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ABSTRACT

Community detection on attributed graphs with rich semantic and

topological information offers great potential for real-world net-

work analysis, especially user matching in online games. Graph

Neural Networks (GNNs) have recently enabled Deep Graph Clus-

tering (DGC) methods to learn cluster assignments from semantic

and topological information. However, their success depends on the

prior knowledge related to the number of communities 𝐾 , which is

unrealistic due to the high costs and privacy issues of acquisition. In

this paper, we investigate the community detection problem with-

out prior 𝐾 , referred to as 𝐾-Free Community Detection problem.

To address this problem, we propose a novel Deep Adaptive and

Generative model (DAG) for community detection without specify-

ing the prior 𝐾 . DAG consists of three key components, i.e., a node

representation learning module with masked attribute reconstruc-

tion, a community affiliation readout module, and a community

number search module with group sparsity. These components

enable DAG to convert the process of non-differentiable grid search

for the community number, i.e., a discrete hyperparameter in exist-

ing DGC methods, into a differentiable learning process. In such a

way, DAG can simultaneously perform community detection and

community number search end-to-end. To alleviate the cost of ac-

quiring community labels in real-world applications, we design a

new metric, EDGE, to evaluate community detection methods even

when the labels are not feasible. Extensive offline experiments on

five public datasets and a real-world online mobile game dataset
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demonstrate the superiority of our DAG over the existing state-of-

the-art (SOTA) methods. DAG has a relative increase of 7.35% in

teams in a Tencent online game compared with the best competitor.
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1 INTRODUCTION

Community detection, which aims to partition networks into densely

connected substructures and reveals latent functions [12, 24], is a

crucial unsupervised learning task in network analysis. It has been

extensively studied in various fields, such as recommendation sys-

tems [23, 44, 62], biochemistry [11, 50, 55], cyber security [54], and

business [2, 3, 25]. Among various networks, attributed networks,

where nodes contain abundant semantic information, have gained

significant attention in recent years since node attributes can play a

complementary role of the network topology [35, 40, 53, 57, 61]. Its

efficacy is evident that nodes with similar attributes tend to form

cohesive communities in real-world social networks, as suggested

by the adage “birds of a feather flock together” [37].

Existing algorithms for community detection in attributed net-

works suffer from two limitations in industrial applications: 1)

From a learning perspective, it is not feasible to concurrently ac-

quire representations from network topology and node semantics

while also searching for the optimal community number, denoted

as 𝐾 . Specifically, conventional community detection algorithms
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Figure 1: Our research problem: 𝐾-Free community detection

for real-world social networks (node-attributed graphs).

struggle to strike a balance between learning the intricate network

topology and handling high-dimensional semantic attributes [49].

In comparison, advanced deep learning-based methods achieve

topology-semantic trade-off, but they rely on prior knowledge of

𝐾 , rendering their practical application challenging. 2) From the

evaluation perspective, the ground-truth community is a trade-off

between topology and semantics, making unsupervised metrics

deviate from the real-world communities. Meanwhile, the labels in

large-scale social networks are unavailable for user privacy, making

existing metrics infeasible in deployment.

To support our investigation, we evaluate traditional methods

on five well-known datasets with unsupervised metrics, i.e., modu-

larity [7] and Calinski Harabasz score (dubbed as “Semantic”) [6]

to measure the node connection density and the attribute similar-

ity in the same community. As illustrated in Table 1, the ground

truth community is a trade-off between topology and semantics,

but existing methods overemphasize a specific metric, i.e., Louvain

only focuses on network connections, and attribute clustering al-

gorithms like 𝐾-means [14] solely concentrate on attributes. This

imbalance results in biased outcomes and deviates from the real-

world community structure. It should be noted that while Louvain

can adaptively search for the community number 𝐾 (𝐾-means can-

not), its result is much greater than the ground truth across all

datasets. Thus, it falls short to discover a suitable 𝐾 .
Deep Graph Clustering (DGC) [34] methods employ Graph Neu-

ral Networks (GNNs) and unify the learning from both topological

structure and node semantic attributes by learning “clustering-

friendly” node embeddings [38]. However, they fail to address the

dependency of knowing 𝐾 , which precludes the applicability of

real-world community detection. One straightforward solution is

to estimate 𝐾 by traditional methods, but it is often larger than the

ground truth. Thus, naively estimating 𝐾 via traditional methods

and subsequently applying DGC may fall into sub-optimal. DGC

circumvents this problem by assuming 𝐾 is already known, which

is unrealistic in practice. An example is illustrated in Fig. 1 (a) for

user communities in online games. Ground truth labels can be some

private user profiles, such as affiliation, job, location, etc., which

are not available to the platform. We can only identify users with

frequent interactions and high attribute similarity. These users are

likely to belong to the same community, and it is still challenging

to determine the number of communities they form. This exhibits

Dataset Algorithm Modularity Semantic K

Cora [46]
Ground Truth 0.6401 11.936 7
𝐾-means 0.1933 20.962 7
Louvain 0.8135 2.107 105

CiteSeer [46]
Ground Truth 0.5470 11.646 6
𝐾-means 0.2970 19.349 6
Louvain 0.8919 1.615 469

PubMed [46]
Ground Truth 0.4318 200.337 3
𝐾-means 0.3490 435.917 3
Louvain 0.7695 37.069 39

Wiki [56]
Ground Truth 0.5420 11.368 17
𝐾-means 0.2061 24.986 17
Louvain 0.7112 3.530 64

CoraFull [47]
Ground Truth 0.5417 10.468 70
𝐾-means 0.2462 22.371 70
Louvain 0.8126 2.344 404

Table 1: Traditional methods lead to biased results from

ground-truth communities. Modularitymeasures the density

of the communities. The “Semantic” metric is the Calinski

Harabasz score. 𝐾 is the community number.

a “catch-22” dilemma: existing deep learning approaches necessi-

tate prior knowledge, but it does not exist. Consequently, there is

an urgent need to detect communities with unknown community

number issues in real-world attributed graphs [32].

In this paper, we aim to develop a systematic solution for the

𝐾-free community detection problem, as illustrated in Fig. 1 (b).

We design a novel learning framework named Deep Adaptive and

Generative (DAG) for community detection on node-attributed

graphs. Specifically, DAG first learns node embeddings with both

topology and semantic information with masked attribute recon-

struction. Secondly, we design a community readout module based

on the community affiliation network [5, 26] instead of clustering,

which is the key difference between DAG and DGC methods. The

readout module enables our third step for differentiable community

selection. We convert the challenging grid search of 𝐾 for cluster-

ing into a differentiable community selection regularized by group

sparsity. In summary, DAG does not require specifying prior 𝐾
but simultaneously performs community detection and community

number search in an end-to-end fashion. We additionally propose

a novel metric, EDGE, to address the high acquisition costs for

evaluation. EDGE transforms the 𝐾 class problem into a binary

one to replace the unavailable private profile with high-confidence

user interaction in deployment. Empirical experiments justify that

EDGE is more robust than existing metrics when the detected 𝐾
is not always equal to the ground truth in Sec.4.2.1 and can indi-

cate more meaningful communities where users are more likely to

interact with each other in Sec. 5.

Contributions. The contributions of our paper include:

• We propose a 𝐾-free deep community detection framework on

attributed graphs called DAG, which can adaptively search the

number of communities during the training process in an end-to-

end manner. DAG bridges the gap between traditional and deep

learning-based community detection methods.

• We design a new EDGE metric for 𝐾-free community detection

evaluation. EDGE offers two advantages: 1) For labeled data,

EDGE is robust and objective if detected 𝐾 varies from ground
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truth. 2) EDGE is also effective for real-world applications in

which we do not have actual ground truth communities because

EDGE reflects the intimacy between linked nodes.

• We conduct extensive experiments on five public benchmark

datasets in Sec. 4. Experimental results demonstrate that DAG

outperforms state-of-the-art (SOTA) methods. We further con-

duct an online A/B testing between our DAG and the best SOTA

against the baseline on a friend recommendation task during a

one-week event; the results show that DAG’s improvement out-

performs SOTA by 7.35%, 1.97%, and 5.24% for the overall success

rate, click rate, and team formation success rate, respectively.

The superior online performance further indicates that DAG can

detect more meaningful user communities, i.e., users within the

same community have a higher tendency to interact.

2 PRELIMINARIES

In this section, we first formulate our research problem, i.e., 𝐾-free
community detection on attribute graphs. We then conduct an em-

pirical study on DGC methods, demonstrating that they can neither

handle 𝐾-free community detection tasks with trivial modifications

nor find a proper community number 𝐾 with their methods.

2.1 Problem Formulation

In an undirected and unweighted attributed graph G = {A,X},
let V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } be a set of 𝑁 nodes and E be a set of edges.

X ∈ R𝑁×𝐷 and A ∈ R𝑁×𝑁 denote the node attribute matrix

and original adjacency matrix, respectively. We define community

affiliation as follows to represent node-to-community assignment.

Definition 1 (community affiliation). A community affilia-

tion C𝑖 ∈ R
𝐾
≥0 of node 𝑣𝑖 is a stochastic vector that adds up to one,

where the 𝑘-th entry is the probability of node 𝑣 belonging to the

𝑘-th community.

Based onDefinition 1, we focus on a non-overlapping community

detection task, i.e., each node belongs to only one community. How-

ever, unlike existing DGCmethods, we do not have prior knowledge

of the total number of communities, denoted as 𝐾 . We formulate

the 𝐾-free community detection problem as follows.

Problem 1 (𝐾-Free Community Detection). The task of𝐾-free
community detection involves determining a community number

𝐾 and a community affiliation matrix C ∈ R𝑁×𝐾
≥0 for all 𝑁 nodes in

a given attributed graph G = {A,X}.

The objective of 𝐾-free community detection is to ensure that

nodes within a community exhibit stronger topological connec-

tions and share more common characteristics compared to nodes

in different communities, such as external ground truth labels (if

available), connectivity patterns, and node features.

2.2 Empirical Investigations of DGC Methods

We conduct empirical studies to investigate the impact of the un-

known number of communities 𝐾 for DGC methods.

Firstly, we choose the SOTA model CCGC as the base model. We

then replace CCGC’s 𝐾-means clustering by DBSCAN [9], which is

a density-based clustering method that does not rely on the prior

𝐾 . Fig. 2 illustrates the results on the Cora dataset. We project node

(a) CCGC with 𝐾-means. (b)𝐾-free CCGC with DBSCAN.

Figure 2: T-SNE [51] visualization of Cora dataset’s node

representations by deep graph clusteringmethod CCGC [57].

Figure 3: Community number with the highest modularity

does not match the ground truth 𝐾 on Cora.

embeddings on the two-dimensional space via T-SNE [51], and we

observe that the vanilla CCGC with 𝐾-means clustering groups

embeddings into𝐾 clusters. At the same time, CCGCwith DBSCAN

situates nodes on a manifold without distinguishable gaps. This

change poses challenges for DGC methods, as their training proce-

dure relies on clustering results as soft or hard labels. Consequently,

the optimization objective of DGC methods varies across epochs,

potentially leading to their collapse. Moreover, hyperparameter

tuning for DBSCAN becomes more challenging, as fine-tuning the

radius parameter and the minimum number of points in DBSCAN is

considered difficult [9, 10, 45]. Additionally, each epoch requires ad-

justing DBSCAN since node embeddings have been modified based

on the previous epoch training. We conclude that in real-world

scenarios where 𝐾 is unknown, clustering-based self-supervised

learning methods may collapse due to uncertain training objectives.

Existing DGC methods are unable to handle 𝐾-free community

detection tasks with trivial modifications.

Next, we traverse the prior 𝐾 of the DGC methods and observe

the changes in the unsupervised modularity metric. This is a search-

ing strategy mentioned by several DGC methods [13, 28, 41] to

validate their performance on graphs without known 𝐾 . Our goal is
to determine if this strategy can effectively capture real-world com-

munity structures. We implement several DGC methods, namely

DAEGC [53], CommDGI [61], VGAER[41], and CCGC [57] as ex-

amples. For the Cora dataset [46], we observe that their estimated

community number with the highest modularity does not align

with the ground truth 𝐾 . This discrepancy persists even when con-

sidering a range of [2, 2 × 𝐾GT], where 𝐾GT is the ground truth

community number. Furthermore, in real-world applications such

as online games, online tests are often employed to collect user
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activity as the final metric. Online tests typically require days to

gather reliable results; real-world graphs are large-scale, and user

communities may change over time, rendering grid search on 𝐾
impractical. Therefore, selecting the number 𝐾 of communities

with the highest unsupervised modularity index through traversal

and repeated training is neither efficient nor effective. It becomes a

time-consuming process that does not guarantee optimal results.

From these observations, we conclude the findings that:

(1) In real-life scenarios where 𝐾 is unknown, clustering-based

self-supervised learning methods can collapse due to uncertain

training objectives.

(2) It is neither efficient nor effective to select the number of com-

munities 𝐾 with the highest unsupervised modularity through

traversal and repeated training.

In the following sections, we propose our DAG method to tackle

this challenging task and overcome the aforementioned issues.

3 DEEP ADAPTIVE AND GENERATIVE
COMMUNITY DETECTION

In this section, we aim to address two challenges of 𝐾-free com-

munity detection, i.e., how to detect communities without 𝐾 , and
evaluate the results in a low-cost and robust manner. We propose

a general framework, named DAG, to jointly learn node embed-

ding H, community affiliation C, and community number 𝐾 . As
shown in Fig. 4, the key insight of DAG is introducing a Commu-

nity Affiliation Network (CAN) based generative model instead of

clustering-based DGC methods, converting the non-differentiable

𝐾 searching problem to a differentiable one and solving it with

group sparsity. We also design an EDGE metric to convert a 𝐾 class

problem into a binary edge classification problem.

3.1 Masked Attribute Reconstruction

In attributed graph community detection, obtaining node repre-

sentations that incorporate structural and semantic aspects is cru-

cial. To achieve this, inspired by recent progress in masked auto-

encoders for node classification [20, 21], we introduce the Masked

Attribute Reconstruction module, which is trained with a task that

randomly masks attributes and reconstructs them. This process en-

courages the node representation to incorporate both its attributes

and the attributes of its topological neighbors.

For the graph G = (A,X) with node set V , we sample a set of

nodes Ṽ ⊂ V for each epoch, and replace their attribute vectors

with a learnable [Mask] Token X[𝑀 ] ∈ R
𝐷 :

X̃ = MASK(X), where X̃𝑖 =

{
X[𝑀 ] 𝑣𝑖 ∈ Ṽ

X𝑖 𝑣𝑖 ∉ Ṽ
. (1)

We use two layers of GAT [52] as the encoder to encode the

masked graph and generate the node representation matrix H ∈

R
𝑁×𝐷 ′

, where 𝐷′ is the embedding length of each node:

H = Encoder(A, X̃) . (2)

This embedding H will simultaneously perform two tasks: attribute

reconstruction and community detection. The ReMask trick is em-

ployed to encourage the model’s embedding further to contain

Figure 4: DAG framework.

Figure 5: The Community Affiliation Network.

semantic information about its topological neighborhood:

H̃ = MASK(H) . (3)

We use two GAT layers as attribute Decoder to output the re-

stored feature matrix:

Z = Decoder(A,𝑯 ) . (4)

We introduce the Scaled Cosine Error (SCE) proposed by Graph-

MAE [21]. This is because the feature vectors of attribute graphs

are often very sparse, and the MSE loss easily converges to a trivial

solution of all zeros.

LSCE (X,Z, Ṽ) =
1

|Ṽ |

∑
𝑣𝑖 ∈Ṽ

(
1 −

𝑥𝑇𝑖 𝑧𝑖

‖𝑥𝑖 ‖ · ‖𝑧𝑖 ‖

)3
. (5)

In summary, Masked Attribute Reconstruction learns node repre-

sentations combining topological and semantic aspects, which is

essential for the subsequent community affiliation readout.

3.2 Community Affiliation Readout

DAG simultaneously learns node representations and community

affiliations to enable further searching 𝐾 end-to-end. Inspired by

Community Affiliation Network (CAN), a classical social model

[5, 26, 64] explaining how social networks are generated, we design

a readout module to model nodes’ affiliation explicitly.
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As shown in Fig. 5, CAN is a weighted bipartite graph containing

all real nodes and unseen community nodes of a social network.

Each real node in the social network is associated with a community

affiliation vector C𝑖 ∈ R
𝐾 , where 𝐾 is the number of communities,

and each entry C𝑖, 𝑗 represents the affiliation strength of node 𝑣𝑖
to the community 𝑗 . The CAN model reconstructs the graph’s

adjacency matrix based on the community affiliations, providing

a differentiable objective for learning the community structure.

When reconstructing the adjacency matrix, the similarity of the

community affiliation vectors (C𝑖 ,C𝑗 ) of a node pair (𝑖, 𝑗) indicates
the probability of generating an edge 𝑝 (𝑖, 𝑗) between them:

𝑝 (𝑖, 𝑗) = 𝜎 (C𝑖 · C
𝑇
𝑗 ), (6)

where 𝜎 is the sigmoid [36] function.

The input embeddingmatrixH is augmented throughout training

and can contain information about its neighbor nodes. Based on

this property, we use a two-layer GCN and a softmax [17] function

as the community affiliation readout to output the community

affiliation C ∈ R
𝐾max
≥0 of all nodes, where 𝐾max is the maximum

possible community number.

C = Readout(A,H). (7)

Since we do not have the actual community number𝐾 in the 𝐾-free
community detection scenario, we set 𝐾max to a relatively large

number. The 𝐾max setting can be found in Sec. 4.

The community ID 𝐼𝑖 of node 𝑖 is the number of digits where the

maximum value of the Community matrix exists, which is similar

to node classification:

𝐼𝑖 = argmax
𝑗

C𝑖, 𝑗 . (8)

Generating the whole adjacency matrix of the network requires a

complexity of 𝑂 (𝑛2), which is not realistic for large graphs. There-

fore, Bayesian Personalized Ranking (BPR) loss [43] is used to pre-

dict each existing edge (𝑖, 𝑗) by sampling a negative edge (𝑖, 𝑢):

LBPR = −

|E |∑
𝑖=1

ln𝜎 (C𝑖 · C
𝑇
𝑗 − C𝑖 · C

𝑇
𝑢 ), (9)

where |E | is the number of edges.

In summary, the Community Detection Readout module, which

is the main difference between DAG and DGC methods, simultane-

ously learns node representations and community affiliations in an

end-to-end manner. This end-to-end readout enables the differen-

tiable searching process, making it a crucial component for 𝐾-free
community detection in attributed graphs.

3.3 Community Number Search

In DGC methods, determining the optimal number of communities

𝐾 poses a significant challenge, as it is often used as a hyperparam-

eter for 𝐾-means-like clustering. This makes it difficult to optimize

within the DGC framework. Inspired by traditional community

detection methods such as Louvain [4], we propose a differentiable

Community Number Search method that adaptively finds the best

𝐾 by gradually merging smaller communities. Our approach is per-

formed on the output layer of the Community Affiliation Readout

module during end-to-end training. This method employs group

sparsity constraints to gradually compress the number of commu-

nities, merging communities with close links and similar attributes.

As a result, our approach enables simultaneous learning of node

representations, community affiliations, and community numbers.

The input of the last layer of Community Readout is denoted as

HC, and the calculation of the Community Matrix C is given by:

C = ReLU
(
ÂHCW

)
, (10)

where Â is the normalized adjacency matrix obtained by adding

self-loops and row-normalizing the original adjacency matrix A.

The matrixW has dimensions 𝑑 ×𝑘max, where 𝑑 is the length of the

input embedding, i.e., column number of HC. The ReLU activation

function is applied element-wise to the matrix product ÂHCW. The

group sparsity constraint based on L2,1 norm is defined as:

LGS = ‖W𝑇 ‖2,1 =
𝑘max∑
𝑗=1

| |W:, 𝑗 | |𝑝=2 =
𝑘max∑
𝑗=1

(
𝑑∑
𝑖=1

w
2
𝑖, 𝑗

)1/2
. (11)

Lemma 1 (group sparsity). The columns of Community Matrix

C are sparse, i.e., some of its column vectors should be zero vectors.

From the lemma above, we know that LGS constraint has two

main benefits: (1) it makes C more sparse, improving the confi-

dence of community readout, and (2) it concentrates the output on

columns of C, allowing for an adaptive number of communities.

Additionally, this constraint only affects the parameters of the last

layer without influencing the generation of embeddings. The proof

of this lemma can be found in Appendix A.

For the community ID vector 𝐼 ∈ Z𝑁 for all 𝑁 nodes in the

graph, our group sparsity ensures that the output range will shrink

from [1, 𝐾max] to a smaller range. In other words, the output is the

number of communities to which at least one node belongs:

𝐾 = |{𝑖 : ∃𝑣 ∈ V, 𝐼 (𝑣) = 𝑖}|. (12)

In conclusion, the proposed group sparsity method adapts the

number of communities during end-to-end training, addressing the

challenge of searching 𝐾 for 𝐾-free community detection.

Optimization objective. The final total training loss is:

L = LSCE + 𝛼LBPR + 𝛽LGS, (13)

where the 𝛼 and 𝛽 are manually set hyperparameters. Empirically,

we find that 𝛼 and 𝛽 are stable across several public datasets. In

other words, we don’t need to fine-tune them when it comes to a

new dataset. Please refer to Appendix C for more details.

3.4 EDGE Metric

There are two-fold challenges when evaluating 𝐾-Free community

detection methods. First, accurate community labels for real-world

social networks are unavailable. Second, if the number of detected

communities 𝐾 differs from the ground truth 𝐾GT, many existing

metrics (e.g. F1 score and accuracy) are infeasible even if we know

the ground truth labels for public datasets. To address this, we

propose a supervised edge metric suitable for partially known real-

world networks and public datasets with ground truth labels. This

metric converts the community detection problem into a binary

classification problem of whether to cut an edge off.
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We treat the edges as inter-community edges and intra-community

edges. Let E∗
inter denote the set of inter-community edges, and E∗

intra
denotes the set of intra-community edges. We can obtain all edge

labels for public cases based on node community labels.

E∗
inter = {(𝑖, 𝑗) |A𝑖, 𝑗 = 1, 𝐼∗(𝑖) ≠ 𝐼∗( 𝑗)},

E∗
intra = {(𝑖, 𝑗) |A𝑖, 𝑗 = 1, 𝐼∗(𝑖) = 𝐼∗( 𝑗)},

(14)

where 𝐼∗(𝑖) denotes the ground truth label of 𝑖-th node. After com-

munity detection, we generate the set predicted Einter and Eintra

with output 𝐼 (𝑖) like Eq. (14). To balance the binary task, we com-

pute the F1 score where E∗
intra is the positive set. In other words, the

EDGE metric measures whether connected node pairs that belong

to the same community can be placed in the same detected commu-

nity, while node pairs that do not belong to the same community

can be placed in different detected communities:

EDGE = 2 ·

|E∗
intra

∩Eintra |

|E∗
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∩Eintra |+|E
∗
inter
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·
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∗
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∩Einter |

. (15)

In real-world scenarios, we can consider node pairs with high-

confidence interaction (e.g., friends with the highest intimacy or

mentor-mentee relationships) as intra-community edges and no

historical interaction as inter-community edges.

The EDGE metric effectively evaluates community detection

methods on public datasets with known ground truth labels and

real-world networks with partially known edge information. This

provides a practical approach to assess community detection al-

gorithm performance in real-world scenarios where ground truth

community labels are difficult to obtain. Additionally, we find that

the widely used NMI is sensitive to the 𝐾 detected and can overes-

timate the performance of trivial results; please refer to Sec. 4.2.1.

4 EXPERIMENTS ON PUBLIC DATASETS

4.1 Experimental Settings

To ensure the fairness and validity of our experimental setup, we

highlight several key aspects of our experiments.

Datasets.We evaluate DAG on five public datasets (Cora [46], Cite-

Seer [46], PubMed [46], Wiki [56], and CoraFull [47]). The number

of nodes (#Node), edges (#Edge), feature dimensions (#Features),

communities (#Comm., if available), and inter-community edges

(#Cut) are shown in Table 2.

Compared methods. We compare our DAG with four traditional

algorithms, i.e., Greedy Q [8], Louvain [4], LPA [42], and Hanp

[27]. We also implement five SOTA DGC methods, i.e., DAEGC

[53], CommDGI [61], AGCN [40], HSAN [35], and CCGC [57].

Training procedure. For each epoch, we sample 50% (75% for

PubMed) of the nodes in the dataset for masking and recovering

the masked node features. Every 50 epochs, we evaluate the com-

munities detected by DAG using unsupervised metrics. As we aim

to address the community detection in an unsupervised manner,

we select the checkpoint with the highest product of two unsuper-

vised metrics, i.e., modularity and Calinski Harabasz score as the

final result, and calculate its NMI and EDGE Metric. More detailed

settings can be found in Appendix B.

#Nodes #Edges #Features #Comm. #Cuts

Cora 2,708 5,278 1,433 7 1,011
CiteSeer 3,327 4,552 3,703 6 1,212
PubMed 19,717 44,324 500 3 8,760
Wiki 2,405 8,261 4,973 17 2,590

CoraFull 19,793 63,421 8,710 70 28,023

GAME 209,794 2,874,396 85 Unknown Partially Known

Table 2: Dataset summary.

Fair comparison. One significant difference between DAG and

DGC methods is that DAG does not require specifying the number

of communities 𝐾 as a priori, while DGC methods do. The research

question we aim to address is how to perform community detection

without prior knowledge of 𝐾 . Therefore, for a fair comparison,

we adopt the same strategy for finding 𝐾 for both DAG and DGC

methods. Specifically, we choose the value of 𝐾 that maximizes the

product of the unsupervised modularity and the Calinski Harabasz

score. This serves as a straightforward approach to balance the

topological and semantic similarity of the communities.

Furthermore, to ensure a fair comparison, we set the search

range for the number of communities to [2, 2 × 𝐾GT] for all deep

learning-based methods, where 𝐾GT is the ground truth number

of communities in each dataset, except for CoraFull. Although

our DAG method can search within the range of [2, 2 × 𝐾GT] for

CoraFull, the DGCmethods require iterating over all possible values

of𝐾 , making it impractical to search over such a large range (𝐾GT =
70) for CoraFull. Therefore, for CoraFull, we set the search range

for both DAG and the DAG methods to [𝐾GT − 10, 𝐾GT + 10].

Metric. Following the SOTA DGC methods [35, 40, 53, 57, 61],

we evaluate methods with Normalized Mutual Information (NMI)

[48] and our proposed EDGE metric. As mentioned earlier, prior

knowledge of the number of communities 𝐾 , which is often diffi-

cult to obtain in real scenarios such as user communities in GAME,

is evaluated using the EDGE metric of DAG and the best SOTA

method. We perform an online test for recommendation tasks dur-

ing a one-week game event. In the online test setting, we test how

the detected communities help to encourage user interactions.

4.2 Results in Public Datasets

4.2.1 Main Results. We analyze the performance of our proposed

DAG method in comparison with traditional community detection

algorithms and state-of-the-art DGC methods in Table 3. DAG

outperforms all DGC methods in terms of both NMI and EDGE

metrics across all public datasets, demonstrating its effectiveness in

handling the unknown community detection problem. CCGC is a

strong baseline for comparison in real-world scenario experiments.

Please refer to Appendix D for more detailed results, including

standard deviation and unsupervised metrics.

The EDGE metric, introduced in this paper, proves to be a robust

evaluation measure for varying community numbers. Note that

when the community number is set equal to the node number (the

trivial NULL case), the existing NMI metric tends to overestimate

the performance, even achieving the best NMI in CoraFull. However,

the EDGEmetric does not suffer from this issue, as it assigns a value

of 0 to all trivial NULL cases, effectively differentiating between

meaningful community structures and trivial cases.
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Dataset Cora (K=7) CiteSeer (K=6) PubMed (K=3) Wiki (K=17) CoraFull (K=70)

Metric NMI EDGE K NMI EDGE K NMI EDGE K NMI EDGE K NMI EDGE K

Traditional
CD

Greedy Q 0.4673 0.8864 106 0.3378 0.8395 488 0.2217 0.8584 114 0.4358 0.8478 90 0.4075 0.7290 499
Louvain 0.4468 0.8787 104 0.3243 0.8321 469 0.2062 0.8359 39 0.4559 0.8583 64 0.4792 0.7300 404
Hanp 0.4010 0.7508 553 0.3402 0.7393 508 0.1770 0.7126 2037 0.4995 0.7135 885 0.5560 0.6670 2113
LPA 0.4142 0.7871 481 0.3377 0.7530 959 0.1804 0.7329 1924 0.4858 0.8410 396 0.5664 0.6705 2328

Trivial NULL 0.3762 0 2708 0.3555 0 3327 0.1937 0 19717 0.4846 0 2405 0.5763 0 19793

DGC

DAEGC 0.4587 0.8714 10.0 0.2907 0.8302 11.5 0.1784 0.8422 4.1 0.2200 0.7235 25.0 0.4503 0.6882 60.1
CommDGI 0.3192 0.8564 9.4 0.2911 0.8269 11.1 0.1892 0.8496 4.9 0.1839 0.7373 31.1 0.4467 0.6756 60.3
AGCN 0.2172 0.8297 10.6 0.3160 0.8316 8.2 0.2275 0.8504 3.8 0.1962 0.7431 22.6 0.4721 0.6955 74.2
HSAN 0.4497 0.8775 4.8 0.3128 0.8413 5.1 OOM OOM OOM 0.4131 0.8375 29.5 OOM OOM OOM
CCGC 0.5051 0.8887 8.5 0.4090 0.8447 11.9 0.1922 0.8520 4.1 0.4079 0.8467 21.8 0.4898 0.7047 73.6

Ours DAG 0.5171 0.9004 7.4 0.4118 0.8677 6.4 0.2828 0.8938 3.4 0.4320 0.8629 15.7 0.4932 0.7311 68.4

Table 3: Average result of supervised metrics and community number on public datasets. Trivial NULL is the case where

every single node is treated as a community (i.e., 𝐾 = 𝑁 ). OOMmeans Out-of-Memory error. Underline shows the best DGC

performance. Bold is the best performance for all methods.

Case Mask Sparsity Cora CiteSeer PubMed Wiki CoraFull

1 0.8649 0.8182 0.8092 0.8386 0.7002

2 � 0.8966 0.8541 0.8735 0.8584 0.7193

3 � 0.8803 0.8374 0.8652 0.8468 0.7256

DAG � � 0.9004 0.8677 0.8938 0.8629 0.7311

Table 4: Average EDGE metric of mask attribute generation

(Mask) and group sparsity (Sparsity) on public datasets as

ablation studies.

Methods EDGE Click Rate Team Rate Success Rate

Baseline N/A 2.59% 76.72% 2.00%
CCGC 0.82 2.66% (+2.93%) 76.08% (-0.83%) 2.03% (+2.08%)
Ours 0.88 2.72% (+4.90%) 80.10% (+4.41%) 2.18% (+9.44%)

Table 5: Result on the real-world GAME graph. The relative

changes compared to the Baseline are in parentheses.

In summary, Table 3 shows that our proposed DAG method can

effectively handle the 𝐾-free community detection problem and

outperform SOTA DGC methods, with the EDGE metric serving as

a robust evaluation measure.

4.2.2 Ablation Study. We conduct an ablation study to investigate

the individual contributions of the main components in the DAG

model, focusing on the average EDGE metric across the five public

datasets. We consider four cases: Case 1: Neither mask attribute

generation (Mask) nor group sparsity (Sparsity) is applied. Case

2: Only mask attribute generation (Mask) is applied. Case 3: Only

group sparsity (Sparsity) is applied. DAG: Both mask attribute

generation (Mask) and group sparsity (Sparsity) are applied.

The results in Table 4 show that the DAG model’s performance

improves with each component. Introducing mask attribute gener-

ation (Case 2) improves the EDGE metric, indicating its importance

in capturing node semantic information. Applying group sparsity

(Case 3) also results in better performance, highlighting its role in

adaptively searching for the optimal number of communities.

The full DAG model achieves the highest EDGE metric values

across all datasets, demonstrating the effectiveness of combining

these components in addressing the 𝐾-free community detection

Figure 6: The convergence analysis across different datasets.

problem. In summary, the ablation study confirms the importance of

both mask attribute generation and group sparsity components in

the DAG model, as their combination leads to the best performance

in terms of the EDGE metric across all public datasets.

4.2.3 Convergence Analysis. We find that our DAG method con-

verge well across different datasets and hyper-parameter settings.

To further show the convergence of DAG, we conduct the following

experiments.

Convergence on different datasets. We have conducted addi-

tional experiments to analyze convergence. We run our DAG on all

public datasets with 5 trials. We train our DAG models with 1000

epochs for each trail and record the loss for each epoch without

cherry-picking. Finally, we compute the average value (mean) and

standard deviation (std) per epoch among the 5 trials. As shown

in Fig. 6, we plot the average loss in a line and fulfill the [mean

- std, mean + std] with shadow. To make the standard deviations

clear, we also zoomed figure that only includes the loss distribution

for the last 600 epochs. The results demonstrates that DAG model

converges well for different public datasets.

Convergence on different datasets. To further draw the concern

about DAG’s convergence, we also provide the Cora dataset’s con-

vergence curve for different scales of our proposed hyper-parameters,

i.e., 𝛼 and 𝛽 . Fig. 7 shows that we tune the two hyper-parameters
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Figure 7: The convergence analysis across different hyper-

parameter settings on Cora dataset.

in a log scale. The figure demonstrates that DAG’s convergence is

stable with different hyper-parameter settings.

4.2.4 Case Study. We provide a case study on the Cora dataset

to offer insight into how DAG solves the challenging 𝐾-free com-

munity detection problem. Fig. 8 and Fig. 9 show the community

distribution of DAG before and after applying group sparsity. Both

models result in relatively uniformly sized communities. However,

group sparsity helps DAG merge the detected communities and

output some empty communities to search 𝐾 in an end-to-end man-

ner. Fig. 8 also illustrates that most communities have high purity

with respect to the ground truth; however, the large ground truth

communities are spliced into several detected communities. For

example, the label id 3 is the dominant id in community id=7, 11,

and 13. As shown in Fig. 9, with the help of group sparsity, the

communities are merged into fewer communities, and DAG merges

communities with densely connected and semantically similar com-

munities. As a result, most of the detected communities can better

fit the ground truth community.

However, as we can see, the small ground truth community (label

id = 6) is not detected by DAGwithout group sparsity. Consequently,

group sparsity fails to merge into a larger community. This also

shows that DAG has the potential to improve with a deeper un-

derstanding of real-world communities. In summary, DAG demon-

strates good performance in solving the 𝐾-free community detec-

tion problem and can be further enhanced with deeper insights into

real-world community structures.

5 DEPLOYMENT

Dataset. Since we want to tackle the 𝐾-free community detection

problem in real-world applications, we evaluate DAG and the best

SOTAmethod on a Tencent mobilemassively multiplayer online role-

playing game (MMORPG) dataset [22, 29–31, 58–60, 62], referred

to as GAME. The statistics of GAME can be found in Table 2. We

construct the GAME dataset as follows: (i) each daily active user

(DAU) in the game is represented as a node, with the in-game

features as attributes, such as the preference for each gameplay

style in the game; (ii) an edge between two nodes indicates that the

two users have friendly relationships, such as friends, mentors, and

mentees, among others. We transform this graph into an undirected,

unweighted, and homogeneous form to enable a fair comparison

using the EDGE metric.

Competitors and parameter settings. We select CCGC as the

best SOTA DGC method for comparison with our DAG. For this

comparison, we directly use the searched 𝐾 value of DAG to train

CCGC. The maximum community number 𝐾max is set to 256. We

provide both offline and online experimental results. The best hy-

perparameters of DAG and CCGC from the public CoraFull dataset

are used, as its scale is most similar to the GAME dataset. The

detailed parameters can be found in Appendix B.

Offline experiments. For offline experiments, we use mentor-

mentee relationships as positive examples in the friend network

and friends with no intimacy value (i.e., no historical interactions)

as negative examples. A higher EDGE score in offline metrics indi-

cates that the algorithm assigns more intimate friends to the same

community and less intimate friends to different communities. It is

worth mentioning that we do not provide any information about

intimacy or mentor-mentee relationships during training, ensuring

that the graph remains unweighted and homogeneous.

Online experiments. For online experiments, we collect a week’s

data from an in-game event where players invite friends to form

teams based on system recommendations. The event unlocks special

tasks for team members, offering rewards. We provide an in-game

module to recommend an ordered list of friends to each player.

When player 𝑢 accesses the friend recommendation module in

GAME, 𝑢 sees six recommended friends each time. This generates

an exposure record in the recommendation logs, and 𝑢 can decide

to click on a friend or not. If 𝑢 is not interested in the current friend

list, 𝑢 can switch to the next recommended result. User 𝑢 can click

on only one friend per day. Once user 𝑢 clicks on a recommended

friend 𝑣 , it sends a team request and generates a click record in the

recommendation logs. The request requires approval; the clicked

friend 𝑣 can decide to accept or reject it. If𝑢 and 𝑣 successfully form
a team, the recommendation module generates a success record.

We evaluate DAG, CCGC, and the baseline in the friend recom-

mendation task using three metrics: (i) Click Rate, which is the

proportion of click friends among exposure records; (ii) Team Rate,

the proportion of success teams among click invitations; and (iii)

overall Success Rate, the proportion of success teams among expo-

sure records. The overall Success Rate is the product of the Click

Rate and the Team Rate after invitations are sent, i.e., Success Rate =
Click Rate × Team Rate. We compare the effects of three strategies:

• Baseline: Rank all friends based on their historical team count.

• DAG: First recall friends in the same community determined by

DAG, then rank by historical team formation count.

• CCGC: First recall friends in the same community determined

by CCGC, then rank by historical team formation count.

During the week-long event, we train community detection mod-

els and output their friend ranking results every day. Each DAU is

randomly assigned with an algorithm that generates the recommen-

dation results. We finally take the average metrics for one week to

ensure a fair comparison. The results, as shown in Table 5, reveal

that DAG outperforms the best SOTA method by 7.35%, 1.97%, and

5.24% for the overall success rate, click rate, and team formation suc-

cess rate, respectively. This superior online performance indicates
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Figure 8: The ground truth label distribution of detected

communities of DAG without group sparsity.

Figure 9: The ground truth label distribution of detected

communities of DAG with group sparsity.

that DAG can detect more meaningful user communities, i.e., users

within the same community have a higher tendency to interact.

Furthermore, it is observed that methods with higher EDGE

scores also lead to a higher interaction tendency among users. This

provides an intuition that the EDGE metric, introduced in this

paper, serves as a reliable indicator of the quality of community

detection in terms of promoting user interactions. As a result, the

EDGE metric not only evaluates the performance of community

detection methods but also captures the practical impact of the

detected communities on user interactions in real-world scenarios.

In summary, the results of the online experiment demonstrate

the effectiveness of the DAG method in detecting meaningful user

communities and promoting user interactions. The EDGE metric

serves as a robust evaluation measure, highlighting the advantages

of the DAG method over existing SOTA in real-world applications,

i.e., friend recommendation tasks in online games.

6 RELATEDWORK

This section briefly reviews related work in traditional community

detection methods, deep graph clustering, and masked attribute

reconstruction.

Traditional community detection methods. Traditional com-

munity detection algorithms are based on optimizing modularity

and other quality metrics, such as the greedy method [8, 18] and

Louvain [4]. Label Propagation Algorithm (LPA) based methods

[27, 42] propagates community labels through the graph. These

traditional methods initially assume a large maximum number of

communities and then merge small communities to optimize unsu-

pervised metrics, finding an adaptive community number 𝐾 [24].

However, these methods do not take into account the node at-

tributes, which are essential for attributed graphs [37], leading to

sub-optimal results and biased community structures. Probabilistic

graphical model-based methods, such as SBM [19] and MMSB [1]

also can not automatically determine the number of communities.

Deep graph clustering (DGC). Deep Graph Clustering (DGC)

[13, 16, 24, 34, 41] methods employ Graph Neural Networks (GNNs)

and unify the learning from both topological structure and node

semantic attributes by learning “clustering-friendly” node embed-

dings [30, 31, 38], leading to superior performance in community

detection tasks. Among these methods, DAEGC [53] uses an atten-

tion network [52] and a self-training graph clustering process that

jointly optimizes graph embeddings and clustering. CommDGI [61]

focuses on community detection with a mutual information mech-

anism and a clustering layer. AGCN [40] employs fusion modules

to fuse node attribute features and topological graph features dy-

namically. HSAN [35] is a contrastive DGC method that introduces

a comprehensive similarity measure criterion and a sample weigh-

ing strategy. CCGC [57] mines intrinsic supervision information

from high-confidence clustering results and constructs positive

and negative samples. However, they need prior knowledge about

community number 𝐾 , which precludes real-world application.

Masked attribute reconstruction. GraphMAEs [20, 21] employ

masked attribute reconstruction to learn node embeddings, achiev-

ing the SOTA in downstream node classification tasks.

In this work, we propose DAG to bridge the gap between tra-

ditional and deep learning-based community detection methods.

Our approach employs a differentiable Community Number Search

method, inspired by the traditional community detection methods,

to adaptively find the best 𝐾 during end-to-end training. We also

introduce a Masked Attribute Reconstruction module to learn node

representations. The proposed method effectively addresses the

challenges of 𝐾-free community detection in attributed graphs.

7 CONCLUSION

In this paper, we address 𝐾-free community detection in attributed

graphs by proposing a novel deep learning-based framework, Deep

Adaptive and Generative (DAG). DAG detects network communities

and searches for the community number 𝐾 end-to-end without

requiring prior 𝐾 . We also introduced the EDGE metric, which

is low-cost and robust to varying 𝐾 . Our experiments on public

datasets and a real-world social network demonstrated that DAG

consistently outperforms SOTA DGC competitors. In conclusion,

DAG offers a promising solution for 𝐾-free community detection,

with the EDGE metric serving as a reliable evaluation measure.
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Metric Modularity Semantic NMI EDGE K

Ground Truth 0.6401 11.9360 N/A N/A 7

K-Means 0.1933 20.9624 0.1479 0.5622 7
Greedy Q 0.8069 2.0212 0.4673 0.8864 106
Louvain 0.8135 2.1077 0.4468 0.8787 104
Hanp 0.6263 1.5682 0.4010 0.7508 553
LPA 0.6605 1.5985 0.4142 0.7871 481

DAEGC 0.7545±0.0011 9.5154±0.4359 0.4587±0.0285 0.8714±0.0120 10.0±1.0
CommDGI 0.6266±0.0300 8.9907±2.2156 0.3192±0.0193 0.8564±0.0234 9.4±2.7
AGCN 0.4338±0.0009 20.6211±0.0414 0.2172±0.0044 0.8297±0.0011 10.6±1.2
HSAN 0.6862±0.0547 14.0055±1.6272 0.4497±0.0605 0.8775±0.0013 4.8±1.1
CCGC 0.6738±0.0690 11.8811±1.1215 0.5051±0.0546 0.8887±0.0141 8.5±0.5

DAG 0.6999±0.0125 9.8684±0.7115 0.5171±0.0053 0.9004±0.0037 7.4±1.2

Table 6: Cora

Metric Modularity Semantic NMI EDGE K

Ground Truth 0.5470 11.6463 N/A N/A 6

K-Means 0.2970 19.3495 0.2221 0.6554 6
Greedy Q 0.8736 1.6109 0.3378 0.8395 488
Louvain 0.8919 1.6155 0.3243 0.8321 469
Hanp 0.6019 1.4200 0.3402 0.7393 508
LPA 0.7177 1.6151 0.3377 0.7530 959

DAEGC 0.7676±0.0052 6.8796±1.0481 0.2907±0.0070 0.8302±0.0036 11.5±0.5
CommDGI 0.7285±0.0041 6.5277±0.8006 0.2911±0.0041 0.8269±0.0018 11.1±1.9
AGCN 0.7624±0.0064 7.2502±0.8901 0.3160±0.0039 0.8316±0.0053 8.2±1.1
HSAN 0.7041±0.0029 12.1715±0.0757 0.3128±0.0045 0.8413±0.0018 5.1±0.3
CCGC 0.7753±0.0021 8.4104±0.0852 0.4090±0.0050 0.8447±0.0037 11.9±0.3

DAG 0.7435±0.0194 9.1846±0.0730 0.4118±0.0022 0.8677±0.0041 6.4±0.5

Table 7: CiteSeer

Metric Modularity Semantic NMI EDGE K

Ground Truth 0.4318 200.3377 N/A N/A 3

K-Means 0.3490 435.9176 0.3111 0.8538 3
Greedy Q 0.7278 9.8667 0.2217 0.8584 114
Louvain 0.7695 37.0698 0.2062 0.8359 39
Hanp 0.3035 6.0354 0.1770 0.7126 2037
LPA 0.6159 2.8074 0.1804 0.7329 1924

DAEGC 0.4989±0.0788 170.8658±46.8934 0.1784±0.0601 0.8422±0.0183 4.1±1.1
CommDGI 0.5562±0.0697 161.2432±39.1524 0.1892±0.0595 0.8469±0.0086 4.9±0.7
AGCN 0.6409±0.0385 193.8005±23.4665 0.2275±0.0337 0.8504±0.0134 3.8±0.7
HSAN OOM OOM OOM OOM OOM
CCGC 0.5796±0.0712 220.9804±58.2542 0.1922±0.0035 0.8520±0.0172 4.1±1.2

DAG 0.5939±0.0507 189.2995±37.5518 0.2828±0.0143 0.8938±0.0057 3.4±0.5

Table 8: PubMed

Metric Modularity Semantic NMI EDGE K

Ground Truth 0.5420 11.3686 N/A N/A 17

K-Means 0.2061 24.9865 0.4281 0.7793 17
Greedy Q 0.6387 2.2243 0.4358 0.8478 90
Louvain 0.7112 3.5303 0.4559 0.8583 64
Hanp 0.2702 2.8806 0.4995 0.7135 885
LPA 0.6438 1.9228 0.4858 0.8410 396

DAEGC 0.4884±0.0115 6.1599±0.3052 0.2200±0.0082 0.7235±0.0310 25.0±2.5
CommDGI 0.3957±0.0021 6.4033±0.4709 0.1839±0.0245 0.7373±0.0393 31.1±1.3
AGCN 0.4344±0.0021 8.7744±1.1372 0.1962±0.0187 0.7431±0.0105 22.6±1.7
HSAN 0.6259±0.0100 7.1363±0.6481 0.4131±0.0049 0.8375±0.0141 29.5±0.5
CCGC 0.6166±0.0114 12.6023±1.0895 0.4079±0.0236 0.8467±0.0101 21.8±3.6

DAG 0.5981±0.0103 14.0695±1.3280 0.4320±0.0074 0.8629±0.0087 15.7±0.9

Table 9: Wiki

Metric Modularity Semantic NMI EDGE K

Ground Truth 0.5417 10.4687 N/A N/A 70

K-Means 0.2061 24.9865 0.4281 0.7793 70
Greedy Q 0.7270 1.9472 0.4075 0.7290 499
Louvain 0.8126 2.3447 0.4792 0.7300 404
Hanp 0.6670 1.9020 0.5560 0.6670 2113
LPA 0.6466 1.8934 0.5664 0.6705 2328

DAEGC 0.6818±0.0401 5.8318±0.3930 0.4503±0.0358 0.6882±0.0207 60.1±0.3
CommDGI 0.6875±0.0173 6.5136±1.2660 0.4467±0.0099 0.6756±0.0108 60.3±0.5
AGCN 0.6878±0.0147 5.7370±0.3423 0.4721±0.0108 0.6955±0.0065 74.2±1.9
HSAN OOM OOM OOM OOM OOM
CCGC 0.7176±0.0122 6.5657±0.5816 0.4898±0.0035 0.7047±0.0072 73.6±5.4

DAG 0.6602±0.0101 7.5734±0.2918 0.4932±0.0037 0.7311±0.0076 68.4±1.4

Table 10: CoraFull
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A PROOF OF GROUP SPARSITY LEMMA

Here, we provide the proof of Lemma 1 (group sparsity).

Proof. First, in Eq. (11), we add theL2,1 norm constraint onW𝑇 ,

which makesW have column sparse characteristics. Because theL2

norm is used for each column of the W, then the L1 norm is used

for that vector. The L1 norm is often used to promote sparsity [15],

which means that many elements of a vector will be zero. However,

since the L2 norm is calculated first and then the L1 norm, this will

ultimately encourage W to be column-wise sparse. The L2,1 norm

constraint is also a common practice in many other studies [33, 63].

Secondly, the corresponding column of thematrix product ÂHCW

will also be a zero vector likeW. In Eq. (16), we represent the matrix

W ∈ R𝑑×𝑘max as a combination of column vectors and represent

any matrix S ∈ R𝑁×𝑑 as a combination of row vectors. Then the

result of matrix product SW ∈ R𝑁×𝑘max is as Eq. (17).

W =
[
𝑤1 𝑤2 · · · 𝑤𝑘max

]
, S =

[
𝑠𝑇1 𝑠𝑇2 · · · 𝑠𝑇𝑁

]𝑇
. (16)

SW =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑇1 𝑤1 𝑠𝑇1 𝑤2 · · · 𝑠𝑇1 𝑤𝑘max
𝑠𝑇2 𝑤1 𝑠𝑇2 𝑤2 · · · 𝑠𝑇2 𝑤𝑘max

.

.

.
.
.
.

. . .
.
.
.

𝑠𝑇𝑁𝑤1 𝑠𝑇𝑁𝑤2 · · · 𝑠𝑇𝑁𝑤𝑘max

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

If the 𝑗-th column vector𝑤 𝑗 ofW is a zero vector, then elements of

𝑗-th column of SW {𝑠𝑇𝑖 𝑤 𝑗 , 𝑖 ∈ [𝑁 ]} are all zeros. It can be clearly

seen from the vectorized multiplication process that no matter what

the value of the left matrix S is, SW maintains the same column

sparsity property asW. Taking S = ÂHC, we get sparsity of ÂHCW.

Thirdly, for the ReLU function 𝑓 (𝑥) = max(0, 𝑥), because 𝑓 (0) =
0, the value of the zero element will not be changed.

Following the above three steps, we can conclude that the C

matrix in Eq. (10) has the property of column sparseness. �

B REPRODUCIBILITY DETAILS

B.1 Experimental environments.

The proposed DAG and the competitors are implemented with

PyTorch [39] (2.0.1) and the DGL (1.1.1+cu117). Each experiment

is implemented on an NVIDIA Tesla T4 GPU with 16 GB GPU
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Figure 10: The Hyper-parameter search for the 𝛼 and 𝛽 in

Cora. The numbers are shown in the heatmap of the average

EDGE metric.

memory. We train all deep learning-based methods with ten runs

and report the average performance. We import modularity from
NetworkX (2.8.4), Calinski Harabasz score, and NMI from the scikit-

learn library (1.2.2).

B.2 Hyper-parameter settings.

All DAG models share the following hyperparameters: GAT layers

are used as both the attribute encoder and decoder. The activation

function is ReLU. The Adam optimizer is utilized for optimization

with a learning rate (lr) of 0.001. The input layer dropout rate

is set to 0.2. We set the 𝛼 to 1e-2 and 𝛽 to 5e-3 in Eq. (13) for

all datasets to ensure that our method can both efficiently and

effectively adaptive to the real community structures rather than

DGC methods’ inevitable fine-tuning the community number 𝐾 .

Dataset-Specific hyper-parameters. For Cora, we the length of

embedding (num_hidden) to 512, the number of GAT’s attention

heads (num_heads) to 4, the number of layers for both attribute

encoder and attribute decoder (num_layers) to 2, the weight decay

of Adam (weight decay) to 1e-3, and the maximum number of

epochs (max_epoch) to 1500. For Citeseer, we set the num_hidden

to 256, num_heads to 2, num_layers to 2, weight decay to 1e-4,

and the max_epoch to 500. For Pubmed, we set the num_hidden

to 1024, num_heads to 4, num_layers to 2, weight decay to 1e-2,

and the max_epoch to 1000. ForWiki, we set the num_hidden to

512, num_heads to 2, num_layers to 2, weight decay to 1e-5, and

the max_epoch to 1500. For CoraFull, we the num_hidden to 512,

num_heads to 4, num_layers to 2, weight decay to 1e-5, and the

max_epoch to 1000. The hyper-parameters of GAME are the same

as CoraFull.

C IMPACT OF HYPER-PARAMETER.

We adopt a two-step strategy for searching the hyperparameters 𝛼
and 𝛽 in Eq. (13). Firstly, we conduct a coarse search for 𝛼 and 𝛽 in

a log scale (e.g., [1, 0.1, 0.01, 0.001, 0.0001]). Secondly, we adjust the

𝛽 using a combination of log scale and grid search strategies. For

instance, since the Cora dataset’s optimal 𝛽 is around 1e-3 to 1e-2,

we search values among 2e-3, 3e-3, and up to 9e-3. Finally, we fix the

𝛼 and 𝛽 for all compared datasets, including the GAME graph. Note

that as mentioned in Sec 4, we address the community detection in

an unsupervised manner and search the 𝛼 and 𝛽 with the highest

product of two unsupervised metrics, i.e., modularity and Calinski

Harabasz score. The hyperparameter search results for the 𝛼 and

𝛽 in the Cora dataset are visualized in Fig. 10 as a heatmap. Based

on the heatmap in Fig. 10, we can analyze the impact of varying

the hyperparameters 𝛼 and 𝛽 on the performance of our method,

as measured by the EDGE metric.

It can be observed that the best performance is achieved with

a value around 1e-3. This suggests that balancing the two hyper-

parameters yields the most effective community detection results.

We can also notice that the performance is relatively stable across

different values of 𝛼 and 𝛽 in longitude scales. Specifically, since the

best SOTA method’s EDGE metric is 0.8887, there are 60% of cases

in the longitude scales outperform the SOTA methods, indi-

cating that our method is robust to hyper-parameter variations. In

conclusion, the hyper-parameter search results for the Cora dataset

demonstrate that our method achieves the best performance when
a balance between 𝛼 and 𝛽 is maintained. The robustness of our

method to hyperparameter variations further validates its effective-

ness in community detection tasks.

D DETAILED RESULTS ON PUBLIC DATASETS

We provide detailed tables of experimental results for each dataset

from Tab.6 to Tab. 10, including modularity, Semantic (Calinski

Harabasz score) as unsupervised metrics, as well as NMI and EDGE

metrics as supervised metrics. For deep learning-based methods,

including SOTA DGC methods and DAG, we provide the mean

and standard deviation (i.e., mean ± std) of 10 runs. For traditional

methods, we report single-run results. The 𝐾-means in the tables

already use ground truth as prior knowledge. Surprisingly, deep

learning-based methods can find more “reasonable” communities

than ground truth labels. For example, as shown in Tab. 9, the com-

munities detected by the CCGC and DAG have both higher mod-

ularity (tighter internal connections) and higher semantic scores

(more attribute similarity) than the ground truth in theWiki dataset.

This shows that in real-life scenarios, there are some hidden factors

in the reasons for the generation of communities, which reveals

further research directions in community detection algorithms.


