
Influence Maximization in Real-World Closed Social Networks
Shixun Huang⋆
RMIT University

shixun.huang@rmit.edu.au

Wenqing Lin
Tencent

edwlin@tencent.com

Zhifeng Bao∗
RMIT University

zhifeng.bao@rmit.edu.au

Jiachen Sun
Tencent

jiachensun@tencent.com

ABSTRACT
In the last few years, many closed social networks such as What-
sAPP and WeChat have emerged to cater for people’s growing
demand of privacy and independence. In a closed social network,
the posted content is not available to all users or senders can set lim-
its on who can see the posted content. Under such a constraint, we
study the problem of influence maximization in a closed social net-
work. It aims to recommend users (not just the seed users) a limited
number of existing friends who will help propagate the information,
such that the seed users’ influence spread can be maximized. We
first prove that this problem is NP-hard. Then, we propose a highly
effective yet efficient method to augment the diffusion network,
which initially consists of seed users only. The augmentation is
done by iteratively and intelligently selecting and inserting a lim-
ited number of edges from the original network. Through extensive
experiments on real-world social networks including deployment
into a real-world application, we demonstrate the effectiveness and
efficiency of our proposed method.

PVLDB Reference Format:
Shixun Huang, Wenqing Lin, Zhifeng Bao and Jiachen Sun. Influence
Maximization in Real-World Closed Social Networks. PVLDB, 16(2): 180 -
192, 2022.
doi:10.14778/3565816.3565821

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/rmitbggroup/IMCSN.

1 INTRODUCTION
Social network platforms have been a popular way that allows
people to keep in touch with friends and share contents. There are
many open social networks where the posted content of a user will
be available to all followers and even non-followers using search
engines. This open sharing model is popular with millennials who
are heavily impacted by the Fear Of Missing Out culture and like
to put their lives on display and see everything that’s going on [2].

Recently, closed social networks, where sharing is limited to se-
lected persons only, have emerged and are favored by generation
Z to cater for privacy issues and information overload in open so-
cial networks. At Tencent, the closed sharing model has become a
predominant form for sharing information in its numerous appli-
cations. For example, users will send a limited number of friends
recent news and updates (e.g., COVID-19 statistics and reports of
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565821

a
b

c
d

e
f g

h
i

j

n m

l

k

Figure 1: The network formed by solid edges is the optimal
diffusion network to maximize the influence of a if each
user only shares information with up to two friends.

the Olympic winter games) on WeChat, charitable activities on QQ,
and event invitations and sales promotion of merchandise on Ten-
cent Shop. Meanwhile, many tech giants (e.g., Facebook, LinkedIn
and Pinterest) have started enabling closed sharing models with
personalized settings as well [3, 6, 9, 10]. Additionally, the closed
social network platform WhatsApp recently took the first place
from Facebook in downloads [4], which again demonstrates the
importance and popularity of the closed sharing model.

On the one hand, in closed social networks, users often do not
want to overexpose themselves for various reasons, such as privacy
concerns and psychological factors [5], or may have limited shar-
ing opportunities due to resource constraints in events. Therefore,
users are likely to share information with only a limited number of
friends. For example, users in WeChat tend to share their life mo-
ments or private matters only with their close friends and families,
rather than colleagues with pure business relationships [1, 7]. Con-
sidering that online users have different capabilities of propagating
information, as a consequence, the influence spread (i.e., informa-
tion propagation effect) of a seed user (i.e., a user who releases the
content at the very beginning) heavily depends on the friends she
chooses to receive the information. Since the information propa-
gation unfolds in a cascading manner, an information receiver can
be multiple hops away from the seed and her selected friends for
sharing also impacts the influence spread.

On the other hand, users hope that their released information
could reach and benefit most of the users. Therefore, to fully re-
alize the social and commercial value of the information with the
greatest exposure in closed social networks, an effective strategy
of recommending friends to share information is very important.
Since each recommendation corresponds to a directed edge in the
network, all recommendations constitute a diffusion network, which
is essentially a subnetwork of the original network and has limit on
the number of outgoing edges (i.e., paths from senders to receivers)
incident on each node.

In this paper, we formulate the above recommendation as the
problem of Influence Maximization in Closed Social Networks (IM-
CSN), which aims to find the optimal diffusion network via which
the seeds’ influence spread is the maximum.
⋆This work was done when the first author did an internship at Tencent.
∗Corresponding author.

180

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3565816.3565821&domain=pdf&date_stamp=2022-11-23


Example 1. To make this problem more intuitive, we use an ex-
ample for illustration. Figure 1 shows a toy network where each user
will be recommended a limited number of friends, say two, to share
information. Suppose we only consider the information diffusion via
the friends recommended by the system and ignore the uncontrollable
and unpredictable sharing with friends that are not in the recommen-
dation list. Given the seed user a who has three friends b, c and d , she
will send the information to two of her friends, say c and d . After-
wards, her friends who receive the information may also choose two of
their friends (e.g., the friends f and д of c) to receive this information.
This process is repeated such that the information diffuses in cascades.
If we assume that users will propagate the received information un-
conditionally, the diffusion network formed by all solid edges refer to
the optimal solution where the information from the seed user a can
reach the maximum number of users.

Notably, traditional influence maximization [45] in open social
networks assumes that a userwill send information to all her friends,
and aims to select a limited number of seeds with the maximum
influence spread. Here, we focus on the closed sharing model and
selecting a limited number of edges such that the influence spread
of specific seeds via these selected edges is maximized, which is
different from the former. Please refer to Section 2 for more details.

It is very challenging to solve the IMCSN problem because the
choice space is extremely large. To solve this problem, we try to
insert limited links from the original network into the diffusion
network that is initially empty. Unfortunately, we find that greedily
inserting edges with the maximum marginal gains w.r.t. influence
of seeds is not effective, due to the non-submodular property of the
objective function and the expensive marginal gain computations
under the classical Independent Cascade (IC) model [45]. Thus,
we resort to computing and leveraging influence lower bounds,
and by using such lower bounds the submodular property can
be preserved. Afterwards, we propose a novel diffusion network
augmentation method which consists of two stages, namely the
expansion stage and the filling stage. In the expansion stage, we
iteratively expand the diffusion network size by incorporating the
users and the connections that are important to spreading influence.
In the filling stage, we intelligently fill up link recommendations for
these involved users. Our contributions are summarized as below:

• We make the first attempt to study and formalize the problem of
Influence Maximization in Closed Social Networks (IMCSN), mo-
tivated by numerous practical needs in social network platforms
such as Tencent. We also prove its NP-hardness (Section 3).
• With an influence lower bound as the quality measurement, we
first propose a network augmentation sketch that can produce
solutions for a single seed user with theoretical guarantees in a
given diffusion network (Section 4.1). To boost the efficiency, we
propose an effective yet scalable network augmentation method
to avoid marginal gain computations (Section 4.2).
• Wemake some interesting observations in the influence diffusion
of multiple seed users and leverage these observations to trans-
form the IMCSN problem for multiple seed users into the one for
a single ‘virtual’ seed user. Such a transformation enables us to
utilize our method for a single seed user with minor adjustments,
to produce effective solutions while maintaining high efficiency.

• We conduct extensive experiments on real-world social networks
including the deployment into a Tencent application (Section 6).
We have several exciting findings:
1) In the IMCSN problem, the boosted baselines, built upon
the diffusion network produced by the expansion stage of our
method, can achieve up to five-orders-of-magnitude larger in-
fluence spread than their counterparts built upon the initially
empty network. Despite that, our full-stage method, which in-
cludes both the expansion and filling stages, significantly beats
those boosted baselines.
2) Our full-stage method is able to identify important connections
for spreading influence – it is able to build a diffusion network
where seed users can achieve 90% of their full influence in the
original network and this diffusion network contains only 36%
of edges from the original one.
3) We deploy our solution into an activity of an online Tencent
application where each online user will be recommended some
friends for interaction.We conduct online A/B testing where each
user is randomly assigned to one method which produces the
recommendation list for this user. Such interaction can unfold in
cascades and further trigger more interaction if the recommenda-
tion is effective. The online result shows that the recommendation
from our solution which achieves a notably better Click-through
Rate than the rest of baselines.
4) In solving the problem of maximizing the seeds’ influence over
open social networks, by recommending limited new links, our
method achieves up to five-orders-of-magnitude speedup than
the state-of-the-art while maintaining competitive effectiveness.

2 RELATED WORK
In this section, we will first describe the difference between closed
and open social networks. Afterwards, we will describe the related
work on influence maximization in open social networks, which
can be broadly divided into two categories, influence maximization
via node selection and influence maximization via edge insertion,
respectively. Then, we will discuss the differences between them
and our problem in closed social networks.

Open vs. Closed Social Networks. The two words ‘open’ and
‘closed’ are used to describe the underlying sharing model rather
than the topology of the social network. Furthermore, the sharing
system applied to the network is decided based on the specific
application behind. For example, if Figure 1 describes a subgraph
of the Twitter social network, we have an open sharing model by
default and a user’s post will be available to all online users. On the
other hand, if Figure 1 describes a subgraph of the Wechat social
network, the closed sharing model will be applied in most cases (as
in Example 1) where users will make their messages or posts visible
to a limited number of selected friends. For ease of presentation and
following the naming convention in this domain [11, 27], we directly
use ‘open’ and ‘closed’ social networks to refer to the networks
with the ‘open’ and ‘closed’ sharing model respectively.

InfluenceMaximization via node selection. This problem refers
to the classical influence maximization problem that aims to choose
a limited number of seed nodes with the greatest influence spread.

181



Kempe et al. [45] prove the NP-hardness of this problem and pro-
pose a Monte Carlo simulation based greedy algorithm which it-
eratively chooses the node with the greatest marginal gain to the
influence. Due to the importance of this problem, many subsequent
studies [14–19, 21, 23–26, 32, 35, 36, 38–44, 47–49, 51, 52, 54, 56–
60, 64] have been proposed to further improve the efficiency and/or
effectiveness. They mainly differ in how the influence spread is
defined or estimated. To name a few, Leskovec et al. [47] adopt the
Monte-Carlo simluation to measure the influence spread and speed
up the process in [45] with an early termination technique based
on the submodular property of the influence function. Ohsaka
et al. [54] measure the influence and marginal gain based on a
limited number of subgraphs generated by the flipping-coin tech-
nique [45], which further improves the efficiency. Borgs et al. [18]
leverage reverse reachable sets to estimate influence and inspires
more recent advanced solutions [57, 58].

Influence maximization via edge insertion. The work falling
in this category aims to insert a limited number of edges into the net-
work so as to maximize influence spread of specific seeds. D’Angelo
et al. [31] study how to maximize the influence of the seeds un-
der the IC model by adding a limited number of edges incident to
these seeds. Coró et al. [30] extend the results of [31] to the Linear
Threshold (LT) model [37]. Specifically, they prove that the objec-
tive function under the LT model is submodular and leverage this
property to propose an approximate algorithm. Khalil et al. [46]
study how to add a limited number of edges to maximize the influ-
ence of given seeds under the LT model. Chaoji et al. [22] study how
to add edges to maximize the influence spread of seeds under the
constraint that at most k inserted edges are incident on any node.
Yang et al. [63] and Yang et al. [62] study how to add a limited num-
ber of edges from a candidate set to maximize the seeds’ influence
under the IC model. Yang et al. [63] derive a lower and upper bound
influence function respectively to approximate the non-submodular
influence under the IC model, and they use a sandwich strategy
to produce approximate solutions. Yang et al. [62] derive tighter
bounds than Yang et al. [63] and produce more effective results.

Differences. The aforementioned studies are drastically different
from ours. The main reason is on the problem setting and assump-
tion. The studies of the first category focus on selecting seeds based
on the open social networks where the influence from the seeds is
allowed to propagate via any edge in the network. On the other
hand, we consider the closed social networks, and focus on selecting
limited edges from the original network such that the influence of
specific seeds via these selected edges is maximized.

The studies of the second category focus on inserting a limited
number of new edges into the existing network and assume an
open-sharing model such that the influence of the seeds will spread
via all edges including the inserted ones. In contrast, we focus
on inserting a limited number of existing edges from the original
network into an initially empty network and consider a closed-
sharing model such that the influence of seeds will spread only via
inserted edges. As a consequence, existing work’s decision making
of edge insertion is based on the current graph structure and cannot
be trivially extended to handle our problem, because the network
which requires edge insertion in our problem is initially empty.
Additionally, due to different assumptions of the sharing model, the

space of candidate edges for insertion that is considered by existing
work is significantly smaller than that of our problem. As a result,
most existing methods will suffer from serious scalability issue
even if they could be extended to handle our case. In particular, the
infeasibility of extending existing work can be caused by reasons
including but not limited to: (1)Most of these studies do not consider
the edge insertion constraint where the number of inserted edges
sharing the same source node cannot be greater than k . (2) The
methods in [30, 31] are designed based on the assumption that the
source nodes of all edge candidates must be seeds, which is not the
case in our problem. (3) The method in [46] is specifically designed
for the LT model which has drastically different properties from
the IC model we are considering. (4) The method in [22] cannot
help the seed nodes to influence the nodes that are 2-hop away in
the initially empty network, because the influence path between
any pair of nodes is not allowed to contain more than one inserted
edge. (5) The methods in [62, 63] hold a strong assumption that the
network is acyclic, which is often not true in real-world scenarios.

3 PROBLEM FORMULATION
In this paper, we consider both directed and undirected social net-
work where the latter can be transformed into the directed one. In
an undirected network, each edge represents a friendship between
two users. Since information diffusion is directed, each friendship
corresponds to two diffusion directions. Thus, we represent the
undirected social network as the directed one G = (V ,E) where
V (E) is the node (edge) set, and each directed edge from u to v is
denoted as (u,v ). We use NG

in (u) and NG
out (u) to denote the set of

incoming and outgoing neighbors of u, respectively.

The diffusionmodel. We focus on a classic andwidely-adopted in-
formation diffusionmodel – the Independent Cascade (IC)model [45].
It originates from the marketing literature [33] and independently
assigns each edge (u,v ) with an influence probability pu,v → [0, 1].
Given a seed node s being active at time step 0 and the influence
probabilities, the diffusion unfolds in discrete steps. Each active
node u in time step t ≥ 1 will have a single chance to activate each
outgoing neighbor v , that is inactive in step t − 1, with a probabil-
ity of pu,v . If an outgoing neighbor v is activated in step t , it will
become active in step t + 1 and then will have a single chance to
activate each of its inactive outgoing neighbors in the next time
step. The diffusion instance terminates when no more nodes can be
activated. The influence spread δG (s ) in a graph G is the expected
number of activated nodes with s as the seed node. Note that our
proposed methods are specifically designed for the IC model. The
extension on other models (e.g., the Linear Threshold model [45])
is out of the scope of this work and will be explored in future work.

In this paper, we aim to select at most k outgoing edges for each
online user such that the influence spread of seeds via these selected
edges is maximized. These directed edges naturally form a diffusion
sub-network defined as below.

Definition 1 (K-subnetwork). Given a directed network G =
(V ,E) and an integer k , a k-subnetworkGk is a subgraph ofG where
there are at most k outgoing neighbors for each v ∈ Gk . Formally,
Gk = (Vk ,Ek ) where Vk ⊆ V , Ek ⊆ E and ∀v ∈ Vk , |N

Gk
out (v ) | ≤ k .

182



a b c d e f g h

1 1 1

1 1

1

2 2 2

2 2

2

3 3 3

3 3

3

s

Figure 2: An example of a graph constructed based on a set
cover instance.

For example, in Figure 1, the network that consists of solid edges
only is a 2-subnetwork. Notably, based on industry practice, we
make three considerations when formulating our problem (i.e.,
Definition 2): 1) The value ofk is the same for all users and is decided
by the event operator. However, our solutions can easily work with
the scenario where the value of k depends on specific users. 2)
Seed users are independent since KOLs (i.e., key opinion leaders)
may have unpredictable and different information to spread over
a long period, and recommendations based on this consideration
help maintain a long-term usage of the recommendation system. 3)
The friend recommendation list for a user is built by considering all
seed users instead of being customized for individuals since (i) it is
intractable to know, among all seed users sharing the same content,
who will activate online users for further information propagation
in real-world scenarios, and (ii) fixing the recommendations help
increase the interaction rate between users with a laser focus on
facilitating information diffusion.

Definition 2 (Influence maximization in closed social net-
works (IMCSN)). Given a directed social network G = (V ,E), an
integer k , a set S of independent seed users, we aim to find the optimal
diffusion k-subnetworkG∗k such that the aggregated influence of seed
users in S is maximized under G∗k :

G∗k = argmax
Gk ∈S


s ∈S

δGk (s )

where S refers to the whole space of all possible k-subnetworks of G.

If s  Vk , the influence of s in Gk is 0. When the context is clear,
we omit the subscript of δGk (·), and we use the terms ‘node’ and
‘user’, as well as the terms ‘edge’ and ‘link’ interchangeably.
Hardness analysis of the IMCSN. We will show that the IMCSN
problem is NP-hard via a reduction from the set cover problem
defined as below.

Definition 3 (Set Cover). Given a setU of elements, a collection
C of subsets A1,A2, ...,A |C | ofU where ∪1≤i≤ |C |Ai = U , we aim to
choose the smallest number of sets from C such that their union is U .

Theorem 1. The IMCSN problem is NP-hard.

Proof. To show that IMCSN is NP-hard, we will perform a
reduction from the NP-complete decision problem of set cover,
which checks whether we can find k sets from C whose union isU ,
to the special case of IMCSN where there is only one seed user s .

Given the collection C of a set cover instance, we construct a
deterministic graph with a tree structure where the weight of each
edge is 1 as below. First, we find the set Amax with the greatest
size from C and create a tree with elements in Amax as the bottom
nodes (at the bottom level). In the second to last level, we introduce

the set V ′ of ⌈|Amax |/k⌉ virtual nodes. We next create directed
edges from each of the virtual nodes to at most k arbitrary nodes
in Amax which have not been connected by virtual nodes in V ′.
Afterwards, we create the third to last level based on the second
to last level by adopting the similar rules. We repeat this step until
the root node is constructed. We also create trees for the rest of the
sets in C similarly. One difference is that, when we create the tree
for a set A, we need to make sure that the number of virtual nodes
in each level is consistent with the corresponding level of the tree
constructed based on Amax . It means that some virtual nodes may
not have outgoing neighbors. After we create trees for all sets in C ,
we introduce directed edges from s to all root nodes.

Figure 2 shows an example where a graph is constructed from
the set cover instance where k = 2 and C = {{a,b, c,d, e}, {d, e, f },
{ f ,д,h}}. Dashed nodes refer to virtual nodes. Virtual nodes with
the same number come from the tree constructed based on the same
set fromC . SinceAmax = {a,b, c,d, e}, the number of virtual nodes
in the second to last level of all trees are ⌈|Amax |/k⌉ = 3.

Since the time cost for creating such a tree is at most O ( |Amax |

logk |Amax |), the total reduction process is polynomial in the total
size of the sets in the collection. To solve the IMCSN problem in the
constructed graph, we only need to focus on selecting k outgoing
edges for the root node s since the out-degree of the rest of the
nodes in the graph is at most k and edges not incident on s can
all be chosen. Considering that the trees constructed from each
set in C have the same number of virtual nodes, the quality of
the outgoing edge selection for s only depends on bottom nodes
being reached. Thus, selecting k outgoing edges for s corresponds
to selecting k sets from C . Suppose the number of virtual nodes
in each tree is x . If the optimal influence spread is k × x + 1 + |U |
(including s) which is also the maximum possible influence, we have
a ‘Yes’ answer to the set cover instance. Otherwise, the answer is
‘No’. Therefore, if we can find the optimal solution for the IMCSN
instance in polynomial time, the set cover problem can be solved
in polynomial time which is not possible unless P=NP. Thus, the
IMCSN problem is NP-hard. □

4 SOLVING IMCSN FOR A SINGLE SEED
To facilitate the illustration of our methodology, we first describe
how to solve the IMCSN problem for a single seed user. In the next
section, we will describe how to extend the method to handle multi-
ple seed users. Essentially, we try to solve the IMCSN problem by in-
serting edges from the original network into a k-subnetwork which
initially contains the seed user only. As mentioned in Section 1,
we resort to the influence lower bounds to preserve submodularity,
and the lower bounds are computed with the Restricted Maximum
Probability Path (RMPP) model [22] as defined below.

Definition 4 (Influence Probability of a path). The influ-
ence probability of a path is the product of influence probabilities of
all edges in this path.

Definition 5 (RestrictedMaximumProbability Path (RMPP)).
Given a k-subnetworkGk where edges are either native (i.e., originally
exist) or inserted, and a seed node s , the restricted maximum probabil-
ity path RMPP (s,u) is the directed path from s tou whose probability
pRP
(s,u ) is the maximum among all paths from s to u containing at

most one inserted edge. Ties are broken arbitrarily.

183



s

b

c d e

Figure 3: A simple network where dashed edges are candi-
dates for insertion.

Algorithm 1: SubnetworkAugmentationSketch
Input :The input network G , the seed user s and an integer k .
Output :The k-subnetwork Gk .

1 Gk = (Vk .Ek ) ← k-subnetwork containing the seed s only;
2 while ∃v ∈ Vk , |N

Gk
out (v ) | < min (k, |NG

out (v ) |) do
3 Gk = EdgeInsertionSketch(G, Gk , s, k );
4 Return Gk ;

Definition 6 (RMPP model [22]). In the RMPP model, the influ-
ence of a seed node s to a node u is the influence probability pRP

(s,u )
of RMPP (s,u), and the total influence of s is the sum of influence
probabilities of all RMPPs from s to the rest of nodes in the graph.

Example 2. As shown in Figure 3, we have a network which con-
tains five nodes and two native edges (s,b) and (b, c ) with the same
influence probability of 0.5. Suppose the seed node is s , three edge can-
didates (s, c ),(c,d ) and (d, e ) have the same influence probability of
1, T1 = ∅ and T2 = {(s, c ), (c,d )}. The marginal gain of (s, c ) over T1
is 1-0.25=0.75 since RMPP (s, c ) is edge (s, c ). However, the marginal
gain of (d, e ) overT2 is 0 since s needs to traverse at least two inserted
edges to reach e , which is not allowed in the RMPP model.

RMPP provides an efficient lower bound estimation of influence
spread under the IC model and preserves the submodularity [22].
Unfortunately, directly adopting the RMPP model to insert edges
into the k-subnetwork which initially contains only the seed node
s does not help to achieve great influence spread. This is because
s has to traverse two inserted edges to reach the nodes that are
two hops away, but this is not permitted in the RMPP model, as
illustrated in Example 2.

To mitigate this issue without missing the opportunity of lever-
aging the submodularity property of the RMPP model, we propose
a subnetwork augmentation sketch in Algorithm 1. Specifically,
this sketch iteratively calls a strategy called EdgeInsertionSketch
in the pseudocode. This strategy tries to insert edges to increase
the influence spread of the seed node s under the RMPP model and
uses these inserted edges to update the input k-subnetwork Gk .
After reaching a termination condition, these inserted edges will be
treated as native edges of Gk in the next iteration, which will help
s to influence the nodes that are many hops away. In what follows,
we will introduce how the method EdgeInsertionSketch works and
then propose a much more efficient yet practical edge insertion
strategy (Section 4.1). Afterwards, we will further optimize this
subnetwork augmentation sketch (Section 4.2).

4.1 Edge Insertion
Given a candidate network Gc that contains candidate edges to be
inserted into the current k-subnetwork Gk , the most straightfor-
ward way to maximize the influence of s is to greedily insert an
edge with the maximum marginal gain into Gk without breaking

Algorithm 2: EdgeInsertionSketch
Input :The input network G = (V , E ), the current k-subnetwork

Gk = (Vk , Ek ), the seed user s and an integer k .
Output :The updated k-subnetwork Gk .

1 C ←candidate set initialized as ∅;
2 foreach node u ∈ Gk do
3 if |NGk

out (u ) | < min (k, |NG
out (u ) |) then

4 foreach (u, v ) ∈ E do
5 if (u, v )  Ek and v  s then
6 Add (u, v ) into C
7 Gc = {Vc , Ec } ← construct candidate graph based on C;
8 Compute the probabilities of SMPPs from s to all nodes in Gk ;
9 foreach node v ∈ Vc with |NGc

in (v ) | > 0 do
10 u∗v = argmax

u∈NGc
in (v )

pSP
(s,u ) · p(u,v ) ;

11 while Gc has nodes with incoming neighbors do
12 v∗ = argmax

v∈Vc , |N
Gc
in (v ) |>0 δ

△
Gk∪{(u

∗
v ,v )}

(s ) − δ △Gk (s );

13 Remove all incoming edges to v∗ from Gc ;
14 Insert (u∗v∗, v

∗) into Gk ;
15 if |NGk

out (u
∗
v∗ ) | =min (k, |NG

out (u
∗
v∗ ) |) then

16 foreach v ∈ NGc
out (u

∗
v∗ ) do

17 if u∗v = u∗v∗ then Update u∗v ;
18 Remove (u∗v∗, v ) from Gc ;
19 Mark all inserted edges as native;
20 return Gk ;

the constraint of k-subnetwork. This approach suffers from serious
scalability issues since it needs to update the marginal gain of all
candidate edges in each iteration and the marginal gain computa-
tion of each edge incurs O ((Vk + Ek ) logVk ) time complexity with
a variant of Dijkstra algorithm as in [22]. To address this issue, we
first present an edge insertion sketch from the theoretical point of
view, followed by a practical insertion method.

4.1.1 Edge Insertion Sketch. Later in Theorem 2, we prove that
for all candidate edges that share the same destination node, we
can carefully insert the critical edge (which will be defined in Def-
inition 8) such that inserting other edges after this critical edge
will not increase the influence spread of s under the RMPP model.
With this observation, we only need to compare the marginal gain
of critical edges with different destination nodes in each iteration.
Hence, the cost of marginal gain computation can be greatly re-
duced. To facilitate the presentation of our method, we use δ △ ()
as the influence under the RMPP model, and introduce a concept,
namely Strict Maximum Probability Path (SMPP).

Definition 7 (Strict Maximum Probability Path (SMPP)).
Given a seed node s and a k-subnetwork Gk where edges are either
native or inserted, the strict maximum probability path SMPP (s,u) is
a directed path from s to u whose probability pSP

(s,u ) is the maximum
among all the paths from s to u containing native edges only (i.e., a
special case of RMPP). Ties are broken arbitrarily.

Example 3. As shown in Figure 3, SMPP (s, c ) consists of two
native edges, namely (s,b) and (b, c ). SMPP (s, c ) remains unchanged
even after we insert edge (s, c ), since the inserted edge is not native.

The algorithm to be introduced is based on Theorem 2 which is
in turn established upon Lemma 1 and Lemma 2 below.

184



Lemma 1. Given a k-subnetwork Gk , a seed node s , and two can-
didate edges (u,v ) and (u ′,v ) which are in the candidate networkGc
and share the same endpoint v , and pRP

(s,x ) (u,v ) which denotes the
probability of RMPP (s,x ) after inserting the edge (u,v ) into Gk , if
pSP
(s,u ) · p(u,v ) ≥ pSP

(s,u′) · p(u′,v ) , then for any node x which can be

reached by v via directed paths, pRP
(s,x ) (u,v ) ≥ pRP

(s,x ) (u
′,v ).

Proof. If the RMPP (s,x ) from s to x remains the same after
inserting (u,v ) and (u ′,v ), the influence probability of x will remain
unchanged, i.e., pRP

(s,x ) (u,v ) = p
RP
(s,x ) (u

′,v ).
If the RMPP (s,x ) from s to x is changed after inserting (u,v )

or (u ′,v ), the RMPP must contain (u,v ) or (u ′,v ). Let RMPP(u,v )
and RMPP(u′,v ) denote the updated RMPP from s to x by insert-
ing edge (u,v ) and (u ′,v ) respectively. Each of these two RMPPs
consist of two sub-paths. That is, P1 (RMPP(u,v ) ) = [s, ...,u,v],
P2 (RMPP(u,v ) ) = [v, ...,x], P1 (RMPP(u′,v ) ) = [s, ...,u ′,v] and
P2 (RMPP(u′,v ) ) = [v, ...,x]. Based onDefinition 5, the second paths
of both RMPPs do not contain inserted edges. Thus, P2 (RMPP(u,v ) )

and P2 (RMPP(u′,v ) ) have the same probability. Since pSP
(s,u ) · p(u,v )

and pSP
(s,u′) · p(u′,v ) refer to the probability of the first sub-paths of

these two RMPPs respectively and the former one is not smaller
than the latter, we have pRP

(s,x ) (u,v ) ≥ pRP
(s,x ) (u

′,v ). □

Lemma 2. Given a k-subnetwork Gk , a seed node s , and two can-
didate edges (u,v ) and (u ′,v ) which are in the candidate network
Gc and share the same endpoint v , if pSP

(s,u )p(u,v ) ≥ pSP
(s,u′)p(u′,v ) ,

δ △Gk∪{(u,v ) }
(s ) = δ △Gk∪{(u,v ), (u′,v ) }

(s ).

Proof. Based on Lemma 1, for any node x that can be reached by
v , the influence probability pRP

(s,x ) of RMPP (s,x ) underGk ∪{(u,v )}

is never smaller than that under Gk ∪ {(u
′,v )}. Thus, introducing

{(u ′,v )} after inserting (u,v ) does not contribute to the influence
increment of s . Thus, δ △Gk∪{(u,v ) }

(s ) = δ △Gk∪{(u,v ), (u′,v ) }
(s ). □

To better describe Theorem 2 later, we have the definition below.

Definition 8 (critical neighbor and edge). Given the seed
node s , a k-subnetwork Gk , the candidate network Gc and a node v ,
if |NGc

in (v ) | > 0, the critical neighbor u∗v of v in Gc is the neighbor
whose SMPP path probability pSP

(s,u∗v )
times the influence probability

p(u∗v ,v ) of the edge (u∗v ,v ) is the greatest among all the incoming
neighbors of v in Gc . That is, u∗v = argmaxu ∈NGc

in (v ) p
SP
(s,u ) · p(u,v ) .

Correspondingly, the incoming edge (u∗v ,v ) is the critical edge of v .

Theorem 2. Given a k-subnetwork Gk , the seed node s , a node
v , a candidate set E ′ = {(u,v ) |u ∈ NGc

in (v )} for insertion and the
critical edge (u∗v ,v ), we have: δ

△
Gk∪E′

(s ) = δ △Gk∪{(u∗v ,v ) }
(s ).

Proof. Since (u∗v ,v ) is the critical edge, pSP(s,u∗v ) · p(u
∗
v ,v ) is the

greatest among all the incoming neighbors of v in Gc . Based on
Lemma 2, we can know that, after inserting (u∗v ,v ), introducing
edges sharing the same destination node as (u∗v ,v ) will not increase
the RMPP-based influence. Thus, this theorem is deduced. □

Algorithm 2 describes the process of edge insertion sketch by
leveraging Theorem 2. Lines 1-7 construct the candidate graph Gc

Algorithm 3: PracticalEdgeInsertion (PEI)
Input :The input network G = (V , E ), the current k-subnetwork

Gk = (Vk , Ek ), the seed user s and an integer k .
Output :The updated k-subnetwork Gk .

1 Gc = {Vc , Ec } ← constructs the candidate graph as in Algorithm 2;
2 L ← nodes in Gk excluding s , ranked by their subtree sizes of in the

SMPP-based tree in non-increasing order;
3 L′ ← nodes, that are in Gc but not in Gk , ranked by their out-degrees

in non-increasing order;
4 L ← Append L′ to the end of L;
5 foreach v in L do
6 if |NGc

in (v ) | = 0 then Continue;
7 u∗v = argmax

u∈NGc
in (v )

pSP
(s,u ) · p(u,v ) ;

8 Add (u∗v , v ) into Gk , and remove (u∗v , v ) from Gc ;
9 if |NGk

out (u
∗
v ) | =min (k, |NG

out (u
∗
v ) |) then

10 Delete all outgoing edges of u∗v from Gc .
11 Mark all inserted edges as native;
12 return Gk ;

containing the candidate edges which can be inserted into Gk .Gc
only contains the edges between nodes in Gk and their neighbors
in G, since nodes in Gk cannot reach their two-hop neighbors in
G with only one inserted edge. Lines 8-10 compute the critical
incoming neighbor for each node in Gc , and Lines 11-18 iteratively
insert the critical edge with the maximum marginal gain into Gk
until all the critical edges have been inserted.
Theoretical Guarantee. Maximizing the influence spread of s in
the given Gk under the RMPP model is already a submodular set
function maximization problem with partition matroids constraint.
That is, we are only allowed to pick a single edge from edges with
the same destination/end node. Thus, the greedy approach (i.e.,
Algorithm 2) naturally leads to a 1/2 approximation ratio [34].
Time Complexity. There are at most O ( |V |) iterations and each
iteration takesO ( |V |( |V |+ |E |) log |V |) to find the critical edge with
the maximummarginal gain via a variant of Dijkstra algorithm [22].
Thus, Algorithm 2 takes O ( |V |2 ( |V | + |E |) log |V |) time.

4.1.2 Practical Edge Insertion. Algorithm 2 suffers from very high
time complexity and thus is infeasible in real-world large-scale so-
cial networks. In each iteration, Algorithm 2 tries to insert a critical
incoming edge to a node with the maximum marginal gain w.r.t.
the influence, and correspondingly update the candidate network
which can result in updates of critical edges of the remaining nodes
and themarginal gain of each critical edge (Lines 11-18).We observe
that the nodes considered across all iterations actually form an or-
der. If the order is known in advance, we can directly follow this
order to insert critical edges without marginal gain computation
and comparison, and hence the whole process can be notably accel-
erated. Unfortunately, computing this order is the main efficiency
bottleneck of Algorithm 2.

We find that in the special case below (i.e., Theorem 3), there is
no need to know this order because, no matter what the order is,
the critical edge of any remaining node will not be updated in the
iterative insertion process.

Theorem 3. Given the original networkG , a k-subnetworkGk , the
initial candidate network Gc = {Vc ,Ec } (i.e., Line 7 in Algorithm 2),

185



a b c

d e f g

0.90.90.8 0.5 0.7
subtree sizes - d:3, e:5, f:0, g:0
out-degrees - f:5, g:2

<latexit sha1_base64="wVQo15ZrWxG63MscR7jEhtqG34M=">AAACHXicbZDLSsNAFIYn9VbrLerSTbAILUhJpKgboehCV1LBXqCNYTKdtEMnM2FmIpSQF3Hjq7hxoYgLN+LbOG2zsK0/DPx85xzOnN+PKJHKtn+M3NLyyupafr2wsbm1vWPu7jUljwXCDcQpF20fSkwJww1FFMXtSGAY+hS3/OHVuN56xEISzu7VKMJuCPuMBARBpZFnVm8fkmtvmHoJj1VaguXjWeDPA1S+cDyzaFfsiaxF42SmCDLVPfOr2+MoDjFTiEIpO44dKTeBQhFEcVroxhJHEA1hH3e0ZTDE0k0m16XWkSY9K+BCP6asCf07kcBQylHo684QqoGcr43hf7VOrIJzNyEsihVmaLooiKmluDWOyuoRgZGiI20gEkT/1UIDKCBSOtCCDsGZP3nRNE8qzmnFuasWa5dZHHlwAA5BCTjgDNTADaiDBkDgCbyAN/BuPBuvxofxOW3NGdnMPpiR8f0L4oWhxA==</latexit>

NGk
out(a), NGk

out(b), N
Gk
out(c) = 1

<latexit sha1_base64="a0LUnLNFDvhZiowdUWIQ/NE9Guc=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VooYREfG2EohuXFW0rtDFMptN26GQSZiZCCfkNN/6KGxeKuNSVf+O0zaIPDwyce8693LnHjxiVyrZ/jdzS8srqWn69sLG5tb1j7u41ZBgLTOo4ZKF48JEkjHJSV1Qx8hAJggKfkaY/uB75zSciJA35vRpGxA1Qj9MuxUhpyTPt6DG5q6VeUpIVVE4rU6U/W+Jyemlbp55ZtC17DLhInIwUQYaaZ363OyGOA8IVZkjKlmNHyk2QUBQzkhbasSQRwgPUIy1NOQqIdJPxZSk80koHdkOhH1dwrE5PJCiQchj4ujNAqi/nvZH4n9eKVffCTSiPYkU4nizqxgyqEI5igh0qCFZsqAnCguq/QtxHAmGlwyzoEJz5kxdJ49hyzizn9qRYvcriyIMDcAhKwAHnoApuQA3UAQbP4BW8gw/jxXgzPo2vSWvOyGb2wQyMnz/gLJ7v</latexit>

pSP
(s,a), p

SP
(s,b), p

SP
(s,c) = 0.5

Figure 4: An example of a candidate network Gc with k = 2.

the seed node s , and Cr (x ) = {v |∀v ∈ Vc ,x = u∗v } which denotes
the set of nodes whose critical neighbor is x . If ∀x ∈ Vc , |Cr (x ) | ≤
min(k,NG

out (x )) − N
Gk
out (x ), then directly inserting all critical edges

leads to the optimal solution with the maximum influence.

Proof. Sincemin(k,NG
out (x )) describes the maximum number

of outgoing edges from x allowed in Gk , N
Gk
out (x ) describes how

many of them have already been inserted into Gk , and ∀x ∈ Vc ,
we have |Cr (x ) | ≤ min(k,NG

out (x )) − N
Gk
out (x ), inserting all crit-

ical edges in Cr (x ) will not result in the critical edge/neighbor
update of the rest nodes (i.e., Line 17 in Algorithm 2). Based on
Theorem 2, directly inserting critical edges of all nodes leads to
the maximum influence spread since replacing any critical edges
with the remaining edge candidates or inserting more edges will
not increase influence. □

In the special case above, directly inserting all critical edges
produces the optimal solution as Algorithm 2 which does not need
to update the critical edges (Line 17) in each iteration. Although
this special case is rather rare in practice, it inspires us to find an
order which can be easily obtained in prior and follow this order to
insert an incoming edge (u,v ) for each node v whose pSP

(s,u ) ·p(u,v )
is as large as possible. Ideally, this strategy is expected to effectively
approximate Algorithm 2. We make the following observation to
guide us to find such an order.
Observation 1. If the insertion of an edge (u,v ) introduces an
RMPP (s,v ) with an influence probability greater than that of the
SMPP (s,v ), for any node x which s needs to reach via v , the in-
sertion of (u,v ) could also introduce RMPP (s,x ) with a greater
influence probability than SMPP (s,x ).

Based on this observation, we should prioritize inserting incom-
ing edges for nodes which appear in a large number of SMPPs from
s to different nodes since such insertions could potentially increase
the influence probabilities of the RMPPs from s to a large number
of nodes. Based on Definition 7, the graph formed by all SMPPs
is a tree rooted at s , namely SMPP-based tree, because any two
nodes are connected by exactly one path. Thus, we can compute
the appearance frequency by estimating the subtree size rooted
at each node in the SMPP-based tree, which can be realized by a
depth-first search and dynamic programming in O ( |Ek |) time. To
help the influence spread reach a large number of users, we should
also consider nodes in Gc which have not been included in the
k-subnetwork. For these nodes, their subtree sizes are set as 0 and
ranked based on their out-degrees in the input network G since
nodes with greater out-degrees have larger potentials to expand
the k-subnetwork. Algorithm 3 describes the overall process of
practical edge insertion.

Example 4. Figure 4 shows a candidate network Gc with k = 2.
The information needed by Algorithm 3 is listed at the right side.
Nodes are ordered by their subtree sizes and then out-degrees. Thus,

Algorithm 4: PracticalSubnetworkAugmentation (PSNA)
Input :The input network G , the seed user s , an integer k and an

error ratio ϵ .
Output :The k-subnetwork Gk .

1 Gk = (Vk .Ek ) ← k-subnetwork containing the seed s only;
2 Gc = (Vc , Ec ) ← all outgoing edges of s in G ;
3 L′ ← all outgoing neighbors of s in G ;
4 δ △pre = 1;
5 if Gc has edges then // expansion stage
6 Gk= PEI(G, Gk , Gc , s, k, L′)
7 if (δ △Gk (s ) − δ

△
pre )/δ

△
pre ≤ ϵ then Break ;

8 else δ △pre = δ △Gk (s );
9 Gc , L′ = UpdateCandidateGraph(G, Gk , Gc , s, L′);

10 Gk= FUR(G, Gk , Gc , s )// filling stage
11 Return Gk ;

Algorithm 5: FillUpRecommendation (FUR)
Input :The input network G , the k-subnetwork Gk , the candidate

graph Gc and the seed user s .
Output :The updated Gk .

1 foreach v ∈ Vk where |NGk
in (v ) | > 0 do

2 Lin [v]← a list of incoming neighbors of v in Gc where each
neighbor u is sorted by pSP

(s,u ) · p(u,v ) in descending order;
3 I [v] = 1;
4 L ← a list of nodes in Vk ordered by their subtree sizes in the graph

formed by SMPPs from s in descending order;
5 while L is not empty do
6 L′ ← an empty list;
7 foreach v in L do
8 foreach i from I [v] to |Lin [v] | do
9 u = Lin [v][i];

10 if (u, v )  Ec then Continue;
11 if i  |Lin [v] | then Add v into L′ ;
12 I [v] = i + 1;
13 Add (u, v ) into Gk ; Remove (u, v ) from Gc ;
14 if |NGk

out (u ) | =min (k, |NG
out (u ) |) then

15 Delete all outgoing edges of u from Gc .
16 Break;
17 L = L′;
18 Return Gk ;

the node ranking we follow to insert incoming edges is e,d, f and д.
When we consider node e , edge (b, e ) will be inserted into Gk and
edge (b,d ) will be deleted from Gc since N

Gk
out (b) will become 2 = k .

When we consider d , edge (a,d ) will be inserted. Similarly, edge (c, f )
will be inserted but edge (c,д) will be deleted when we consider node
f and thus there will not be incoming edge candidates for д.

Time Complexity. In Algorithm 3, Line 1 constructs the candi-
date graph in O ( |V | + |E |) time, Lines 2-4 rank nodes based on
their subtree sizes in the SMPP-based tree or degrees in O (( |V | +
|E |) log |V |) time, and Lines 5-10 iteratively insert incoming edges
for ranked nodes in O ( |V | + |E |) time since the probabilities of all
SMPPs from s have already been computed when we construct
the SMPP-based tree in Line 2. Thus, the total time complexity is
O (( |V | + |E |) log |V |).

186



4.2 Subnetwork Augmentation
The subnetwork augmentation sketch (i.e., Algorithm 1) suffers
from two issues which incur notable computation costs.
• Issue 1: the candidate graph in each iteration is constructed from
scratch without leveraging the candidate graphs generated in
previous iterations.
• Issue 2: the number of edge insertions in each iteration is very
limited (i.e., at most one incoming edge for each node) such that it
may take considerable iterations to fill up the recommendations.

Observation 2. Regarding Issue 1, we observe that the remaining
candidate graph updated by PEI (i.e., Algorithm 3) in the last it-
eration is a subgraph of the input candidate graph of PEI in the
current iteration. Specifically, the edges newly introduced in the
current input candidate graph are outgoing edges which 1) start
from nodes newly introduced inGk , and 2) neither appear inGk nor
the remainingGc updated by PEI in the last iteration. Based on this
observation, we can simply build the candidate graph based on the
previous one by only introducing these edges. Due to its simplicity
and space limit, please refer to our technical report [12] for the
pseudocode. With this update method, the process of constructing
the candidate graph from scratch in PEI can be replaced.
Observation 3. Regarding Issue 2, we observe that the influence
spread of s will converge after a few iterations (e.g., 6) of the sub-
network augmentation and the k-subnetwork Gk barely includes
more nodes from G after convergence (as shown in Figure 11 in
experiments). Considering that we treat all inserted edges as native
ones at the end of each iteration, the influence spread of s is actu-
ally based on SMPP paths. Therefore, the converged influence also
indicates that the SMPPs from s to the rest of nodes barely change,
and accordingly the ranking of the nodes based on their subtree
sizes in the SMPP-based tree is quite stable.

As a result, after the convergence, we can leverage the same
and converged node ranking for edge insertions in the rest of itera-
tions of the subnetwork augmentation. Furthermore, the candidate
graph at the end of the last iteration naturally becomes the initial
candidate graph in the current iteration since no more new nodes
are considered. With these properties, we propose a method called
FillUpRecommendation (FUR) (Algorithm 5) which simulates the
process of PEI in the rest of all iterations of the subnetwork augmen-
tation. Specifically, each while loop from Line 6 to 17 corresponds
to one iteration where we greedily insert the critical edge for each
node in L constructed based on the converged ranking. In each
loop, L′ is used to store nodes which still have incoming neighbors
and thus will be considered in the next iteration, and I [v] is used
to efficiently retrieve the critical neighbor by pruning out neigh-
bors which either were considered in previous iterations or cannot
be connected to v anymore due to the update of Gc in previous
iterations (Lines 14-15). Since each incoming neighbor has been
sorted in Line 2, simulating each iteration is very efficient with
aforementioned data structures.

Example 5. Figure 5 shows a candidate network Gc with k = 2.
Suppose that the influence spread in Gkhas converged at iteration
i and the converged node ranking is e and f . Algorithm 3 will be
executed twomore iterations to reach the termination condition (i.e., no
edges exist inGc ). At iteration i+1, edges (b, e ), (b, f ), (c, f ) and (c, e )

a b c d

e f

0.6 0.9
0.9

0.8
0.7 0.4

<latexit sha1_base64="/BrThTMsI/5WzrjfEbSUnkHNjGY=">AAACLnicbZDLSsNAFIYn9VbrLerSzWARWpCSiKgboSiiK6lgL9DGMJlM2qGTCzMToYQ8kRtfRReCirj1MZy2WdjUHwZ+vnMOZ87vRIwKaRjvWmFhcWl5pbhaWlvf2NzSt3daIow5Jk0cspB3HCQIowFpSioZ6UScIN9hpO0ML8f19iPhgobBvRxFxPJRP6AexUgqZOtXtw/JtT1M7SSMZVpB1cNZ4OQBzgO3em7aetmoGRPBeWNmpgwyNWz9teeGOPZJIDFDQnRNI5JWgrikmJG01IsFiRAeoj7pKhsgnwgrmZybwgNFXOiFXL1Awgn9O5EgX4iR76hOH8mByNfG8L9aN5bemZXQIIolCfB0kRczKEM4zg66lBMs2UgZhDlVf4V4gDjCUiVcUiGY+ZPnTeuoZp7UzLvjcv0ii6MI9sA+qAATnII6uAEN0AQYPIEX8AE+tWftTfvSvqetBS2b2QUz0n5+AVvPqLM=</latexit>

NGk
out(a), NGk

out(b), N
Gk
out(c), N

Gk
out(d) = 1

<latexit sha1_base64="opxnzX3nlkS5yhLslFX8BYpXhJg=">AAACKHicbVBJS8NAFJ7UrdYt6tFLsAgtlJCI20UsevFY0S7QxjCZTNuhk0mYmQgl5Od48a94EVGkV3+J0zaHLj4Y+Jb3ePM+L6JESMsaabmV1bX1jfxmYWt7Z3dP3z9oiDDmCNdRSEPe8qDAlDBcl0RS3Io4hoFHcdMb3I395gvmgoTsSQ4j7ASwx0iXICiV5Oo30XPyWEvdpCQqsJxWZqg3T9E89cvptWWeu3rRMq1JGcvAzkARZFVz9c+OH6I4wEwiCoVo21YknQRySRDFaaETCxxBNIA93FaQwQALJ5kcmhonSvGNbsjVY9KYqLMTCQyEGAae6gyg7ItFbyz+57Vj2b1yEsKiWGKGpou6MTVkaIxTM3zCMZJ0qABEnKi/GqgPOURSZVtQIdiLJy+DxqlpX5j2w1mxepvFkQdH4BiUgA0uQRXcgxqoAwRewTv4At/am/ah/WijaWtOy2YOwVxpv38q9qTF</latexit>

pSP
(s,a), p

SP
(s,b), p

SP
(s,c), p

SP
(s,d) = 0.5

subtree sizes - e:5, f:3

Figure 5: An example of a candidate network Gc with k = 2.

will be inserted, deleted, inserted and deleted in sequence respectively.
The remaining candidate graph becomes the initial candidate graph
at iteration i + 2 where edges (a, e ) and (d, f ) will be inserted. The
method FUR (Algorithm 5) is proposed to simulate the iterative process
after the convergence and the while loop in FURwill be executed twice.

Practical SubnetworkAugmentation. By incorporating themea-
sures for tackling the two issues above, we propose a framework
called PracticalSubnetworkAugmentation (PSNA) (Algorithm 4)
where the predefined ϵ (e.g., 10−4) controls the convergence point
(Line 7) and FUR, based on the converged subtree-size-based node
ranking (Line 10), repeats the process of Lines 5-6 in PSNA until
no edges exist in Gc . Note that L′ records the new candidate nodes
to be incorporated intoGk for graph expansion in the last iteration
and is updated by UpdateCandidateGraph in Line 9. For ease of
illustration in our experiments later, we regard the process before
convergence as the expansion stage (i.e., Lines 5-9) and the process
afterwards as the filling stage (i.e., Line 10).
Time Complexity. Suppose Algorithm 4 takes I iterations to con-
verge. Lines 5-9 takeO (I ( |V |+ |E |) log |V |) time which is acceptable
in practice since I is empirically small (e.g., 6). Lines 1-3 in Algo-
rithm 5 take O ( |V |dm logdm ) where dm refers to the maximum
in-degree in G, and Lines 5-17 take O ( |E |) time as each incoming
neighbor of each node is visited only once. Thus, the total time
complexity of Algorithm 4 isO (I ( |V | + |E |) log |V | + |V |dm logdm ).

5 SOLVING IMCSN FOR MULTIPLE SEEDS
When there is a set S of independent seed nodes, directly adopting
the previous idea of inserting at most one incoming edge for each
node is not feasible, since the SMPPs from seed nodes to the same
node can be different and hence the critical edge for each node is
seed-specific. The most straightfoward approach to handle the case
is to iteratively insert the edge, which brings themaximummarginal
gain to the sum of the influence increment of all seed nodes, until
no edges can be inserted into the k-subnetwork. However, this
approach is impractical due to expensivemarginal gain computation
and a huge number of iterations needed to converge.
Observation 4. We observe that an edge (u,v ) insertion can have
different levels of impact on increasing the influence spread of
different seed nodes. For example, if u is a neighbor of the seed
node s1 but ten hops away from the seed node s2, inserting (u,v )
is more likely to bring more influence to s1 than s2. Furthermore,
as the iteration goes, the k-subnetwork will be expanded with
more topological information during the augmentation process.
Thus, we should not ‘waste’ many unnecessary recommendation
opportunities in the current stage of the k-subnetwork since they
can be saved for better decision making in later iterations.

Thus, to make the best use of candidate recommendations, we
should focus only on the recommendation which will bring large
influence increment to the relevant seed node. Specifically, we

187



a b

cd
f

h

i

e

g

j

0.5 0.001

l

0.1

(a) iteration i .

a b

cd
f

h

i

e

g

j

0.5 0.001
l
0.1

(b) iteration i + 1.

Figure 6: SMPP-based subgraphs in two iterations.

define r (u) = argmaxs ∈S pSP(s,u ) as the relevant seed node of u since
inserting outgoing edges from u would be more likely to increase
the influence of the seed node r (u). For all incoming neighbors of
nodev , we should connect the critical neighboru∗v tov which forms
the RMPP with the maximum probability from the corresponding
seed node r (u∗v ), i.e., u∗v = argmaxu ∈NGc

in (v ) p
SP
(r (u ),u ) · p(u,v ) .

Nodes with the same relevant seed node s and SMPPs from s
to them naturally form an SMPP-based tree. We can construct the
SMPP-based trees based on each seed node and these trees are
disjoint (i.e., no node overlap). With these trees, we can compute
the subtree size of each node in the corresponding tree and prioritize
inserting the nodes with large subtree sizes, because increasing the
probability to influence the node u will also increase the probability
to influence the descendants of u in the SMPP-based trees.

Example 6. Figure 6 shows an example of the SMPP-based trees
of a 2-subnetwork in two consecutive iterations of the PSNA. Here, a,
b and c are the seed nodes, all solid edges have a weight of 0.1, nodes
with the same color belong to the same SMPP-based trees, and white
nodes are candidates for the 2-subnetwork expansion. In iteration i ,
node д is processed before l because д has a larger subtree size (i.e., 2).
We have two candidate incoming edges to node д, and ( f ,д) will be
inserted since f = argmaxu ∈{f ,c } pSP(r (u ),u ) · p(u,д) where r ( f ) = a

and r (c ) = c . In the input 2-subnetwork of iteration i + 1, the relevant
seed nodes of д and j are updated to node a since inserting outgoing
edges from them is more likely to increase the influence of a.

The premise of the aforementioned idea requires computing the
SMPP between each node u and r (u). A straightforward approach
is to enumerate SMPPs from every seed node to u and get the
one with the greatest probability. However, this is very expensive
in real-world large-scale social networks, especially when |S | is
large. To mitigate this issue, we can simply introduce edges with
the same influence probability of 1 from a virtual node x to every
seed node. Afterwards, we only need to adopt a variant of Dijkstra
algorithm [22] to compute the SMPPs from x to the rest of the
nodes; the second node in each SMPP must be a seed node, and
be the relevant seed node of the end node of this path. With the
virtual node x , we simplify the case of multiple seed nodes into the
case of a single seed node x since edge insertion can be guided by
the probability of SMPP from x instead of relevant seed nodes, i.e.,

u∗v = argmax
u ∈NGc

in (v )
1 · pSP(r (u ),u ) · p(u,v ) = argmax

u ∈NGc
in (v )

pSP(x,u ) · p(u,v )

Since we transform the IMCSN problem for multiple seed nodes
into the one for a single virtual node x , we can directly adopt PSNA
for the single seed node with minor adjustments: (1) introduce

Table 1: Dataset Statistics

Dataset |V| |E| Avg. Degree
Catster 149,700 10,898,550 73
MOBA 503,029 9,372,022 19
RPG 2,331,047 88,227,562 38
Orkut 3,072,441 234,369,798 76

MOBAX 36,201,207 3,281,207,036 90

Table 2: Effectiveness comparison with k = 30 and |S | = 50.

Dataset Degree FoF Random PSNAOri Bst Ori Bst Ori Bst
Catster 3.1E2 4.2E5 3.8E2 4.8E5 3.6E3 6.3E5 8.6E5
MOBA 5.0E6 7.4E6 6.5E6 7.7E6 7.0E6 8.0E6 9.8E6
RPG 1.1E6 2.1E7 2.4E6 2.2E7 1.9E7 2.4E7 3.2E7
Orkut 7.0E2 5.4E7 6.8E2 5.6E7 9.6E5 5.9E7 8.2E7

O ( |S |) edges with the same influence probability 1 from a virtual
node x to every seed node in the initial k-subnetwork; (2) remove
the virtual node and edges between it and seed nodes from the
output k-subnetwork of PSNA.
Time Complexity. Considering that we only change the topology
of the k-subnetwork, the previous time complexity analysis for the
single case still applies. Thus, the total time complexity isO (I ( |V |+
|E | + |S |) log |V | + |V |dm logdm ).

6 EXPERIMENT
In this section, we will conduct experiments on three problems to
demonstrate the robustness and effectiveness of our methods:

• The first is our proposed problem, IMCSN, where the extensions
of the methods in the first problem are compared (Section 6.1).
Note that the core difference between these two problems has
been illustrated and please refer to Section 2 for details.
• The second problem is maximizing users’ Click-trough Rate in
an activity of an online Tencent application, where we deploy
our method and evaluate how it helps improve user retentions
and interactions (Section 6.2).
• The third problem is maximizing the influence in open social
networks via edge insertions, where existing baselines including
the state-of-the-art [22] are compared. The results show that,
compared with [22], our method PSNA achieves very competitive
results with up to five-orders-of-magnitude speedup. Please refer
to the technical report [12] for details.

Datasets. Table 1 presents all the real-world undirected social net-
works used. In particular, MOBA and MOBAX correspond to two
friendship networks of Tencent multiplayer online battle arena
games, RPG corresponds to a friendship network of a role-playing
game, and the other datasets are available in [29]. Note that each
edge is represented twice since the influence propagation is di-
rected. The first four datasets and the last dataset will be used for
the second and the third problem respectively.

Environments. We conduct all experiments on a Linux server with
Intel Xeon E5 (2.60 GHz) CPUs and 512 GB RAM. All algorithms
are implemented in Python and our code is available at [12].

188



Table 3: Running time (s) with k = 30 and |S | = 50 where the
numbers in brackets under PSNA refers to the time cost in
the graph expansion stage. Note that the number of common
friends is pre-computed in Bst-FoF.

Dataset Bst-Degree Bst-FoF Bst-Random PSNA
Catster 1.1E2 1.0E2 9.8E1 1.2E2 (9.1E1)
MOBA 1.4E2 1.3E2 1.2E2 1.8E2 (1.3E2)
RPG 9.6E2 9.1E2 8.8E2 9.8E2 (7.3E2)
Orkut 4.4E3 4.2E3 4.1E3 5.1E3 (3.6E3)

6.1 Experiment on the IMCSN problem
We conduct seven experiments to demonstrate that: (1) the exten-
sion of existing baselines on open social networks cannot well
address our problem but their performance can be significantly
boosted with the help of our method PSNA (Exp1); (2) PSNA con-
sistently and significantly outperforms all the boosted baselines
with different |S | and k (Exp2-3); (3) how k and |S | impact the con-
vergence of PSNA (Exp4); (4) PSNA is highly scalable to handle
large-scale datasets (Exp5); (5) the influence convergence is also a
good indicator of the node size convergence in the diffusion net-
work (Exp6); (6) the influence of seeds in the diffusion network,
produced by PSNA with a small edge size, is very competitive with
the influnce of the seeds in the original network (Exp7).

Baselines. We compare three baselines (listed below) on open
social networks and their boosted versions. Thus, in total, there
are six baselines. For ease of description, we assume out-degrees of
nodes in the original network to be greater than k .

• Degree based method where, for candidates sharing the same
source node, top k edges with the highest degrees of end nodes
are selected.
• FoF based method where, for candidates sharing the same source
node, top k edges whose source and end nodes share the highest
number of common friends are selected.
• Random based method where k edges are randomly selected
from candidates sharing the same source node. Its performance
is reported as the average over five independent runs.

Since each baseline has two versions, original and boosted, we
use the prefixes ‘Ori’ and ‘Bst’ to distinguish them. The boosted
versions are built upon the diffusion network generated by the
expansion stage of PSNA (i.e., Lines 5-9 in Algorithm 4) and work
similar to the original ones. The only difference is that, in the
boosted version, some important edges have been inserted by PSNA
and these baselines only ‘fill up’ recommendations for those nodes
in the generated diffusion network. Hence, if we assume that the
out-degrees of nodes in the original network are greater than k
and our method has already inserted h < k outgoing edges from u,
boosted versions just need to select k − h outgoing edges for u.

Edge Weight Settings. Considering that the influence probability
of edges are different in practice, we adopt the commonly used
trivalency model [23] for Catster and Orkut without edge attributes.
It randomly assigns a weight for each edge, from {10−1, 10−2, 10−3}.

For MOBA and RPG, we assign edge weights based on the in-
timacy of friendship. In MOBA and RPG, each pair of friends has
different levels of intimacy which describes the number of inter-
actions (e.g., the number of games they play together, the number

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Load Ratio

1

2

3


/B

PSNA Bst-Random Bst-FoF Bst-Degree

5 50 100 150 200
|S|

104

105

106

in
flu

en
ce

(a) Catster

5 50 100 150 200
|S|

106

107

in
flu

en
ce

(b) MOBA

5 50 100 150 200
|S|

106

107

in
flu

en
ce

(c) RPG

5 50 100 150 200
|S|

106

107

108

in
flu

en
ce

(d) Orkut

Figure 7: Performance Comparison with different |S |.

10 15 20 25 30
k

103

104

105

106

in
flu

en
ce

(a) Catster

10 15 20 25 30
k

103
104
105
106
107

in
flu

en
ce

(b) MOBA

10 15 20 25 30
k

103
104
105
106
107

in
flu

en
ce

(c) RPG

10 15 20 25 30
k

104

106

108

in
flu

en
ce

(d) Orkut

Figure 8: Performance Comparison with different k .

of gifts sent from one to another). Since the pair-wise intimacy in
both MOBA and RPG is represented as integers, here we transform
it into an influence probability within [0,1] for deployment in the
IC model. According to the Susceptible-Infected-Recovered (SIR)
model [13] and heterogeneous mean-filed theory [20, 28, 53, 61], the
lowest influence probability should not be smaller than a constant λ
times βc =


v ∈V |Nout (v ) |/(


v ∈V |Nout (v ) |

2−

v ∈V |Nout (v ) |),

where βc is the epidemic threshold in the SIR model and calcu-
lated as 0.024 and 0.001 on MOBA and RPG, respectively. If λβc
is too small, the influence of the seeds will be quite limited. If
λβc is too large, the influence spread can cover a large percent-
age of nodes, irrespective of where it originated, and the meth-
ods’ performance cannot be well compared. By following existing
studies [50, 55], we determine λ by simulation on real networks.
Specifically, we determine λ1 and λ2 and control the edge weights
within the range [λ1βc , λ2βc ]. Each influence probability p(u,v ) =
((u,v )I −mine ∈E eI )/(maxe ∈E eI −mine ∈E eI ) (λ2 − λ1)βc + λ1βc
where (u,v )I denotes the intimacy between u and v . Note that
we have checked several settings of λ1 and λ2 and these different
settings will not affect the conclusion (i.e., performance ranking
of methods). To test these methods’ robustness to the influence
probability distributions, in both MOBA and RPG, we set the range
[λ1βc , λ2βc ] as [0.007, 0.01] which has a dramatically different dis-
tribution from the trivalency model deployed for other datasets.
Parameter Settings. We randomly select |S | (50 by default) nodes
from the top 1% nodes with the highest degrees in the original
network as the seed nodes, set k = 20 and the error ratio ϵ = 10−4
by default. We evaluate solution quality based on the IC-based
influence spread via 10,000 Monte Carlo simulations.
Exp1 - Case study on the two versions of baselines. Table 2 and
Table 3 compare the effectiveness and efficiency with k = 30 and
|S | = 50. We have four main observations:
(1) Org-Random is more effective than the original versions of

other baselines. The reason is that nodes with high degrees will
‘attract’ much more incoming edges in other strategies (i.e.,Org-
Degree and Org-FoF) which ‘waste’ a lot of recommendation
opportunities to repeatedly influence/activate these nodes.

(2) The boosted versions can achieve about five-orders-of-magnitude
larger influence than their original counterpart but can still be
notably outperformed by PSNA. Specifically, PSNA can still

189



outperform the second best performer by at least 23%-39% on
different datasets respectively, which demonstrates the effective-
ness of both two stages (i.e., the expansion and filling stages).

(3) We also compute the constitution of the edges recommended
by PSNA in the boosted baselines, and the result shows that
PSNA only contributes 17%-27% of total edges in the diffusion
network. The significant performance improvement of baselines
with limited involvement of PSNA further demonstrates the
effectiveness of PSNA in terms of identifying important edges
and nodes for increasing the seeds’ influence.

(4) PSNA is very competitive with other boosted baselines in terms
of running time, because all methods involve the expansion
stage of PSNA (i.e., Lines 5-9 in Algorithm 4) which dominates
the total computational cost.
Due to the poor performance of the original baselines, we only

use the boosted versions for comparison in the rest experiments.
Exp2 - Effectiveness comparison with different |S |. Figure 7
compares the performance with different |S |. Our method PSNA
consistently outperforms other methods across all instances while
the performance of other methods is not stable, e.g., Bst-Random
outperforms Bst-Degree on Catster but the latter is more effective
on Orkut. Another interesting observation is that the performance
ranking of methods on the same dataset is consistent across differ-
ent |S |. We think that a good edge recommendation for a non-seed
user u under an instance with a small |S | can also be an effective
recommendation for u as the seed user under an instance with a
great |S |. Thus, the diffusion networks generated by the expansion
stage of PSNA under different S can be similar such that edges cho-
sen by a specific baseline upon these networks have large overlaps,
which explains this observation.
Exp3 - Effectiveness comparison with different k . Figure 8 com-
pares the performance at different k across all datasets. We have
four main observations:
(1) PSNA outperforms the boosted baselines and can achieve up to

two-orders-of-magnitude larger influence (e.g., on Orkut).
(2) The performance gap becomes smaller when k is larger. The rea-

son is that all methods make almost the same recommendation
strategy to low-degree nodes since their out-degrees are close
to or even smaller than k . In this case, the number of combina-
tions of k outgoing edges of these nodes is very limited. This
observation also explains why the performance gap is larger on
datasets with greater average degrees.

(3) When k is small (e.g., 10), all methods achieve similar influ-
ence since it is barely possible for any method to achieve large
influence with very limited edges.

(4) The performance gap on MOBA and RPG is not as significant as
that on other datasets. That is because the average edge weight
on MOBA and RPG are notably larger. Thus, regardless of how
the diffusion network is generated, seeds can easily influence
many nodes with sufficient influence probabilities.
Note that the performance difference may not be easily distin-

guished visually due to the log scale of y axis, but we have shown
the notable performance difference with k = 20 and k = 30 in
Figure 7 and Table 2 at a finer granularity already.
Exp4 - Impact of k and |S | on PSNA convergence. Figures 9 (a)
and (b) show the number of iterations in the expansion stage of

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Load Ratio

1

2

3


/B

Catster MOBA RPG Orkut

10 15 20 25 30
k

4

5

6

7

8

ite
ra
tio

n

(a) varing k

5 50 100 150 200
|S|

4

5

6

7

8

9

ite
ra
tio

n

(b) varing |S |

Figure 9: The number of iterations in the expansion stage
with different k and |S |.

10 15 20 25 30
k

102

103

tim
e(
s)

(a) varing k

5 50 100 150 200
|S|

102

103

tim
e(
s)

(b) varing |S |

Figure 10: Running time of PSNA with different k and |S |.

1 2 3 4 5 6 7 8 9 10
iteration

0.0

0.2

0.4

0.6

0.8

1.0

No
de

 ra
tio

Figure 11: The percentage of the nodes in the diffusion net-
work over the one in the original networkwith different iter-
ations in the expansion stage of PSNA, where the iterations
with solid fill refer to the convergence points under differ-
ent datasets repsectively.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Load Ratio

1

2

3


/B

I-Ratio E-Ratio N-Ratio

1010 15 20 25 30 40 50
k

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

(a) RPG

1010 15 20 25 30 40 50
k

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

(b) Orkut

Figure 12: The influence ratio (I-Ratio), edge ratio (E-Ratio)
and node ratio (N-Ratio) in the diffusion network produced
by PSNA with different k .

PSNA when varing k and |S | respectively. Interestingly, when k
or |S | increases, the number of iterations for convergence is non-
increasing. This is because PSNA will include more nodes into the
current k-subnetwork in each iteration such that it may take fewer
iterations to identify all important nodes for influence spread.
Exp5 - Scalability study on PSNA. Figures 10 (a) and (b) show
the runtime of our (full-stage) PSNA when varing k and |S |. As k
grows, more nodes tend to be included in the diffusion network and
more edges tend to be ‘filled up’ in the filling stage, hence costing

190



more time. On the other hand, increasing |S | does not notably incur
more computation costs, for two reasons: 1) we transform the case
of multiple seeds into the one of a single virtual node by introducing
only |S | extra edges into the diffusion network; 2) the size of the
diffusion networks generated under instances of different |S | can be
similar as discussed earlier. It is obvious to see that PSNA is highly
scalable and efficient, since it can produce good recommendation
on datasets with millions of nodes and hundred millions of edges
within two hours (e.g., Orkut). This performance is promising since
such recommendation is usually deployed for a long-term usage.
Exp6 - Impact of iterations on the diffusion network node size.
Figure 11 shows how the node size of the diffusion network in the
expansion stage of PSNA grows iteratively. Here, the iterations with
solid fill refer to the convergence points. Note that the expansion
stage is terminated after convergence for other experiments and
here we force it to run 10 iterations. It is obvious that, the node size
in the diffusion network converges as the influence spread, which
indicates the effectiveness of the convergence criteria.
Exp7 - Case study with large k . Here, we conduct a case study
on the two largest datasets, RPG and Orkut. Our goal is to show
how the statistics of the diffusion network produced by PSNA and
influence spread of seed nodes in this network will change when
we further increase k up to 50. Specifically, we use the influence
ratio (I-Ratio) to denote the percentage of the influence of seeds
in the diffusion network over their full influence in the original
network, edge ratio (E-Ratio) and node ratio (N-Ratio) to denote
the percentage of the edge and node size of the diffusion network
over the ones of the original network, respectively. As shown in
Figure 12, as k increases, PSNA is able to achieve an I-Ratio of
90% with only an E-Ratio of 36%, and an I-Ratio of 94% with only
an E-Ratio of 46% on RPG and Orkut respectively. These again
demonstrate the superiority of PSNA. Furthermore, when the N-
Ratio converges, the I-Ratio can still notably increase as k grows,
and even the converged N-Ratio can be notably smaller than 1 (e.g.,
on RPG). These indicate that PSNA can identify important nodes
for spreading the influence.

6.2 Deployment
In order to demonstrate the practical effectiveness of our IMCSN
problem, we deployed our solution into an activity in a multi-player
online battle arena game of Tencent of which the friendship network
is MOBAX in Table 1.
Summary of the activity. Users join this activity by interacting
(e.g., sending gifts and gaming invitation) with their friends recom-
mended by the system and will obtain rewards via such interactions.
This form of interaction could trigger domino effects such that the
interactions can stimulate the message receiver to further inter-
act with other users. The aim of this activity is to improve user
retention and interactions. Note that, in this activity, we do not
specifically designate seeds. Instead, every user could be a poten-
tial and spontaneous seed. Specifically, users who log in the game
will see this activity and may perform three possible behaviors: (1)
proactively start interactions as a seed, (2) start interactions as a
message receiver (i.e., a non-seed) and (3) ignore this activity.
Edge weights and the diffusion model. We adopt the same set-
tings as we use for generating edge weights on MOBA and RPG,

and generate the diffusion network based on the IC model. Note
that the IC model is only used for generating the diffusion network
but not used for evaluation since it is very likely that the real-world
influence will not spread in a way specified by the IC model or any
other classical diffusion models (e.g., Linear Threshold model [45]).
Methods for comparison. Four methods, namely Random, De-
gree, FoF and PSNA, are deployed. For evaluation, we use an online
A/B testing. Specifically, it randomly assigns each online user to one
of these four methods which recommend a list of friends for each
assigned user. The list size k is set as 20 for all methods because, in
this application, only 20 friends are shown due to several reasons
(e.g., the screen size and resolution settings of most mobile devices).
Based on our observations made in Section 6.1, the k-subnetwork
generated based on a given seed set could also be effective for differ-
ent seed sets. Thus, for PSNA, we first generate the k-subnetwork
with top 10% of assigned users with the highest degrees as the seeds,
and then use this generated k-subnetwork for this activity where
every user could be a potential seed or non-seed.
Experimental results. The number of users who interact with the
recommended friends directly indicates the quality of the underly-
ing recommendation system and can effectively reflect the potential
size of users who are impacted by others to perform interactions.
Thus, to evaluate the performance, we adopt the Click-through Rate
(CTR) which is a very popular evaluation metric for recommenda-
tion systems in industry. The CTR denotes the number of users who
interacted with recommended friends divided by the total number
of users who log in the game during this activity. The CTR achieved
by Random, Degree, FoF and PSNA are 81.87%, 82.73%, 82.81% and
88.14% respectively, which again demonstrates the effectiveness
of PSNA. Despite the effectiveness of CTR, there still exist some
other evaluation metrics (e.g., the actual influence spread of seeds
via knowing the propagation paths and who are the seeds) worthy
of explorations. However, due to the privacy restriction of this ac-
tivity, we have no access to the detailed information in user logs to
compute the performance under other potential metrics. In future,
we would like to see how our proposed method will perform in
other activities under various evaluation metrics.

7 CONCLUSION
In this paper, we study the problem of Influence Maximization in
Closed Social Networks which aims to recommend a limited number
of edges for users to propagate information, such that the seeds’ in-
fluence via the selected edges is maximized. This problem is shown
to be very useful in many industrial applications and we prove
the NP-hardness of this problem. Moreover, we further propose a
scalable and effective method to augment the diffusion network
of seed users. We conduct extensive experiments to demonstrate
that our method is very efficient and effective in our problem, a
variant of our problem in open social networks and a real-world
application. As a future direction, we will explore this problem
under other diffusion models, and analyze theoretical properties
and extension of our solutions.

ACKNOWLEDGMENT
Zhifeng Bao is supported in part by ARCDiscovery Project DP22010
1434 and DP200102611.

191



REFERENCES
[1] 2014. https://business.sohu.com/20140624/n401244299.shtml.
[2] 2018. https://www.postbeyond.com/blog/millennials-genz-social-media/.
[3] 2018. https://medium.com/@lorenabarquin/are-closed-social-media-platforms-

the-future-of-social-3a5b0cbea025.
[4] 2018. https://www.warc.com/newsandopinion/news/the_new_facebooks_the_

trend_towards_a_closed_social_media/40929.
[5] 2018. https://www.quora.com/Why-are-some-people-not-interested-in-

exposing-themselves-on-social-media.
[6] 2021. https://www.tailwindapp.com/blog/private-on-pinterest.
[7] 2021. https://zhuanlan.zhihu.com/p/82896779.
[8] 2021. https://cfm.qq.com/gicp/news/186/15185249.html.
[9] 2022. https://www.facebook.com/help/233739099984085.
[10] 2022. https://help.twitter.com/en/safety-and-security/public-and-protected-

tweets.
[11] 2022. https://techalignment.com/closed-versus-open-social-networks/.
[12] 2022. https://github.com/rmitbggroup/IMCSN.
[13] RoyMAnderson and Robert MMay. 1992. Infectious diseases of humans: dynamics

and control.
[14] Cigdem Aslay, Laks VS Lakshmanan, Wei Lu, and Xiaokui Xiao. 2018. Influence

maximization in online social networks. InWSDM. 775–776.
[15] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. 2019. ComBIM:

A community-based solution approach for the Budgeted Influence Maximization
Problem. Expert Systems with Applications 125 (2019), 1–13.

[16] Glenn S Bevilacqua and Laks VS Lakshmanan. 2021. A fractional memory-
efficient approach for online continuous-time influence maximization. The VLDB
Journal (2021), 1–27.

[17] Song Bian, Qintian Guo, Sibo Wang, and Jeffrey Xu Yu. 2020. Efficient algorithms
for budgeted influence maximization on massive social networks. VLDB 13, 9
(2020), 1498–1510.

[18] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.
Maximizing social influence in nearly optimal time. In SODA. 946–957.

[19] Taotao Cai, Jianxin Li, Ajmal S Mian, Timos Sellis, Jeffrey Xu Yu, et al. 2020.
Target-aware holistic influence maximization in spatial social networks. TKDE
(2020).

[20] Claudio Castellano and Romualdo Pastor-Satorras. 2010. Thresholds for epidemic
spreading in networks. Physical review letters 105, 21 (2010), 218701.

[21] Bogdan Cautis, Silviu Maniu, and Nikolaos Tziortziotis. 2019. Adaptive influence
maximization. In SIGKDD. 3185–3186.

[22] Vineet Chaoji, Sayan Ranu, Rajeev Rastogi, and Rushi Bhatt. 2012. Recommenda-
tions to boost content spread in social networks. InWWW. 529–538.

[23] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In SIGKDD. 1029–1038.

[24] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in
social networks. In SIGKDD. 199–208.

[25] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable influence maximization in
social networks under the linear threshold model. In ICDM. 88–97.

[26] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi Cheng.
2013. Staticgreedy: solving the scalability-accuracy dilemma in influence maxi-
mization. In CIKM. 509–518.

[27] Boreum Choi and Inseong Lee. 2017. Trust in open versus closed social media:
The relative influence of user-and marketer-generated content in social network
services on customer trust. Telematics and Informatics 34, 5 (2017), 550–559.

[28] Reuven Cohen, Keren Erez, Shlomo Havlinl, Mark Newman, Albert-László
Barabási, Duncan J Watts, et al. 2011. Resilience of the internet to random
breakdowns. In The Structure and Dynamics of Networks. 507–509.

[29] The Koblenz Network Collection. 2017. http://konect.uni-koblenz.de.
[30] Federico Coró, Gianlorenzo DâĂŹangelo, and Yllka Velaj. 2021. Link Recommen-

dation for Social Influence Maximization. TKDD 15, 6 (2021), 1–23.
[31] Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. 2019. Recommending

links through influence maximization. Theor. Comput. Sci. 764 (2019), 30–41.
[32] Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic influence

maximization: Combining scalability and efficiency with opinion-aware models.
In SIGMOD. 1077–1088.

[33] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Using complex systems
analysis to advance marketing theory development: Modeling heterogeneity
effects on new product growth through stochastic cellular automata. Academy
of Marketing Science Review 9, 3 (2001), 1–18.

[34] Pranava R Goundan and Andreas S Schulz. 2007. Revisiting the greedy approach
to submodular set function maximization. Optimization online (2007), 1–25.

[35] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Celf++: optimizing the
greedy algorithm for influence maximization in social networks. In WWW. 47–
48.

[36] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Simpath: An efficient
algorithm for influence maximization under the linear threshold model. In ICDM.
211–220.

[37] Mark Granovetter. 1978. Threshold models of collective behavior. American
journal of sociology 83, 6 (1978), 1420–1443.

[38] Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin Sun, and Xueyan Tang.
2018. Efficient algorithms for adaptive influence maximization. VLDB 11, 9 (2018),
1029–1040.

[39] Qiang He, Xingwei Wang, Zhencheng Lei, Min Huang, Yuliang Cai, and Lianbo
Ma. 2019. TIFIM: A two-stage iterative framework for influence maximization in
social networks. Appl. Math. Comput. 354 (2019), 338–352.

[40] Huimin Huang, Hong Shen, Zaiqiao Meng, Huajian Chang, and Huaiwen He.
2019. Community-based influence maximization for viral marketing. Applied
Intelligence 49, 6 (2019), 2137–2150.

[41] Keke Huang, Jing Tang, Kai Han, Xiaokui Xiao, Wei Chen, Aixin Sun, Xueyan
Tang, and Andrew Lim. 2020. Efficient approximation algorithms for adaptive
influence maximization. The VLDB Journal 29, 6 (2020), 1385–1406.

[42] Shixun Huang. 2021. Capturing and leveraging collective behavior for large-scale
social networks analysis. Ph.D. Dissertation. RMIT University.

[43] Shixun Huang, Zhifeng Bao, J Shane Culpepper, and Bang Zhang. 2019. Find-
ing temporal influential users over evolving social networks. In 2019 IEEE 35th
international conference on data engineering (ICDE). IEEE, 398–409.

[44] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. Irie: Scalable and robust
influence maximization in social networks. In ICDM. 918–923.

[45] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In SIGKDD. 137–146.

[46] Elias Boutros Khalil, Bistra Dilkina, and Le Song. 2014. Scalable diffusion-aware
optimization of network topology. In SIGKDD. 1226–1235.

[47] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.
In SIGKDD. 420–429.

[48] Xiang Li, J David Smith, Thang N Dinh, and My T Thai. 2019. Tiptop:(almost)
exact solutions for influence maximization in billion-scale networks. IEEE/ACM
Transactions on Networking 27, 2 (2019), 649–661.

[49] Wei Liu, Xin Chen, Byeungwoo Jeon, Ling Chen, and Bolun Chen. 2019. Influence
maximization on signed networks under independent cascade model. Applied
Intelligence 49, 3 (2019), 912–928.

[50] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The
H-index of a network node and its relation to degree and coreness. Nature
communications 7, 1 (2016), 1–7.

[51] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun Satha-
nur, Ryan Mcclure, and Jason McDermott. 2019. Fast and scalable implementa-
tions of influence maximization algorithms. In 2019 IEEE International Conference
on Cluster Computing (CLUSTER). 1–12.

[52] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functions. Mathematical
programming 14, 1 (1978), 265–294.

[53] Mark EJ Newman. 2002. Spread of epidemic disease on networks. Physical review
E 66, 1 (2002), 016128.

[54] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2014.
Fast and Accurate Influence Maximization on Large Networks with Pruned
Monte-Carlo Simulations. In AAAI. 138–144.

[55] Panpan Shu, Wei Wang, Ming Tang, and Younghae Do. 2015. Numerical iden-
tification of epidemic thresholds for susceptible-infected-recovered model on
finite-size networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 25,
6 (2015), 063104.

[56] Lichao Sun, Weiran Huang, Philip S Yu, and Wei Chen. 2018. Multi-round
influence maximization. In SIGKDD. 2249–2258.

[57] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in
near-linear time: A martingale approach. In SIGMOD. 1539–1554.

[58] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization:
Near-optimal time complexity meets practical efficiency. In SIGMOD. 75–86.

[59] Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-time influence
maximization on dynamic social streams. PVLDB 10, 7 (2017), 805–816.

[60] Hao-Hsiang Wu and Simge Küçükyavuz. 2018. A two-stage stochastic program-
ming approach for influence maximization in social networks. Computational
Optimization and Applications 69, 3 (2018), 563–595.

[61] Jiarong Xie, Fanhui Meng, Jiachen Sun, Xiao Ma, Gang Yan, and Yanqing Hu. 2021.
Detecting and modelling real percolation and phase transitions of information
on social media. Nature Human Behaviour (2021), 1–8.

[62] Wenguo Yang, Shengminjie Chen, Suixiang Gao, and Ruidong Yan. 2020. Boosting
node activity by recommendations in social networks. Journal of Combinatorial
Optimization 40 (2020), 825–847.

[63] Wenguo Yang, Jianmin Ma, Yi Li, Ruidong Yan, Jing Yuan, Weili Wu, and Deying
Li. 2019. Marginal gains to maximize content spread in social networks. IEEE
Transactions on Computational Social Systems 6, 3 (2019), 479–490.

[64] Kaichen Zhang, Jingbo Zhou, Donglai Tao, Panagiotis Karras, Qing Li, and Hui
Xiong. 2020. Geodemographic influence maximization. In SIGKDD. 2764–2774.

192


