸𝑃𝑇 𝐸𝑃𝑆

Vanilla IM |𝑉 | 𝑂


|𝐸 |
|𝑉 | 𝜌

∗


𝑂 (𝜌∗ )

RM
𝑇

𝑡=1 𝛼𝑡 · |𝑉 | 𝑂


|𝐸 |
|𝑉 | 𝜌

∗


𝑂 (𝜌∗ )

MRIM |𝑉 | 𝑂


𝑇 · |𝐸 |
|𝑉 | 𝜌

∗


𝑂 (𝑇 · 𝜌∗ )

AdvIM 𝜌𝐺 (𝐴) − |𝐴 | 𝑂


|𝑉 \𝐴|

𝜌G (𝐴)−|𝐴|
· |𝐸 ||𝑉 | 𝜌

∗


𝑂 (𝜌∗ )

Table 3: Dataset statistics (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9).

Name #nodes #edges Type Avg. degree

Facebook 4.0𝐾 176.4𝐾 friendship 43.6

Wiki 7.1𝐾 103.6𝐾 who-votes-on-whom 14.5

Twitter 81.3𝐾 1.7𝑀 who-follows-whom 21.7

Google+ 107.6𝐾 13.7𝑀 who-follows-whom 283.3

Pokec 1.6𝑀 30.6𝑀 friendship 18.7

LiveJournal 4.8𝑀 69.0𝑀 friendship 14.2

Twitter-large 41.7𝑀 1.5𝐵 who-follows-whom 35.2

6 EXPERIMENTS
We first introduce the experimental settings in § 6.1, and then evalu-

ate the performance of our proposal in § 6.2. All experiments are con-

ducted on a Linux machine with Intel Xeon(R) Gold 6240@2.60GHz

CPU and 377GB RAM in single-thread mode.

6.1 Experimental Setup
Datasets.We experiment with 7 real-world datasets that are widely

adopted in previousworks and publicly available at SNAP [38]: Face-

book [5, 39, 58], Wiki [39], Twitter [5], Google+ [58], Pokec [48],

LiveJournal [48, 58], and Twitter-large [48]. The Twitter-large dataset

is the largest dataset ever used in instances RM, MRIM, and AdvIM.
The dataset statistics are listed in Table 3.

IM-GM instances and configurations. We focus on the instances

IM, RM, MRIM, and AdvIM, as illustrated in § 2.2-2.3. Following the

default configurations in related works [27, 29, 46, 47], we use

the IC model in RM, MRIM, IM and the LT model in AdvIM. We set

𝑝𝑖, 𝑗 = 1/|𝑁 𝑖𝑛
𝑗
| for all 𝑒𝑖, 𝑗 ∈ 𝐸. We configure 𝑇 = 10, 𝛼𝑖 = 1, 𝑘 𝑗 = 1

for all 𝑖 ∈ [𝑇 ], 𝑣 𝑗 ∈ 𝑉 for RM, set 𝑇 = 20, 𝑘 = 100 for MRIM, and
𝑘 = 2000 for IM. In the absence of a ground-truth set 𝐴 for AdvIM,
where |𝐴| represents the number of contagious seeds as detected by

the authority, we generate a synthetic set 𝐴. This is accomplished

by initially adding the node 𝑣𝑖 with the largest out-degree to set 𝐴.

Following this, each out-neighbor 𝑣 𝑗 of 𝑣𝑖 is independently added

to 𝐴 with a probability of 𝑝𝑖, 𝑗 . Furthermore, we set 𝑘𝑣 = 500 and

𝑘𝑒 = 1000, which are comparable in magnitude to |𝐴|.
Algorithms and constant settings.We evaluate the performance

of 9 algorithms in total, which are divided into two parts: 5 algo-

rithms for element selection, and 4 algorithms for their scalable

implementation. These algorithms are as follows.

• Element selection: Greedy, Local-Greedy, and Threshold-Greedy
(baselines in § 2.4); AMP and AMP-PM for the general matroid

and partition matroid, respectively (Algorithm 1).

• Scalable solutions: RM-A for RM [29], CR-NAIMM for MRIM [46],

and AAIMM for AdvIM [47] (baselines); RAMP (Algorithm 5).
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Figure 2: Total revenue in RM on various graphs.
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Figure 3: Total spread in MRIM on various graphs.
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Figure 4: Influence reduction in AdvIM on various graphs.

For all element selection algorithms, we apply the lazy evaluation

technique in [37, 42] to improve their empirical efficiency. For AMP
and AMP-PM, 𝜖 is set to 1/2 and 1/8. Based on Theorem 4.7, these

settings provide an approximation of 0.56 and 0.61 for maximizing

ΛR , respectively, indicating a focus on efficiency but at the cost

of result quality, and vice versa. For Threshold-Greedy, 𝜉 is set

to the default value 0.05 [6]. For all scalable implementations, we

set 𝛿 = 1/|𝑉 | by default and vary 𝜖 from 0.5 to 0.1 [48, 50]. For a

fair comparison, we have also made other necessary modifications

to scalable competitors and refer interested readers to [31] for

details. In addition, for each algorithm, we estimate the objective

function value 𝜎 by averaging over 10, 000Monte Carlo simulations.

We repeat each algorithm 5 times and report the average when

evaluating the running time and the objective function value. All

algorithms are implemented in C++ with -O3 optimization.

6.2 Performance Evaluations
Performance of element selection in RM, MRIM, and AdvIM. In the
first set of experiments, we evaluate the result quality and running

time of element selection algorithms on the IM-GM instances RM,
MRIM, and AdvIM. For a fair comparison, we provide all algorithms

with the same collection of RR sets R. Furthermore, we vary |R |
from 2

5
to 2

21
in RM; and from 2

1
to 2

17
in MRIM and AdvIM. The

choices of the smallest and largest values for |R | roughly correspond
to 𝜃1 and 𝜃𝑚𝑎𝑥 in Algorithm 5 when 𝜖 = 0.1.

Result quality. As shown in Figures 2-4, both AMP and AMP-PM
return better solutions compared to their competitors in terms of

related objective functions across all datasets. For instance, AMP or

AMP-PM outperforms all competitors by up to 86% on Pokec in RM,
708% on Wiki in MRIM, and 205.8% on Twitter-large in AdvIM. To
explain, AMPSearch and AMPSearch-PM select each element based

on the largest partial derivative and subsequently update the value

of 𝑞𝑅 for each 𝑅 containing the selected element. In contrast to the

competitors Greedy, Local-Greedy, and Threshold-Greedy, our up-
date strategy circumvents the direct exclusion of each related 𝑅 and

offers a more fine-grained marginal coverage for each element. As

a result, it allows for a more refined and potentially more effective

selection process. Furthermore, we observe that the result quality

of Threshold-Greedy is much worse than other approaches when

the number of RR sets is small. This is because it disregards all ele-

ments whose marginal coverage is below the minimum threshold,

rendering the number of selected elements fewer than expected.

Running time. In the second set of experiments, we use RM as the in-
stance and report the running times of element selection algorithms

in Figure 5. Similar trends were observed in the running time results

for other instances. Specifically, Local-Greedy and AMP-PM (with

𝜖 = 1/2) are the fastest and second-fastest algorithms respectively,

across all datasets, each being 4 − 10× faster than Greedy. Recall
from the first set of experiments that Local-Greedy, despite being
the fastest, is the second least effective algorithm, quality wise. Fur-

thermore, we compare AMP and AMP-PM with the same 𝜖 values

across these problems using partition matroids. In particular, AMP-
PM improves the running time by an order of magnitude. These

observations demonstrate the efficiency of AMP-PM, as proved in

§ 4.4. Note that, in Figure 5(e), the running time of AMP decreases

when |R | ≥ 2
15
, due to the lazy evaluation technique. We also
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Figure 5: Running time of element selection in RM.
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Figure 6: The spread in IM on various graphs.
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Figure 7: Total running time of scalable algorithms.

report the time taken to generate R. RR set generation becomes

more expensive than all methods as the size of R increases. For

instance, when |R | > 2
9
on Google+, the time taken to generate R

exceeds that of AMP-PM by more than an order of magnitude. This

motivates the design of an efficient scheme for RR set generation,

as proposed in § 5.

Performance of element selection in IM. In the third set of ex-

periments, we evaluate the performance of the proposed element

selection methods on the conventional IM problem. Here, we only

compare AMP with Greedy and Threshold-Greedy as AMP and

AMP-PM (resp. Greedy and Local-Greedy) are essentially equiva-

lent. Figure 6 reports the spread of eachmethod on different datasets

as |R | is varied from 2
1
to 2

17
. Notably, AMP outperforms competi-

tors by up to 871% on LiveJournal. This is attributed to the more

fine-grained marginal coverage, as discussed earlier.

Effect of 𝜖 in AMP. Next, we examine the impact of the 𝜖 pa-

rameter in the proposed AMP algorithm. Here, we focus on the

result qualities of AMP and Greedy, as shown in Figures 2-6. Note

that AMP is equivalent to Greedy when 𝜖 = 1. Based on observa-

tions in the first and third sets of experiments, the result quality

of AMP improves significantly by decreasing 𝜖 from 1 to 1/2 (i.e.,
increasing the number of iterations in Line 4 of Algorithm 1 from

1 to 2). This improvement becomes less pronounced with further

increases in the number of iterations. For example, in MRIM, the

solution quality of AMP improves by 84% on Pokec when |R | = 2
9

as 𝜖 decreases from 1 to 1/2. In contrast, the improvement is only

7% when comparing 𝜖 = 1/2 with 𝜖 = 1/8.
Performance of scalable implementations. Finally, we evaluate
the running times of RAMP and all scalable competitors by vary-

ing 𝜖 from 0.5 to 0.1. In Figure 7, the approximation ratio of each

solution is used as the x-axis, with RAMP having 1− 1/𝑒 − 𝜖 and all
competitors having 1/2 − 𝜖 ; in Figure 7(a), we exclude approaches

that run more than 72 hours. Due to space constraints, we only re-

port results for the largest dataset on which the baseline algorithm

with 𝜖 = 0.5 can terminate within 72 hours. These datasets are

Twitter-large in RM and Wiki in MRIM and AdvIM. Interested readers

can find more experimental results, including the memory usage of

scalable algorithms, in [31].

Specifically, RAMP consistently outperforms the baseline regard-

ing running time while ensuring the same approximation guarantee

across all cases. Notably, RAMP is at least 1, 000× faster than CR-
NAIMM in MRIM and at least 100× faster than AAIMM in AdvIM.
In addition, RAMP completes within 66 hours for RM on Twitter-

large when 𝜖 = 0.3, whereas RM-A only returns results for 𝜖 ≥ 0.4

and fails to terminate even after 7 days when 𝜖 = 0.3. The rea-

son for the efficiency of RAMP is twofold. First, RAMP introduces

the early termination and the tightened bound Λ𝑢R1 (𝑆
∗), which

allows us to generate an appropriate number of RR sets as soon as a

(1−1/𝑒−𝜖)-approximation is reached. Furthermore, AMP provides

superior result qualities during iterations, enabling RAMP to reach

the desired approximation faster. In contrast, RM-A, CR-NAIMM,

and AAIMM generate a large number of RR sets and rely on Greedy
or Local-Greedy for element selection, leading to inferior result

qualities. To summarize, the proposed RAMP is significantly faster

than all competitors while providing the same result quality.

7 DEPLOYMENT
We have deployed our proposed RAMP in a real industry setting

for GameX of Tencent. The details are described below.



Table 4: Numbers of engaged pairs in GameX (𝑀 = 10
6).

Algorithm Most-Click RM-A RAMP

#engaged pairs 7.34M 7.36M 7.50M

Application scenario. GameX is a Tencent multiplayer online

game with hundreds of millions of users and a massive number

of user-generated maps. A map in the game is a vibrant and dy-

namic environment featuring several obstacles and puzzle-solving

settings, allowing multiple users to compete with each other simul-

taneously. Besides, the social network in GameX can be constructed

based on friendships formed in the game, with an average of ∼16
friends per user, making it sufficiently dense [3]. As such, users can

interact with their friends on the social network, such as playing

or inviting to play the game in some maps, which contributes to

cascades of maps in the game. In other words, a user might play the

game in a map if their friends have played or shared it. To further

promote the maps, the game environment can generate 𝑘 maps

as recommendations for each user, who can receive them during

the game and click the maps they are interested in playing in. The

performance of GameX is measured by the number of engaged user-

map pairs, each of which denotes that a user plays a user-generated

map, reflecting the engagement of users in the game.

Control and treatment groups. We have deployed three ap-

proaches: (i)Most-Click, (ii) RM-A, and (iii) RAMP. Specifically, for
the control group, we have deployedMost-Click, the state-of-the-
art solution for this scenario. It operates by first ranking maps for

each user 𝑣𝑖 based on the descending order of probability𝑤𝑖,𝑡 that

𝑣𝑖 will click map 𝑡 and then selecting the top-𝑘 maps with the high-

est click probabilities for each user. We learn the probability 𝑤𝑖,𝑡
using XGBoost [14], a machine learning model to predict whether

a given user would play the game in a given map.

We have deployed RM-A and RAMP for two different treatment

groups. For treatment groups, we focus on addressing the RM prob-

lem and returning 𝑘 user-map pairs for each user. Notably, we set

each unit revenue to 1 and employ the IC model as the diffusion

model. In this model, the influence probability 𝑝𝑖, 𝑗 for each 𝑒𝑖, 𝑗 ∈ 𝐸
is calculated as

𝑐𝑖,𝑗
𝑣𝑖 ∈𝑁𝑖𝑛

𝑗
𝑐𝑖,𝑗

, where 𝑐𝑖, 𝑗 denotes the number of histor-

ical interactions on 𝑒𝑖, 𝑗 , such as co-playing, gifting, etc. To address

RM in this context, we first leverage the competing solution RM-
A [29], as mentioned in § 6, the core of which is selecting 𝑘 seeds for

each map using Greedy. Next, we implement the proposed RAMP
by targeting an enhanced objective function 𝜎𝑊 (𝑆) based on 𝜎 (𝑆).
This function is defined as

𝜎𝑊 (𝑆) =
∑︁
𝑆 ′⊆𝑆


(𝑣𝑖 ,𝑡 ) ∈𝑆 ′

𝑤𝑖,𝑡


(𝑣𝑖 ,𝑡 ) ∈𝑆\𝑆 ′

(1 −𝑤𝑖,𝑡 ) · 𝜎 (𝑆 ′),

where𝑊 is a given (or learned) set of click probabilities that con-

tains𝑤𝑖,𝑡 for every user-map pair (𝑣𝑖 , 𝑡). By adjusting the scale of

𝑞𝑅 in AMP, RAMP can be adapted to this new objective while main-

taining the same approximation guarantee and time complexity.

For further details, readers are referred to [31].

Deployment setups. This deployment is conducted on an in-house

cluster in Tencent consisting of hundreds of machines, each of

which has 16GB memory and 12 Intel Xeon Processor E5-2670 CPU

cores. To mitigate the network effect, the phenomenon whereby

user behaviors are influenced by others within the same network,

we follow [44] and conduct cluster-level experimentation. Specifi-

cally, we first partition all users into several communities of almost

the same size with high edge connectivity and node feature similar-

ity, and then randomly assign the live traffic in the same community

to the treatment or control groups. Furthermore, we set the number

of recommended maps 𝑘 to 2. As a result, each approach is assigned

to 0.7 million sampled users with 400 randomly selected maps to

recommend, leading to 277.5 million user-map pairs for observation.

In this scenario, the constraint is a partition matroid M = (𝑈 ,I),
where 𝑈 comprises all pairs of users and maps (277.5 million) and

I consists of all solutions, each containing 𝑘 = 2 maps per user.

Online performance. Table 4 reports the number of engaged pairs

for each algorithm. Notably, the treatment groups achieve more

engaged pairs compared to the control group Most-Click – 20,000

(0.27%) for RM-A and 160,000 (2.17%) for RAMP, demonstrating the

usefulness of involving the word-of-mouth effect in this scenario.

In addition, RAMP yields 140,000 (1.9%) more engaged pairs than

RM-A. To explain, unlikeMost-Click which solely focuses on the

probability of a seed adopting the promoted map, RAMP takes into

account not only this inclination but also the subsequent word-

of-mouth effect, as captured by the IC model with its associated

influence probability. The improvement of RAMP over RM-A can

be attributed to two factors. First, RAMP achieves a (1 − 1/𝑒 − 𝜖)-
approximation, while the result of RM-A is (1/2 − 𝜖)-approximate.

Second, the enhanced objective 𝜎𝑊 (𝑆) comprehensively considers

the adoption inclination of any subset of 𝑆 . In contrast, even if the

revenue unit 𝛼𝑡 is leveraged, RM-A can only involve the average

inclination for each map 𝑡 . While the percentage improvement may

appear modest, the improved numbers of engaged pairs lead to

substantial additional revenue for the industry.

8 CONCLUSIONS
In this paper, we focus on applications requiring multiple seed sets

for IM, which are formulated as instances of IM subject to a matroid

constraint. For effectiveness, we propose AMP, which achieves a

(1 − 1/𝑒 − 𝜖)-approximation guarantee for this problem. For en-

hanced efficiency, we also propose a fast implementation called

RAMP. Our comprehensive experiments demonstrate that our pro-

posal outperforms state-of-the-art methods in both effectiveness

and efficiency. Moreover, we have successfully deployed RAMP in

an online gaming propagation scenario in a real industry setting,

yielding considerable improvements. In the future, to exploit the

infrastructure in the industry further, we will consider solutions in

the distributed setting. It is also interesting to explore real-world

applications of IM under other types of matroid constraints and

develop scalable and effective solutions for them.
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