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ABSTRACT

Predicting click-through rate (CTR) is a critical task in recommen-

dation systems, where the models are optimized with pointwise

loss to infer the probability of items being clicked. In industrial

practice, applications also require ranking items based on these

probabilities. Existing solutions primarily combine the ranking-

based loss, i.e., pairwise and listwise loss, with CTR prediction.

However, they can hardly calibrate or generalize well in CTR sce-

narios where the clicks reflect the binary preference. This is because

the binary click feedback leads to a large number of ties, which ren-

ders high data sparsity. In this paper, we propose an effective data

augmentation strategy, named Beyond Binary Preference (BBP)

training framework, to address this problem. Our key idea is to

break the ties by leveraging Bayesian approaches, where the beta

distribution models click behavior as probability distributions in

the training data that naturally break ties. Therefore, we can obtain

an auxiliary training label that generates more comparable pairs

and improves the ranking performance. Besides, BBP formulates

ranking and calibration as a multi-task framework to optimize both

objectives simultaneously. Through extensive offline experiments

and online tests on various datasets, we demonstrate that BBP sig-

nificantly outperforms state-of-the-art methods in both ranking

and calibration capabilities, showcasing its effectiveness in address-

ing the limitations of existing methods. Our code is available at

https://github.com/AlvinIsonomia/BBP.
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1 INTRODUCTION

Click-through rate (CTR) is the probability of a user clicking on a

recommended item. CTR prediction, which attempts to estimate

the CTR given a user-item impression accurately, is critical for

achieving precise recommendations and increasing revenue for

enterprises [34, 59]. Consequently, it plays a significant role in

recommendation systems, such as online advertising and in-game

player friend recommendations [18, 31, 32, 52, 55, 56, 61].

In industrial applications, there are two use cases for CTR pre-

diction models: 1) forms an advertisement ranked list according

to predicted CTR, and 2) calibrates click probabilities for down-

streaming recommendation tasks. For example, in sponsored search,

the final presentation to users is a ranked list of ads [27], and the

calibrated scores produced is a required input for computing the

cost-per-click (CPC) after ad impressions, which decides the pre-

sentation of an ad based on a threshold [51]. Therefore, there is a

significant demand for a CTR prediction model that can align with

the actual click-through rate (i.e., calibration) and lead to a correct

ranking [43]. Existing methods combine pairwise and listwise train-

ing in Learn-to-Rank (LTR) [7, 33] with CTR predictions. Recent

works focus on enhancing ranking performance in CTR prediction

with pairwise and listwise methods. For example, Bayesian Person-

alized Ranking [40] and Smooth-AUC [47] leverage the pairwise

training. Regression Compatible Ranking [3], Scale Calibration [51],

and Joint optimization of Ranking and Calibration [44] further in-

troduce listwise loss to enhance the ranking performance.

Despite their reported success, they may fall into sub-optimal

due to the binary feedback. The key issue ignored is that the binary

feedback leads to a large number of ties, which consequently

causes insufficient feasible training pairs. Since the LTR methods
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Figure 1: Visualization of the ratio of feasible preference pair

to all possible pairs. Since the preference feedback in the

CTR scenario is binary, the ratio of feasible pairs is strongly

affected by the positive item ratio and can be very sparse.

optimize models based on preference pairs (e.g., two items with dif-

ferent preferences for the same user), the positive ratio will strongly

affect the number of feasible training pairs. We present a toy ex-

ample in Figure 1 with 𝑁 items to better illustrate the situation.

Under the best condition, only half of the
(𝑁
2

)
possible pairs can be

constructed as the preference pairs, with the positive-item ratio be-

ing 50%. Furthermore, the positive feedback (user clicks) in the real

world is highly sparse. For example, if only 10% are positive items,

there will be only 18% feasible pairs. Therefore, binary preference

restricts the effectiveness of existing methods for CTR predictions.

To address this issue, we propose the Beyond Binary Preference

(BBP) training framework. Our key idea is to augment training

labels with continuous Bayesian probability to break the ties. We

treat the historical records as an observation sequence of Bernoulli

trails and calculate the estimated probability score for all users and

items through Bayesian smoothing [42]. Afterward, we combine

the probability score and binary feedback to break the ties and

optimize the model. Since the prior ranking score is continuous

rather than binary, more preference pairs are constructed, which

addresses the data sparsity caused by binary feedback. For joint

optimization of ranking and calibration. In particular, we design

a multi-task learning framework with a global context ranking

loss that reuses the arbitrary user-item pairs in the same batch to

augment more preference pairs. Extensive offline experiments on

three public benchmark datasets and online A/B testing on two

real-world scenarios demonstrate that our BBP framework outper-

forms the state-of-the-art (SOTA) competitors in both ranking and

calibration capabilities.

Contributions. The contributions of our paper include:

• To the best of our knowledge, we are the first to identify and ad-

dress the problem of insufficient samples for ranking loss caused

by binary preference feedback in CTR prediction.

• We propose the Beyond Binary Preference (BBP), which models

and estimates a personalized beta distribution to each user and

item in the training set with Bayesian methods. BBP further

generates a continuously comparable ranking score label to break

the ties caused by the binary preference feedback.

• We demonstrate the effectiveness of the BBP framework through

extensive offline experiments and online A/B tests. BBP outper-

forms all SOTA competitors significantly (𝑝-value < 0.05) in both

calibration and ranking metrics on three public benchmarks. The

deployed BBP based recommendation modules increase at least

10.28% more friends in two Tencent online games than competi-

tors relatively.

2 RELATEDWORK

2.1 CTR Prediction

Pointwise training and calibration. CTR prediction usually op-

timizes the models with the Binary Cross Entropy (BCE) loss func-

tion; therefore its prediction scores strictly calibrate click proba-

bilities that an item on a website (such as an advertisement) will

be clicked [13, 38]. Existing methods study various model archi-

tectures for more accurate CTR prediction, including statistical

methods [12, 48], logistic regression [36, 41], factorization machines

[23, 39], and DNNs-based CTR models [8, 14, 15, 20, 29, 59]. How-

ever, pointwise training suffers from limited ranking performance,

resulting in sub-optimal recommendation outcomes. It is worth

mentioning that the calibration ability of CTR models can be con-

fused with a different research topic called “uncertainty calibra-

tion” [9, 25]. In uncertainty calibration, the focus is on confidence

estimates rather than calibrating the model’s output with click

probabilities.

Ranking-based CTR prediction. In industrial applications, the

ranking ability of CTR models is also crucial [13, 33], as we need

to provide an advertisement ranked list for down-streaming rec-

ommendation tasks. Recent work has demonstrated that the CTR

models trained with pointwise loss suffer from limited ranking

performance [3, 44, 47, 51] due to a lack of preference ordering

information during the training. To address this issue, researchers

have proposed various pairwise and listwise approaches, which

differ from pointwise methods in that they directly optimize rank-

ing objectives. Pairwise methods compare pairs of items, while

listwise methods consider the entire impression list of items for the

user. These approaches aim to directly optimize ranking metrics

such as AUC (Area Under the Curve) [11] and NDCG (Normalized

Discounted Cumulative Gain) [21]. Bayesian Personalized Ranking

(BPR) [40] optimizes the order of pairs of positive and negative

items. Smooth-AUC (SAUC) loss introduces a smooth approxima-

tion of AUC using a sigmoid function. Though advanced ranking

losses may produce significantly better ranking performance, the

training instability issues prohibit their usage in the CTR predic-

tions, as the scores may keep drifting during model training [6, 51].

This will cause numerical failures in real-world large scale learn-

ing systems, especially under the continual learning paradigm. For

example, one has to modify the threshold in CPC to keep up with

the temporal dynamics of systems updates.

Joint optimization of ranking and calibration. Training CTR

models that can rank and calibrate well has been extensively stud-

ied in the last decades [3, 44, 51]. Regression Compatible Ranking

(RCR) [3] achieves a trade-off between ranking (ListNet [50]) and

calibrated regression (BCE) rather than post-processing methods
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[37]. Scale Calibration (SC) [51] performs scale calibration of rank-

ing models by introducing a trainable parameter in the softmax loss,

addressing training instability issues. Joint optimization of Ranking

and Calibration (JRC) [44] simultaneously optimizes ranking and

calibration abilities by contrasting the logit value for samples with

different labels and constraining the predicted probability as the

logit subtraction. However, they overlooked the data sparsity due

to the ubiquitous ties (i.e., pairs with the same label will not be

used for training). In this paper, we propose the Beyond Binary

Preference (BBP) training framework to address the limitations of

ranking-based CTR training further.

2.2 Learning-to-rank with Ties

Learning-to-rank with ties has been a focus of research as it ad-

dresses the issue of instances having nearly identical degrees of

relevance, referred to as ‘ties’ [5]. There are two lines of research

to make full use of ties. One option is to force the model to output

similar predictions for items with the same label. Examples of this

approach include designing an extra loss function for the same

relevance [60], re-ranking items with a given pairwise relevance

threshold [57], and using a hashing function for tie-aware ranking

[17], among others. The other option, in contrast, is to break the

ties during training by ensuring that no equal relevance exists. For

instance, uRank [62] overcomes the tie issue of existing Plackett-

Luce models by maximizing the likelihood of selecting documents

with high ratings over documents with low ratings. Savant [26]

randomly assigns the same relevance to different labels using dif-

ferent random seeds. However, existing methods fall short in CTR

prediction tasks when the relevance is binary. As shown in Figure 1,

the number of ties is almost always greater than the number of

comparable preference pairs. The high data sparsity greatly restricts

the effectiveness of existing methods. Our BBP method leverages

Bayesian probabilities to transform binary labels into continuous

scores, effectively breaking the ties in CTR prediction.

3 PRELIMINARIES

3.1 CTR Prediction

Let D be an impression dataset. In CTR prediction, typically, each

sample in D consists of examples represented as tuples (𝑢, 𝑣,𝑦𝑢,𝑣),
where 𝑢 ∈ U be a user ID, 𝑣 ∈ V be an item ID, and 𝑦𝑢,𝑣 ∈ {0, 1}
is the binary preference label, i.e., user clicks. The CTR prediction

model 𝑓 aims to assign a score 𝑠 to a user item pair (𝑢, 𝑣) given
its feature vector x𝑢,𝑣 , i.e., 𝑠𝑢,𝑣 = 𝑓 (x𝑢,𝑣). The output 𝑠 indicates
the likelihood that user 𝑢 will click item 𝑣 . The model 𝑓 is usually

optimized from the following two aspects.

Calibration. Traditionally, the calibrated CTRmodel is learned and

evaluated with binary preference in the pointwise setting [3, 44].

The loss function in learning is defined on a single data point x𝑢,𝑣

of each user-item pair in dataset D. Formally, the empirical risk

function of calibration Lcal is defined as:

Lcal =
∑

(𝑢,𝑣,𝑦𝑢,𝑣 ) ∈D

ℓcal
(
𝜎 (𝑠𝑢,𝑣), 𝑦𝑢,𝑣

)
, (1)

where 𝑠𝑢,𝑣 = 𝑓 (x𝑢,𝑣), 𝜎 is the sigmoid function, 𝑦𝑢,𝑣 is the bi-

nary preference feedback for user item pair (𝑢, 𝑣), ℓcal (𝑠
𝑢,𝑣, 𝑦𝑢,𝑣)

denotes a pointwise loss function based on a binary classification

Figure 2: The graphical model of the CTR, where shaded

variables (impression 𝐼 and click 𝐶) are observable.

measure [16]. In this way, the prediction of the model 𝑓 indicates

click probability.

Ranking. As discussed above, industrial applications also leverage

prediction score 𝑓 (𝑢, 𝑣) to rank the candidate items. The CTRmodel

𝑓 is still defined on a user-item pair (𝑢, 𝑣), and the loss function

is defined on two data points x𝑢,𝑣 and x
𝑢,𝑣′ that can formulate

preference judgement pairs [58].

Definition 1 (preference judgement pair). Formally, given

two items 𝑣 and 𝑣 ′ to the same user 𝑢, a preference judgement pair

is defined as: (𝑢, 𝑣) � (𝑢, 𝑣 ′), where 𝑦𝑢,𝑣 is greater than 𝑦𝑣,𝑣
′
. In the

context of binary preference, it means 𝑣 is the clicked item, and 𝑣 ′ is
unclicked by the user 𝑢.

Therefore, the empirical risk function Lrank is defined as:

Lrank =
∑

〈 (𝑢,𝑣)� (𝑢,𝑣′ ) 〉

ℓrank

(
𝑠𝑢,𝑣, 𝑦𝑢,𝑣, 𝑠𝑢,𝑣

′

, 𝑦𝑢,𝑣
′
)
, (2)

where ℓrank

(
𝑠𝑢,𝑣, 𝑦𝑢,𝑣, 𝑠𝑢,𝑣

′
, 𝑦𝑢,𝑣

′
)
denotes a pairwise loss function.

As the labels are binary, i.e., click or not click, there will be a large

number of ties, as mentioned in Section 1. As ties cannot perform

preference judgments, existing methods usually drop them during

the training, which may lead to sub-optimal.

In this work, we address this limitation by bringing an augmented

label to break the ties. Specifically, we model the click behaviors

and use the overall historical CTR as prior probabilities. With more

impressions observed in the chronic sequence, we gradually update

user-item pair posterior probabilities with Bayesian Smoothing as

the augmented label.

3.2 Click Behavior Modeling

Our click behavior model is shown in Figure 2: when a user receives

an impression of an item, the user decides to click or not according

to his/her interest. Considering the binary nature of the click be-

havior, we treat each user-item impression as a Bernoulli trial with

an underlying probability 𝑟 , i.e.,𝐶 ∼ Binomial(𝐼 , 𝑟 ). In addition, the

underlying probability 𝑟 that a user clicks an item follows a beta

distribution, i.e., 𝑟 ∼ Beta(𝛼, 𝛽).
We choose the beta distribution because it can represent a variety

of distributions, which has been widely applied to many different

settings [22, 24]. Despite the wide applicability, the beta distribution

only has two parameters: 𝛼 > 0 and 𝛽 > 0. Its probability density
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function (PDF) is defined as:

PDF(𝑥 ;𝛼, 𝛽) =
𝑥𝛼−1 (1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
, (3)

where the normalization factor, 𝐵(𝛼, 𝛽) =
∫ 1

0
PDF(𝑡 ;𝛼, 𝛽)𝑑𝑡 , is the

complete regularized beta function that ensures that the PDF inte-

grates into one. It models the likelihood function of the parameter

underlying a Bernoulli trail, where 𝛼 − 1 is the number of successes

(click) and 𝛽 − 1 is the number of failures. For an intuitive under-

standing, in the CTR predictions, it means 𝛼 + 𝛽 − 2 impressions for

a user-item pair where 𝛼 − 1 clicks and 𝛽 − 1 unclicks are observed.

If the click probability of the user-item pair is 𝑟 , the probability of

the above observations would be proportional to 𝑟𝛼−1 (1 − 𝑟 )𝛽−1.
The mean of the distribution 𝜇 is determined by the ratio 𝛼 and the

sum 𝛼 + 𝛽 , where an 𝛼 higher than the 𝛽 means that the mean is

closer to 1 than to 0, and vice versa. We further have:

E[𝑟 ] = 𝜇 =
𝛼

𝛼 + 𝛽
, (4)

where E[𝑟 ] reflects the expectation of the click probability for the

user-item pair. The conjugacy between Binomial and Beta enables

us to estimate the users’ preference at each time period given the

historical observations with Bayesian approaches. The distribu-

tion of the click observations related to the underlying preference

distribution can then be expressed as smoothing the personalized

distribution from the empirical prior distribution, which will be de-

scribed in Eq. (8) in detail. In the following section, we will leverage

the personalized distributions as the augment labels to break the

ties and address the data sparsity caused by the binary preference.

4 METHODOLOGY

Our goal is to estimate a continuous augment ranking score to break

the ubiquitous binary ties. We first leverage Bayesian smoothing

to estimate the Bayesian probabilities according to the historical

observations in Sec. 4.1. Furthermore, we combine the estimated

probabilities with binary labels as augmented preference scores,

which enables us to extend the preference judgment pairs defini-

tion in Sec. 4.2. Since the augmented score is continuous, it breaks

the ties from binary labels. Finally, we jointly optimize the rank-

ing and calibration in a multitask learning framework in Sec. 4.3.

Specifically, we design a global context ranking loss that compares

arbitrary user-item pairs instead of items for the same user, which

improves the model performance further.

4.1 Learning Beta Distribution for Click
Inference

With the behavior modeling in Sec. 3.2, we aim to estimate the beta

distribution for the user behavior, which is used as the augment

label with Bayesian approaches. The main idea is to arrange the

historical data chronologically and gradually update the personal-

ized beta distribution for each user (item) with Bayesian smoothing

from an initial distribution.

Data formulation. As the user’s feedback is gradually collected

from the CTR systems’ online serving process, it naturally forms

a Bernoulli trial sequence. Let V𝑢 = {𝑣 | (𝑢, 𝑣,𝑦) ∈ D} be the in-

teracted item set of user 𝑢 induced by D. Similarly, we can also

denote U𝑣 = {𝑢 | (𝑢, 𝑣,𝑦) ∈ D} as the interacted user set for item

𝑣 . Admittedly, in click behavior modeling, the click rate 𝑟 should
depend on the specific user-item pair. Unfortunately, historical data

is often very sparse (i.e., a user 𝑢 always has only been exposed

to a few items in the entire item setV). This makes it difficult to

estimate the beta distribution for each user-item pair. Therefore, we

estimate the click probability distribution for each user 𝑢 and each

item 𝑣 independently. Intuitively, this can be understood as model-

ing whether a user is more willing to click on items and whether

an item is more attractive for users to click on.

Given the collected dataset D, we first reorganize it chronically

based on 𝐾 periods of time, i.e.,D = {D1,D2, · · · ,D𝐾 }, where the

D𝑘 is the sub-dataset of the 𝑘-th period. The period here can be a

period of time (such as a day or a week), or in extreme cases, it can

be each timestamp. Without loss of generalization, the methods

for modeling users and items are the same. Therefore, we only

introduce the click probability distribution estimation of the item

in detail here. Let 𝐼 𝑣 =
(
𝐼 𝑣1 , 𝐼

𝑣
2 , · · · , 𝐼

𝑣
𝐾

)
be a sequence of impression

sequence for item 𝑣 with length 𝐾 , and 𝐶𝑣 =
(
𝐶𝑣
1 ,𝐶

𝑣
2 , · · · ,𝐶

𝑣
𝐾

)
be a sequence of clicks for item 𝑣 . Here 𝐼 𝑣

𝑘
= | (𝑢, 𝑣,𝑦𝑢,𝑣) |, where

(𝑢, 𝑣,𝑦𝑢,𝑣) ∈ D𝑘 , and 𝐶𝑣
𝑘

=
∑

(𝑢,𝑣,𝑦𝑢,𝑣 ) ∈D𝑘
𝑦𝑢,𝑣 . Next, we detail

how to leverage the arranged sequence to update the personalized

beta distribution for item 𝑣 .

Initializing the beta distribution. In real applications, to obtain

a more accurate estimation, especially for the users/items with rare

historical impression records, we can initialize the beta distribution

by learning from all the historical data.

Let Beta(𝛼0, 𝛽0) denote the initialized beta distribution as the

prior distribution for all items. The 𝛼0 is the average click number

among all items, and 𝛽0 is the average unclicked impression number.

Then the initialized distribution is given by:

𝛼0 =
1

|V|

∑
𝑣∈V

∑
𝑢∈U𝑣

𝑦𝑢,𝑣, 𝛽0 =
1

|V|

∑
𝑣∈V

∑
𝑢∈U𝑣

(1 − 𝑦𝑢,𝑣), (5)

where |V| the number of item and U𝑣 = {𝑢 | (𝑢, 𝑣,𝑦) ∈ D} is the

interacted user set for item 𝑣 . Note that it’s better to use the datasets
from D0 where the 0-th period means that all available historical

impressions before D1. However, if the D0 is unavailable, we can

simply leverage the statistics from current D.

Updating the personalized distribution. Given the beta distri-

bution Beta(𝛼𝑣, 𝛽𝑣), we can derive the likelihood that we observe

click sequence 𝐶𝑣
𝑘
given the impression sequence for 𝐼 𝑣

𝑘
as:

𝑃 (𝐶𝑣 | 𝐼 𝑣 ;𝛼𝑣, 𝛽𝑣 ) =
𝐾∏
𝑘=1

Γ (𝛼𝑣 + 𝛽𝑣 )

Γ
(
𝐼 𝑣
𝑘
+ 𝛼𝑣 + 𝛽𝑣

) Γ
(
𝛼𝑣 +𝐶𝑣

𝑘

)
Γ (𝛼𝑣 )

Γ
(
𝐼 𝑣𝑘 − 𝐶𝑣

𝑘 + 𝛽𝑣
)

Γ (𝛽𝑣 )
,

(6)

where the Γ(·) is the gamma function [2]. To investigate what is the

optimal 𝛼𝑣, 𝛽𝑣 , we take the partial derivatives of the log-likelihood
function with respect to 𝛼𝑣 and 𝛽𝑣 as:
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𝑑 log 𝑃 (𝐶𝑣 | 𝐼 𝑣 ;𝛼𝑣, 𝛽𝑣)

𝑑𝛼𝑣
=

𝐾∑
𝑘=1

[𝜓 (𝛼𝑣 + 𝛽𝑣) −𝜓
(
𝐼 𝑣𝑘 + 𝛼𝑣 + 𝛽𝑣

)

+𝜓
(
𝛼𝑣 +𝐶𝑣

𝑘

)
−𝜓 (𝛼𝑣)],

𝑑 log 𝑃 (𝐶𝑣 | 𝐼 𝑣 ;𝛼𝑣, 𝛽𝑣)

𝑑𝛽𝑣
=

𝐾∑
𝑘=1

[𝜓 (𝛼𝑣 + 𝛽𝑣) −𝜓
(
𝐼 𝑣𝑘 + 𝛼𝑣 + 𝛽𝑣

)

+𝜓
(
𝐼 𝑣𝑘 −𝐶𝑣

𝑘 + 𝛽𝑣
)
−𝜓 (𝛽𝑣)],

(7)

where 𝜓 (𝑥) = Γ′ (𝑥 )
Γ (𝑥 ) is the Psi (digamma) function which can be

calculated quickly with Bernardo’s algorithm [4].

Using the fixed-point iteration method [49], we can derive the

update formulas for 𝛼𝑣 and 𝛽𝑣 for 𝑁 iterations:

𝛼𝑣𝑛 = 𝛼𝑣𝑛−1

∑𝐾
𝑘=1

[
𝜓
(
𝛼𝑣𝑛−1 +𝐶

𝑣
𝑘

)
−𝜓 (𝛼𝑣𝑛−1)

]
∑𝐾
𝑘=1

[
−𝜓 (𝛼𝑣𝑛−1 + 𝛽𝑣𝑛−1) +𝜓

(
𝐼 𝑣
𝑘
+ 𝛼𝑣𝑛−1 + 𝛽𝑣𝑛−1

)] ,

𝛽𝑣𝑛 = 𝛽𝑣𝑛−1

∑𝐾
𝑘=1

[
𝜓
(
𝐼 𝑣
𝑘
−𝐶𝑣

𝑘
+ 𝛽𝑣𝑛−1

)
−𝜓 (𝛽𝑣𝑛−1)

]
∑𝐾
𝑘=1

[
−𝜓 (𝛼𝑣𝑛−1 + 𝛽𝑣𝑛−1) +𝜓

(
𝐼 𝑣
𝑘
+ 𝛼𝑣𝑛−1 + 𝛽𝑣𝑛−1

)] ,
(8)

where the 𝑛 ∈ [1, 2, · · · , 𝑁 ] is the iteration index. The iteration

process continues until convergence or the maximum number of

iterations is reached. We treat the output distribution Beta(𝛼𝑣, 𝛽𝑣)
as the final personalized distribution for item 𝑣 ’s click probability.

Getting personalized posterior probabilities. For the posterior

probability estimation, under the prior personalized probability

Beta(𝛼𝑣, 𝛽𝑣), as in the last period we observe 𝐶𝑣
𝑘
clicks after 𝐼 𝑣

𝑘
impressions, then the posterior distribution is Beta(𝛼𝑣 +𝐶𝑣

𝑘
, 𝛽𝑣 +

𝐼 𝑣
𝑘
−𝐶𝑣

𝑘
). According to the expectation in Eq. (4), we can easily obtain

𝑃𝑣
clicked

=
𝛼𝑣+𝐶𝑣

𝑘
𝐼 𝑣
𝑘
+𝛼𝑣+𝛽𝑣 . Similarly, we can compute the beta distribution

for user 𝑢 clicks and the corresponding probability 𝑃𝑢
click

.

We can use the estimated posterior probability as augmented

labels to break ties in binary labels. This approach provides a con-

tinuous score that can effectively break ties in binary click-through

rate prediction tasks, enhancing the model’s ranking performance

while maintaining its calibrated outputs.

4.2 Constructing Extended Preference Pairs

Based on the estimated posterior probabilities, we now can extend

the Definition 1 of preference pair even when (𝑣, 𝑣 ′) has the same

binary preferences. Firstly, we utilize an aggregation function to

readout from the estimated probability of user clicks 𝑃𝑢
click

and the

probability of the item being clicked 𝑃𝑣
clicked

, and finally obtain a

scalar as the final posterior probability as:

𝑃agg = agg(𝑃𝑢click, 𝑃
𝑣
clicked), (9)

where the aggregation function agg(·) could be any function such

as the maximum or the average function.

The final augmented preference score 𝑧 is then obtained by

summing the pooled probability and the original click label:

𝑧 = 𝑃agg + 𝑦. (10)

We can clearly see that even if the pair (𝑢, 𝑣), (𝑢, 𝑣 ′) has the same

binary preferences, it is less likely that they also have the same

posterior probabilities at the same time. In this way, we are able to

extend the definition of the preference pair in Section 3.1 as follows:

Definition 2 (Extended preference judgement pair). An

extended preference judgement pair is define as: (𝑢, 𝑣)� (𝑢, 𝑣 ′), where

𝑧𝑢,𝑣 is greater than 𝑧𝑢,𝑣
′
.

In summary, our proposed BBP ranking framework is able to

construct pairs even with the same preferences (i.e., 1 vs. 1 or 0

vs. 0). Although our model does not explicitly output a ranking

score, this approach is consistent with our goal of having user items

with higher ranking scores (i.e., clicked or with higher posterior

probability) associated with a higher predicted output probability.

4.3 Beyond Binary Preference Ranking

This ranking-based approach enables us to go one step further and

perform global context ranking. In other words, when building the

dataset, we do not necessarily have to consider the same context

(such as the clicked item and the unclicked item of the same user).

Instead, we can rank the correlations between any user and item

pairs. This further improves the number of training samples and the

training flexibility of our model, as we no longer need to construct

a loss function based on the same user. By incorporating global

context ranking, our BBP framework can better generalize and

adapt to various ranking scenarios, enhancing its performance in

real-world CTR prediction tasks.

During training, we construct a global context ranking loss.

Specifically, in each batch of a training set with a size of 𝐵, we
compute the difference between their scores and obtain the label of

the partial order relationship:

Δ𝑧 (𝑢,𝑣)�(𝑢
′,𝑣′ ) = 𝑧 (𝑢,𝑣) − 𝑧 (𝑢

′,𝑣′ ) , (11)

where (𝑢, 𝑣) and (𝑢′, 𝑣 ′) are two user item pairs and 𝑧 (𝑢,𝑣) and

𝑧 (𝑢
′,𝑣′ ) are their corresponding scores.

We then define an indicator function I(·) that returns one if the

difference is greater than 0, and 0 otherwise:

I(Δ𝑧 (𝑢,𝑣)�(𝑢
′,𝑣′ ) ) =

{
1, if Δ𝑧 (𝑢,𝑣)�(𝑢

′,𝑣′ ) > 0

0, otherwise
. (12)

We can also compute the difference of the corresponding model

output:

Δ𝑠 (𝑢,𝑣)�(𝑢
′,𝑣′ ) = 𝜎 (𝑓 (x𝑢,𝑣) − 𝑓 (x𝑢

′,𝑣′ )) (13)

After that, we check whether the partial order relationship (differ-

ence) between the model’s output 𝑓 (x𝑢,𝑣) is consistent with the

partial order relationship label. The calculation is given by:

Lrank = −
1

𝑀

𝑀∑
(𝑢,𝑣) � (𝑢′,𝑣′ )

log
(
𝜎
(
Δ𝑠 (𝑢,𝑣)�(𝑢

′,𝑣′ ) · I(Δ𝑧 (𝑢,𝑣)�(𝑢
′,𝑣′ ) )

))
,

(14)

where𝑀 =
(𝐵
2

)
is the size of preference pairs, 𝐵 is the batch size, and

𝜎 (·) is the sigmoid function. We compare all possible
(𝐵
2

)
different

user item pairs’ partial order (𝑢, 𝑣) � (𝑢′, 𝑣 ′) in this batch.

Following the SOTA methods [3, 44], we optimize the binary

cross entropy loss per batch as the calibration loss Lcal:

Lcal = −
1

𝐵

∑
(𝑢,𝑣,𝑦)

𝑦𝑢,𝑣 log𝜎 (𝑠)𝑢,𝑣 + (1−𝑦𝑢,𝑣) log(1−𝜎 (𝑠)𝑢,𝑣). (15)
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As a multi-task framework, the final loss is the weighted sum of

the calibration loss and the ranking loss:

Ltotal = 𝜆L𝐵𝐶𝐸 + (1 − 𝜆)Lrank, (16)

where 𝜆 ∈ [0, 1] is the weighting factor hyper-parameter. Empiri-

cally, we find that 𝜆 is a stable hyper-parameter that is free from

time-consuming fine-tuning.We provide a TensorFlow-style pseudo

code of the Beyond Binary Preference (BBP) training paradigm in

Algorithm 1.

To better build the intuition of our BBP and facilitate further

application and research, we provide the source code of BBP on

https://github.com/AlvinIsonomia/BBP.

4.4 Computational Complexity Analysis

We provide in detail computational complexity analysis in both

theory and deployed systems running time.

Firstly, let us have 𝑁 records in our dataset. As shown in Sec. 4.1,

the pre-computing has three steps. The first step is averaging the

whole dataset, so the complexity is 𝑂 (𝑁 ). The second step uses

the fixed-point iteration method to update the personalized beta

distribution. Note that we set a constant maximum iteration step,

and the total length is also 𝑁 for the impression (𝐼 ) and click (𝐶)
sequence, respectively. So, the complexity is also 𝑂 (𝑁 ). The third

step estimates the posterior probabilities for all users and items.

Note that the complexity for each user or item is 𝑂 (1), and the

number of users and items is always less than the number of total

records N (because records come from the combination of users and

items). So, in summary, the computational complexity for our pre-

computing is 𝑂 (𝑁 ), which means our method is linearly scalable

with the amount of data.

In practice, we record the time used in our large-scale industrial

datasets of Tencent games. In our deployed instance, it takes around

31 minutes to pre-compute 38 million interaction records, which is

fast enough to pre-compute the beta distributions for millions of

records daily. Moreover, given that the training time cost is around

6 7 hours, the pre-computing takes only less than 8% of the total

time (i.e., pre-computing + training).

5 EXPERIMENTS ON PUBLIC DATASETS

5.1 Experimental Settings

The experiments conducted in this study on public datasets are

designed to address the following three research questions:

RQ1: Does the BBP framework outperform the existing state-of-

the-art (SOTA) models in CTR prediction tasks?

RQ2: Does BBP’s breaking ties in CTR improve the performance?

RQ3:Does the global contexts further enhance BBP’s performance?

Experimental environments. We conduct the experiments on a

machine equipped with a Tesla V100 GPUwith 16 GB GPUmemory,

22 CPU cores, and 90 GB shared CPU memory with TensorFlow [1].

Datasets. We use three subsets of the Amazon datasets [35]: Cloth-

ing, Music, and Electronics. Following the processing in [28], we

treated the samples with ratings greater than four as positive and

negative. Meanwhile, we only use samples where the items have a

picture and more than five comments. The features we used include

image features (image embeddings extracted by the pre-trained

VGG-16 [45] feature extractor), text features (review embeddings

extracted by the pre-trained BERT[10]), user profile (average vector

of user historical review embeddings), and item attribute (average

vector of item history review embeddings).

To ensure a robust evaluation of our model, we split the dataset

based on the user’s ID into a 7:1:2 ratio for the training, valida-

tion, and test sets. This procedure guarantees that all users in the

validation and test sets are not present in the training set, thus

providing an unbiased assessment of the model’s performance on

unseen users. Furthermore, to avoid the risk of label leakage, we

constructed Bernoulli trials only on the training set and performed

Bayesian smoothing. This step ensures models’ generalization and

effectiveness in real-world CTR prediction tasks. By adopting this

user-based splitting strategy and incorporating Bayesian smooth-

ing, we can better understand the model’s generalization capability

and performance in CTR prediction tasks.

5.2 Hyper-parameter settings

We use Adam as the optimizer. We set the batch size to 256 and

the learning rate to 1e-3. We clip the gradients where the norm is

larger than 5. During training, for every 100 iterations, we compute

the AUC on the validation set and finally report the test AUC and

LogLoss with the checkpoint with the highest validation AUC score.

For the AutoInt model, we use ReLU as the activation function, set

the embedding dimension for each feature to 8, the number of heads

to 2, the dimension of the heads to 4, the attention dropout rate to

0.1, and the number of hidden units to [512, 256, 64].
Specifically, we simply set 𝜆 to 0.5 in Eq. (16) to take the balance

between calibration and ranking.

Comparedmethods.We compare our BBPwith five SOTA ranking-

based methods: Bayesian Personalized Ranking (BPR) [40], Smooth-

AUC (SAUC) [47], Regression Compatible Ranking (RCR) [3], Scale

Calibration (SC) [51], and Joint optimization of Ranking and Cali-

bration (JRC) [44] as the training methods. Since this paper focuses

on the training paradigm, i.e., loss function, we choose AutoInt [46]

as our backbone model for experiments. AutoInt is a mainstream

self-attention-based neural network for recommendation systems,

which can find low-dimensional representations and efficient combi-

nations of sparse, high-dimensional features. For a fair comparison,

we keep the model capacities the same for all methods. JRC re-

quires modifying the output layer to output two logits instead of

the default one.

5.3 Metrics

In this study, we choose LogLoss as the calibration metric and AUC

as the ranking metric. These metrics are selected because we can

only obtain binary preference information in the training datasets.

The equations and notation descriptions for LogLoss and AUC are

as follows:

LogLoss. LogLoss measures the performance of a classification

model by calculating the logarithm of the likelihood of the true

labels given the predicted probabilities. For a binary classification
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Algorithm 1: A TensorFlow-style pseudo code of Beyond Binary Preference (BBP) training paradigm.

1 import tensorflow as tf

2 import tensorflow.keras.backend as K

3 # B: batch size, label_list: [B, 1], score_list: [B, 1].

4 # Feed forward computation to get the prediction and compute BCE loss with binary click label.

5 logits = model(inputs)

6 pred = K.sigmoid(logits)

7 bce_loss = tf.keras.losses.BinaryCrossentropy(label_list, pred)

8 # Compute Beyond Binary Preference (BBP) ranking loss with pre-computed float ranking score.

9 BBP_matrix = pred - tf.transpose(pred)

10 BBP_label = tf.cast(tf.sign(score_list - tf.transpose(score_list)), dtype="float")

11 BBP_loss = -K.mean(K.log(K.sigmoid(BBP_matrix * BBP_label)))

12 totoal_loss = bce_loss + BBP_loss

Table 1: Statistics of the public user-item recommendation

datasets.

#Users #Items #Interactions

Clothing 39,387 23,033 278,651
Music 5,541 3,568 64,704

Electronics 192,403 63,001 1,688,104

problem, the LogLoss is defined as:

LogLoss = −
1

𝑇test

𝑇test∑
𝑖=1

[
𝑦𝑢𝑖 ,𝑣𝑖 log(𝑝𝑢𝑖 ,𝑣𝑖 ) + (1 − 𝑦𝑢𝑖 ,𝑣𝑖 ) log(1 − 𝑝𝑢𝑖 ,𝑣𝑖 )

]
,

(17)

where𝑇test is the number of test impressions, 𝑦𝑢𝑖 ,𝑣𝑖 is the true label
of the 𝑖-th impression, and 𝑝𝑢,𝑣𝑖 is the predicted CTR of the 𝑖-th
impression.

AUC. The Area Under the Receiver Operating Characteristic (ROC)

Curve (AUC) is a widely used metric for evaluating the ranking

performance of a binary classifier. The AUC is defined as:

AUC = 1
|𝑇P |× |𝑇N |

∑ |𝑇P |
𝑖=1

∑ |𝑇N |
𝑗=1 {I [(𝑠𝑢𝑖 ,𝑣𝑖 − 𝑠𝑢 𝑗 ,𝑣𝑗 ) > 0]

+ 1
2 I [(𝑠

𝑢𝑖 ,𝑣𝑖 − 𝑠𝑢𝑖 ,𝑣𝑖 ) = 0]
}
,

(18)

where 𝑇P and 𝑇N represent the positive and negative impression

set for the test dataset, respectively, and | · | denotes the set size.

𝑠𝑢𝑖 ,𝑣𝑖 indicates the preference score by user 𝑢𝑖 on item 𝑣𝑖 . I[·] is an
indicator function that takes the value one if the condition inside

the brackets is true and 0 otherwise.

5.4 Results in Public Datasets (RQ1)

To answer RQ1 and validate the performance of different train-

ing paradigms for click-through rate (CTR) prediction, we conduct

experiments on three public datasets: Clothing, Music, and Electron-

ics. As shown in Table 2, our proposed BBP method consistently

outperforms all pointwise, pairwise, and listwise alternatives across

all datasets regarding LogLoss and AUC metrics.

The pairwise training paradigms, including BPR [40] and SAUC [47],

struggle with calibration and achieve limited ranking performance.

Their LogLoss values are significantly worse than the Binary Cross

Entropy (BCE) baseline, as indicated by the red color. Since BPR

and SAUC ignore the calibration loss during training, the predicted

score keeps drifting and can raise a NaN (Not a Number) LogLoss

for calculating log(0). Although they show some improvements in

AUC compared to the baseline, their performance is still inferior

to the listwise and our BBP methods. Since pairwise baselines in-

cluding BPR and SAUC are not designed for calibration, we modify

them by using calibrated loss. Specifically, we add the pairwise

losses with a weighted BCE loss, similar to Eq. (16). We have con-

ducted additional experiments after fine-tuning the weight of BCE

loss as our BBP does. The results show that BBP also significantly

outperforms calibrated pairwise competitors for all metrics.

On the other hand, listwise methods handle calibration and rank-

ing simultaneously due to their multi-task design. They achieve

better performance than the pairwise methods, with SC [51] and

JRC [44] often being the best-performing alternatives to our method.

However, their performance still falls short compared to BBP, as

the significant 𝑝-values indicate.
With its beyond binary preference ranking, our BBP method

stands out by achieving the best performance across all datasets

and metrics. The LogLoss values are the lowest, and the AUC values

are the highest among all methods, indicating that BBP provides

the best calibration and ranking. The significant 𝑝-values further
confirm the superiority of BBP over all competitors. As shown

in Eq. (9), BBP can leverage different functions to aggregate the

possibilities from user and item. We take the average and maximum

functions as examples, namely BBP-Average and BBP-Maximum.

We find that the performance with these two aggregation functions

has no significant difference (𝑝-values > 0.05).

In conclusion, the experimental results demonstrate the effective-

ness of our BBP method in CTR prediction. It provides significant

advantages over all SOTA competitors, especially the pairwise tech-

niques, and sets a new benchmark for CTR prediction.

5.5 Ablation Study (RQ2 and RQ3)

We conduct an ablation study to investigate the contributions of

BBP’s ability to break ties and the global context ranking to its

performance. We implement three variants of our proposed method,

and all variants implement BCE as the calibration loss: Case 1: The

ranking loss in Eq.(14) only compare item 𝑣 from the same user 𝑢
with their binary click label 𝑦. Case 2: The ranking loss in Eq.(14)

only compare item 𝑣 from the same user 𝑢 with their estimated
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Table 2: Comparison of overall performance for CTR prediction based on different training paradigms, with average results

reported over five random seeds. LogLoss ↓ is a calibration metric where lower values are better. AUC ↑ is a ranking metric,

with higher values preferable. The underlined values highlight the best performance, excluding our proposed method. The

𝑝-value is obtained through a t-test between our method and the best-performing alternative. Bold values indicate that our BBP

method significantly outperforms all competitors (determined by the significance at 𝑝 < 0.05), no matter which implemented

aggregation function. Results significantly worse than the Binary Cross Entropy (BCE) baseline are denoted in red, while those

significantly better are marked in green. The color significance is also based on the 𝑝 < 0.05 threshold.

Dataset Clothing Music Electronics

Metric LogLoss ↓ AUC ↑ LogLoss ↓ AUC ↑ LogLoss ↓ AUC ↑

Pointwise BCE 0.6184 0.7695 0.6414 0.7246 0.6522 0.7242

BPR (UAI’09) 17.4783 0.7754 NaN 0.7307 NaN 0.7294
BPR + BCE 0.6289 0.7720 0.6851 0.7286 0.6451 0.7282

Pairwise
SAUC (SIGIR’22) 8.3426 0.7785 0.7292 0.7371 NaN 0.7361
SAUC + BCE 0.6028 0.7792 0.6712 0.7338 0.6558 0.7368

RCR (CIKM’23) 0.6523 0.7808 0.6846 0.7398 0.6540 0.7409
SC (KDD’22) 0.5636 0.7839 0.6590 0.7418 0.6564 0.7508Listwise
JRC (KDD’23) 0.6187 0.7886 0.6487 0.7474 0.5955 0.7447

BBP-Average 0.5413 0.7965 0.5996 0.7562 0.5754 0.7590
BBP-Maximum 0.5471 0.7942 0.5952 0.7541 0.5747 0.7566Ours

𝑝-value 1.23E-03 2.35E-02 7.79E-04 4.41E-02 3.30E-02 1.00E-03

score 𝑠 in Eq.10. Case 3 (BBP): The ranking loss Eq.(14) compare

all 𝑢 − 𝑣 pairs in each sampled batch with their estimated score 𝑠 .
To address RQ2, i.e., to show that even without the augmen-

tation of global contexts, the BBP framework can improve model

performance with its ability to break ties using Bayesian probabil-

ities. We can compare the average performance between Case 1

and Case 2. To further address RQ3, i.e., to confirm that the global

context ranking can further improve model performance, we can

compare Case 2 with Case 3 (our BBP). As shown in Figure 3, the ex-

perimental results demonstrate that the performance of the models

follows the order: Case 3 (BBP) > Case 2 > Case 1. The improvement

observed between Case 3 and Case 2 is smaller than between Case

2 and 1. This indicates that the primary enhancement of BBP is due

to breaking many binary ties, and the score estimate provided by

the Bayesian probabilities is meaningful (RQ2). The global context

also contributes to the improvement of BBP (RQ3).

Moreover, as illustrated in Algorithm 1 in the appendix, the

global context enables on-the-fly ranking with naive pointwise

training, making it easier to deploy. Unlike state-of-the-art methods

[3, 40, 44, 47, 51], we do not need to be concerned about whether the

training batch is under the same context. This flexibility allows BBP

to adapt to various ranking scenarios more effectively, enhancing

its performance in real-world CTR prediction tasks.

In summary, the ablation study demonstrates that BBP’s ability

to break ties and the incorporation of global contexts contribute

to performance improvement. The primary enhancement comes

from breaking ties using Bayesian probabilities. At the same time,

incorporating global contexts further boosts performance and offers

greater flexibility and adaptability in various ranking scenarios.

Figure 3: Ablation study results on Amazon datasets.

6 INDUSTRIAL DEPLOYMENT

6.1 In-Game Friend Recommendation

We have deployed our BBP training paradigmmodel and its top two

competitors, SC and JRC, on two Tencent games: a mobile battle

royale game denoted by X and a casual party game denoted by Y.

CTR Prediction for Friend Recommendation. The deployed

methods serve for friend recommendation tasks in both real-world

games. The friend recommendation is a resident module in both

games X and Y. When a player𝑢 (inviter) accesses the recommenda-

tion module to find some other players to become in-game friends,𝑢
sees an ordered list of interacted non-friend players. This generates

an impression record in the recommendation logs, and 𝑢 can decide

to click on a non-friend player 𝑣 (invitee) or not. Inviter 𝑢 can click

one or multiple invitees. Once inviter 𝑢 clicks on a recommended

invitee 𝑣 , it sends a friend request and generates a click record in the
recommendation logs. The request requires approval; the clicked

invitee 𝑣 can decide to accept or reject it. If 𝑢 and 𝑣 successfully

become in-game friends, the recommendation module generates a

success record. In summary, the CTR prediction model is used to

infer the probability that an inviter𝑢 clicks on an invitee 𝑣 , and then
the recommendation list is generated according to the descending

order of predicted CTR.
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Offline dataset collection.We gather the one-week logs of log-in

players, and we consider the inviters 𝑢 who clicked at least one

invitee 𝑣 as the positive examples in the beforehand recommenda-

tion module. We treat the clicked invitees as positive samples and

the unclicked ones as negative samples. If an inviter 𝑢 clicks on

an invitee 𝑣 at least once, the interaction is viewed as a positive

sample, and we will filter out repeated 𝑢 − 𝑣 pairs. Each dataset

contains the logs of the in-game recommendation modules of all

logged-in players within seven contiguous days, along with their

in-game features as follows:

• Players’ profile data, including all related in-game attribute data

of a player, such as the game level, gender, online time, etc.

• Pairwise interaction features, including the interaction data be-

tween the 𝑢 and 𝑣 , such as the number of common friends, and

the number of common matches etc.

• Players’ social network properties (i.e., the existing in-game social

network properties), including the local network structure, the

number of friends, etc.

All raw features are standardized using min-max normalization

before being fed into the CTR prediction models. The statistics of

games X and Y can be found in Table 3.

6.2 Offline Evaluation

We first train the models with datasets X and Y offline to evaluate

their performance. We split the dataset by inviter 𝑢’s id into a 7:1:2

ratio for training, validating, and testing datasets. We perform the

Bayesian smoothing only on the train set like Section 5.1 to avoid

label leakage. For the evaluation metrics, since we are interested

in whether the inviter 𝑢 would click the invitee 𝑣 in the friend

recommendation list, we report Hit rate@N and NDCG@N, where

N is 10, 20, and 50 to show the performance of models on different

positions. As summarized in Table 4, the offline evaluation results

demonstrate the effectiveness of our BBP method compared to the

competing methods in all metrics. This observation justifies that

our method is more effective than the competitors for ranking the

player list in real-world friend recommendation tasks.

6.3 Online Evaluation

To evaluate the performance of the various methods in an online

setting, we additionally conduct online A/B tests on both games

[19, 30–32, 53–56]. The friend recommendation module in each

game is updated with the deployed models, and their performance

is monitored over one week (from 2024/01/19 - 2024/01/25). We

evaluate BBP, SC, and JRC in the friend recommendation task using

three metrics: (i) Click Rate, which is the proportion of click user

among impression records; (ii) Approval Rate, the proportion of

success approval among click invitations; and (iii) overall Friend

Rate, the proportion of success approval among impression records.

The overall Approval Rate is the product of the Click Rate and the

Approval Rate after invitations are sent, i.e., Friend Rate = Click

Rate × Approval Rate.

The online evaluation results in Table 5 demonstrate that our

proposed BBP method consistently outperforms the state-of-the-art

(SOTA) methods SC and JRC in terms of Click Rate, Approval Rate

and Friend Rate for both games X and Y. Specifically, considering

the definition of Friend Rate, the BPR we proposed can increase

Table 3: Statistics of real-world game datasets.

GAME #Users #Interactions #Features

X 3,240,444 38,024,787 74
Y 754,776 20,906,940 229

Table 4: The results of the offline evaluation.

GAME X HIT@10 NDCG@10 HIT@20 NDCG@20 HIT@50 NDCG@50

Baseline 0.3202 0.2422 0.3503 0.2498 0.3743 0.2547
SC 0.3224 0.2483 0.3505 0.2555 0.3735 0.2601
JRC 0.3157 0.2373 0.3460 0.2450 0.3717 0.2502

Ours 0.3287 0.2581 0.3545 0.2580 0.3765 0.2624

GAME Y HIT@10 NDCG@10 HIT@20 NDCG@20 HIT@50 NDCG@50

Baseline 0.3817 0.2678 0.4523 0.2869 0.5005 0.2944
SC 0.3879 0.2715 0.4547 0.2889 0.5016 0.2977
JRC 0.3873 0.2707 0.4550 0.2882 0.5015 0.2959

Ours 0.3897 0.2728 0.4561 0.2900 0.5022 0.2985

Table 5: The performance lift of the proposed BBP compared

with the SOTA methods.

Metric Click Rate Approval Rate Friend Rate

GAME X Y X Y X Y

vs. SC 3.94% 2.93% 4.41% 9.26% 11.59% 18.92%
vs. JRC 10.90% 3.00% 7.73% 4.33% 22.82% 10.28%

the number of new friends for the in-game friend recommendation

module by more than 10.28% compared to SOTA methods. The

proposed BBP method has now been fully deployed into the in-game

friend recommendation systems of Tencent Games X and Y.

These results indicate that the BBP method is highly effective

in enhancing the friend recommendation module in both games,

leading to higher user engagement and satisfaction. The superior

performance of BBP in real-world scenarios further validates its

effectiveness and applicability in CTR prediction and downstream

recommendation tasks.

7 CONCLUSION

This paper presents the Beyond Binary Preference (BBP) training

framework for CTR prediction, which addresses the limitations

of insufficient training pairs caused by binary preference. BBP

estimates probability distributions for users and items through

Bayesian smoothing. The estimated probabilities then eliminate the

ties as augmented labels. BBP also design a global context ranking

loss to augment more preference pairs further during training.

We have demonstrated that the BBP framework outperforms

all current state-of-the-art competitors in ranking and calibration

capabilities through extensive offline experiments and online A/B

tests on various user-item recommendation datasets and in-game

friend recommendation scenarios. The implementation code for

BBP has been provided as supplementary materials to encourage

further development by the research community.
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A EMPIRICAL STUDY ABOUT USER
BEHAVIOR

A.1 The Beta Distribution Assumption

Click-through rate (CTR) is the probability of a user clicking on

an item. Considering the binary nature of the clicking behavior

(click or not), it can be modeled as a Bernoulli trial with an under-

lying probability 𝑟 . To further validate our assumption about beta

distribution, we conduct the Kolmogorov-Smirnov test and other

data-based analyses to show that the assumption is reasonable in

our deployed system.

Firstly, we conduct a Kolmogorov-Smirnov test on the active

users’ click rates and our estimated beta distribution. The H0 is

the click rate that obeys our estimated beta distribution. The re-

sult shows that the K-S statistic is 0.01641195 and the p-value is

0.13383894. Given that the p-value > 0.05, we accept the H0 that

the users’ click rates obey a beta distribution.

Secondly, we provide a Quantile-Quantile plot to show the re-

lationship between our estimated beta distribution (Theoretical

Quantiles) with real-world players’ behavior (Sample Quantiles).

Figure 4: The Q-Q plot of user click rate in our deployed

system.

As shown in Fig. 4, the Quantile-Quantile plot shows that the

real-world players’ behavior fits nicely with our estimated beta

distribution.

A.2 The Confidence Level Distribution with
Number of Training Samples

BBP may fail to estimate personalized distributions with high con-

fidence levels for users with limited samples in the training set.

Intuitively, the Bayesian smoothing drives the posterior probabili-

ties from the initialized beta distribution to a more personalized one.

If the user does not have enough samples, their posterior probabili-

ties will be similar to the posterior probability from our initialized

beta distribution. In the extreme case, if the user does not have any

historical data, his posterior probability will be derived from the

initialized beta distribution. As we treat impressions and clicks as

visible variables of a user that obey a Binomial distribution with an

underlying probability 𝑟 . Our Bayesian smoothing aims to estimate

personalized posterior probabilities for the Binomial distribution.

We provide further tests on the visible user behavior, i.e., the

click obeying the personalized distribution estimated by BBP. We

test active players in our deployed system. The result shows that

70.43% of the total players obey their personalized distribution of

BBP, determined by the significance at p-value > 0.05. We agree

with you that the number of samples of users is important because

we find that less than 30% of players fail in the test of their limited

records in real-world applications. We also provide a Boxplot to

show the confidence of the personalized distribution among players,

illustrating that most players obey their personalized distribution.

Figure 5: The confidence level distribution of user obeying

the BBP’s output estimation in our deployed system.

Due to the complexity of real-world deployment scenarios, it is

unavoidable that some users with insufficient data (such as cold-start

players who have just joined the game). However, BBP has already

outperformed all competitors in our online and offline experiments.

B IMPACT OF HYPER-PARAMETER

Empirically, we find that 𝜆 is a stable hyper-parameter that is free

from time-consuming fine-tuning. Intuitively, as we design both

calibration loss in Eq. (15) and ranking loss in Eq. (14) in a sigmoid-

then-log style, the scale of the two losses are similar. To show our

intuition, we perform a grid search of 𝜆 in [0.1, 0.3, 0.5, 0.7, 0.9] on

the Music dataset and report the average LogLoss and AUC metric

w.r.t. the different 𝜆.
As shown in Figure 6 and Figure 7, when we increase the 𝜆, the

total loss prefers more calibration during training, which leads to
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Figure 6: Calibration Performance (LogLoss) of BBP w.r.t.

different hyper-prameter 𝜆 on the Music dataset.

Figure 7: Ranking Performance (AUC) of BBP w.r.t. different

hyper-prameter 𝜆 on the Music dataset.

lower LogLoss and AUC at the same time. However, in such a large

range, BBP continues to outperform the best baseline (represented

with dashed lines).

This analysis demonstrates that the hyper-parameter 𝜆 is sta-

ble and does not require extensive fine-tuning, which simplifies

the training process and makes BBP more practical for real-world

applications. Furthermore, the robust performance of BBP across

different values of 𝜆 highlights its effectiveness in balancing cali-

bration and ranking losses, resulting in superior CTR prediction

performance compared to the baselines.


