
Large-Scale Network Embedding in Apache Spark

Wenqing Lin
edwlin@tencent.com

Interactive Entertainment Group, Tencent

Shenzhen, Guangdong, China

ABSTRACT

Network embedding has been widely used in social recommen-

dation and network analysis, such as recommendation systems

and anomaly detection with graphs. However, most of previous

approaches cannot handle large graphs efficiently, due to that (i)

computation on graphs is often costly and (ii) the size of graph

or the intermediate results of vectors could be prohibitively large,

rendering it difficult to be processed on a single machine. In this

paper, we propose an efficient and effective distributed algorithm

for network embedding on large graphs using Apache Spark, which

recursively partitions a graph into several small-sized subgraphs to

capture the internal and external structural information of nodes,

and then computes the network embedding for each subgraph in

parallel. Finally, by aggregating the outputs on all subgraphs, we

obtain the embeddings of nodes in a linear cost. After that, we

demonstrate in various experiments that our proposed approach

is able to handle graphs with billions of edges within a few hours

and is at least 4 times faster than the state-of-the-art approaches.

Besides, it achieves up to 4.25% and 4.27% improvements on link

prediction and node classification tasks respectively. In the end, we

deploy the proposed algorithms in two online games of Tencent

with the applications of friend recommendation and item recom-

mendation, which improve the competitors by up to 91.11% in

running time and up to 12.80% in the corresponding evaluation

metrics.

CCS CONCEPTS

• Information systems→ Social networks; •Computingmethod-

ologies→ Learning latent representations.

KEYWORDS

network embedding; distributed computing; graph partitioning

ACM Reference Format:

Wenqing Lin. 2021. Large-Scale Network Embedding in Apache Spark. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singapore.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467136

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467136

1 INTRODUCTION

Graphs are so prevalent that we can model most of data as graphs

naturally, e.g., social networks and knowledge graphs. Therefore,

there are a large number of applications using graphs, such as

recommendation systems [25] and anomaly detection [15], that

extract features from graphs and utilize the machine learning mod-

els for inference tasks. However, it is difficult to manually collect

useful features for each node in the graph, due to that most of

graph algorithms are computationally costly. Network embedding

[2, 5, 11, 13] has been a widely adopted technique for feature ex-

traction on graphs, which computes for each node a real-valued

vector of length far less than the number of nodes in the graph.

Besides, it preserves the structural information of the graph, which

empowers the downstream applications, such as node classification

and link prediction.

However, existing network embedding algorithms often incur

massive costs in the running time and memory consumption, not

to mention that most of real-life graphs could be very large. For

instance, node2vec [12], which is an extensively used network

embedding technique, requires around one hour to process a graph

with onemillion nodes. As such, for a sampled graph of Facebook [1]

consisting of more than 700millions of nodes, the processing time of

node2vec would be at least onemonth, which is highly unacceptable

in practice. Besides, assuming that the length of node vector is as

short as 100, regardless of the huge amount of intermediate results,

the memory consumption of network embedding for the sampled

Facebook graph would be more than hundreds of gigabytes, which

could be overwhelming to a single machine.

Recently, some techniques are proposed to compute the net-

work embedding on large graphs. In particular, Duong et al. [9]

devise a method that first divides the graph into several even-sized

subgraphs by graph partitioning algorithms, then computes the

network embedding for each subgraph respectively in parallel, and

finally identifies the anchor nodes in the graph to integrate the em-

bedding space from all subgraphs. In particular, the anchor nodes

are chosen from the borders of the partitions, that appear in multi-

ple partitions. However, since there could exist a large number of

anchor nodes, it would be difficult to select suitable anchor nodes.

Moreover, the anchor nodes are often weakly connected to the

nodes in the corresponding partitions, rendering this method un-

able to well preserve the structural information of the graph.

In addition, Pytorch-BigGraph [17] and AliGraph [39] are the

representative approaches that exploit the parameter server frame-

work [19] to address the training of network embedding for large

graph over multiple machines. Nevertheless, these approaches re-

quire a massive amount of communication between machines for

random access on the graph, making them inefficient. Furthermore,

there also exist some approaches tackle large graphs by graph sum-

marization [7, 21] or graph sparsification [20, 29, 37] in a single

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3271

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447548.3467136&domain=pdf&date_stamp=2021-08-14

machine, which would incur the issues where (i) they are designed

sequentially making them difficult to be parallelized, or (ii) they

rely on matrix manipulations that would explode the memory space

when the graphs are sufficiently large.

To remedy the aforementioned issues, we devise an efficient

and effective algorithm for network embedding on large graphs

by exploiting the distributed share-nothing computing framework,

namely Apache Spark [35], which is intensively adopted for big

data processing in tremendous applications [22, 32]. In particular,

we first recursively partition the graph into several small-sized

subgraphs, such that (i) each subgraph can be efficiently processed

on a single machine, and (ii) the subgraphs and edge cuts between

them can reflect the internal and external connections of nodes to

the others. Then, we perform another one round of MapReduce

job [6] to compute the network embedding on each subgraph in

parallel and aggregate the outputs on all subgraphs in a linear cost,

resulting in the final embeddings of nodes. Compared to the previ-

ous approaches, our proposed algorithm divides the embeddings by

subgraphs such that (i) the size of subgraph is relatively small which

could be processed efficiently, (ii) each subgraph can be computed

independently which incurs less overhead in the communication

between machines, and (iii) the subgraphs carrying the nodes’ in-

ternal and external connections preserve the structural information

of the graph, which can be used to improve the performance of

network embedding in the downstream tasks.

The contributions of this paper can be summarized as follows.

• We develop a scalable approach for network embedding,

which utilizes subgraphs to well facilitate the distributed

computation on billion-scale graphs.

• We devise the recursive graph partitioning algorithm, which

divides a graph into even-sized subgraphs that preserve the

internal and external structural information of nodes.

• We demonstrate with various experiments that the proposed

algorithm outperforms the competitors by at least 4 times in

running time and up to 4.25% and 4.27% in link prediction

and node classification tasks respectively.

• We deploy the proposed algorithms in two games of Tencent

with the applications for friend recommendation and item

recommendation, and show that the propose algorithms

improve the baselines by up to 91.10% in running time and

up to 12.80% in the corresponding evaluation metrics.

2 PRELIMINARIES

In this section, we elaborate the notations and definitions that are

frequently used in this paper.

2.1 Graphs

Let 𝐺 = (𝑉 , 𝐸) be a graph, where 𝑉 is the set of nodes and 𝐸 is the

set of edges. We say that 𝑢 ∈ 𝑉 is a neighbor of 𝑣 ∈ 𝑉 if there exists

an edge (𝑢, 𝑣) ∈ 𝐸. Denote 𝑁 (𝑢) as the set of neighbors of 𝑢 in 𝐺 .
Note that, for ease of explanation, we assume that the graphs in

this paper are undirected, but the proposed approach can be easily

extended to directed graphs, as explained in Section 4.

Given the graph 𝐺 = (𝑉 , 𝐸), consider a subset 𝑉 ′ of 𝑉 , i.e.,
𝑉 ′ ⊆ 𝑉 . The induced subgraph 𝐺 ′ = (𝑉 ′, 𝐸 ′) on the nodes in 𝑉 ′

consists of the set 𝐸 ′ of edges whose nodes are in 𝑉 ′, i.e., 𝐸 ′ =
{(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 ′}.

A partitioning P of 𝐺 divides 𝑉 into 𝑘 disjoint subsets, denoted

by P = {𝑉1,𝑉2, . . . ,𝑉𝑘 }, where 𝑘 is a user-defined number. In other

words, we have (i) 𝑉𝑖 ⊆ 𝑉 for 1 ≤ 𝑖 ≤ 𝑘 , (ii) 𝑉𝑖 ∩ 𝑉𝑗 = ∅ for

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , and (iii) ∪1≤𝑖≤𝑘𝑉𝑖 = 𝑉 . Given a node 𝑢 ∈ 𝑉 , let
𝑉 ′ ∈ P be the partition where 𝑢 resides, denoted by 𝜌 (𝑢) = 𝑉 ′.

We say that the neighbors in the same partition are internal nodes,

while the others are external nodes.

Besides, a node 𝑢 ∈ 𝑉 is a border node of 𝐺 , if 𝑢 has at least one

neighbor 𝑣 ∈ 𝑁 (𝑢) whose partition is different from the one of 𝑢,
namely 𝜌 (𝑢) ≠ 𝜌 (𝑣). Let 𝑉𝑏 be the set of border nodes of 𝐺 . The
border subgraph𝐺𝑏 with respect to P is the induced subgraph of𝐺
constructed on 𝑉𝑏 .

Example 1. Figure 1 shows a graph 𝐺 with 10 nodes and 12

edges. In particular, there are 3 partitions in 𝐺 , whose nodes are
colored green, yellow, and grey respectively. Then, based on the

partitioning, we can construct the induced subgraphs𝐺1,𝐺2, and

𝐺3 respectively, each of which consists of the nodes and edges only

from a partition with the same color. For example, 𝐺2 includes

nodes 𝑣5, 𝑣6, and 𝑣7, as well as the edges connecting them. On the

other hand, 𝐺 has 4 border nodes, i.e., 𝑣4, 𝑣5, 𝑣8, and 𝑣10, each of

which has at least one neighbor colored differently. Hence, we can

construct the border subgraph𝐺𝑏 of𝐺 as the induced subgraph on

the border nodes, which are connected by 3 edges.

2.2 Network Embedding

Given a graph 𝐺 = (𝑉 , 𝐸), network embedding is to compute for

each node 𝑢 ∈ 𝑉 a real-valued vector 𝑓 (𝑢) ∈ R𝑑 of length 𝑑 , where
𝑑 is a user-defined number. In addition, 𝑓 (𝑢) should preserve the

structural information of 𝐺 such that it enables the downstream

applications, e.g., link prediction and node classification. Existing

methods for network embedding can be roughly classified into

two categories: (i) random walk based approaches, and (ii) matrix

factorization based approaches.
In the random walk based approaches [12, 28], we first generate

a large number of random walks for each node in the graph, and
then compute the embedding of each node by maximum likelihood
optimization with respect to the random walks. Denote Pr(𝑣 |
𝑓 (𝑢)) as the likelihood of node 𝑣 with respect to node 𝑢 given the
embedding 𝑓 (𝑢) of 𝑢. Besides, following [12], denote 𝑁𝑆 (𝑢) as the
set of sampled neighbors of 𝑢 obtained by the sampling strategy, e.g.,
random walks starting from 𝑢. The objective of these approaches
can be summarized as to maximize the log likelihood of neighbors
in the graph, i.e.,

O𝑟 = log
∏
𝑢∈𝑉

∏
𝑣∈𝑁𝑆 (𝑢)

Pr(𝑣 | 𝑓 (𝑢)) . (1)

On the other hand, the matrix factorization based approaches
[26, 30] model the network embedding problem as the matrix fac-
torization problem by approximating the dot product of two nodes’
vectors with their similarity in the graph. Hence, it is conceptually
to minimize

O𝑚 =
∑
𝑢∈𝑉

∑
𝑣∈𝑉

(𝑓 (𝑢)ᵀ · 𝑓 (𝑣) − A𝑢,𝑣)
2, (2)

where A is the similarity matrix of nodes in the graph 𝐺 , e.g., the

adjacency matrix of 𝐺 , and A𝑢,𝑣 denotes the similarity of nodes 𝑢
and 𝑣 in 𝐺 .

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3272

G G2 G3G1 Gb

v2

v1 v4

v3

v4

v2

v1 v4

v3

v6 v7

v5

v5

v6 v7

v5

v8

v10

v9 v8

v10

v8

v10

v9

Figure 1: A graph 𝐺 has 3 partitions colored differently. 𝐺1, 𝐺2, and 𝐺3 are the induced subgraphs of 𝐺 , which are induced on

the partitions respectively. 𝐺𝑏 is the border subgraph of 𝐺 induced on the boarder nodes.

2.3 Distributed Computing using Apache Spark

However, it would be impractical to compute the network embed-

ding on a single machine. The reasons are two-fold: (i) The graph

could be too large to fit in the memory of a single machine, not to

mention that each node is associated with a few real-valued vectors

of sufficiently large length; (ii) The computational cost of network

embedding could be extremely high, due to a massive amount of

random graph traversal or matrix manipulations.

To address the above issues, we develop a distributed algorithm

by exploiting subgraphs to compute the network embedding on

large graphs. In particular, we implement our algorithms in Apache

Spark, which is a share-nothing distributed computing platform

based on the MapReduce paradigm [6, 24, 33] and widely used for

big data processing in many applications [22, 32]. In a MapReduce

job, there are mainly three consequent phases: (i) The Map phase

applies a map function on each data tuple consisting of a key-value

pair, which takes as input a key-value pair and outputs new key-

value pairs. (ii) Then, it is the Shuffle phase where all new key-value

pairs are shuffled among machines, such that the pairs with the

same key are sent to the same machine and aggregated together.

(iii) Finally, the Reduce phase exploits a reduce function on the

key-value pairs sharing the same key, which outputs a new key-

value pair, leading to the result of this MapReduce job. Note that,

a distributed algorithm on Apache Spark could consist of several

consecutive MapReduce jobs, each of which could be fed with the

results from the prior jobs.

3 NETWORK EMBEDDING VIA SUBGRAPHS

Before introducing the proposed distributed algorithms for network

embedding, we present the intuitions behind it. As nodes in a graph

are more likely to be connected with the ones in a close distance [1,

27], the local structures should be critical to the network embedding

of the graph. In light of that, we show that the network embedding

of a graph is dividable, which can be approximated with the ones

of its subgraphs.

To explain, given a graph 𝐺 = (𝑉 , 𝐸) and a number 𝑘 , we divide
𝐺 into 𝑘 partitions, resulting in P = {𝑉1,𝑉2, . . . ,𝑉𝑘 }. For 1 ≤ 𝑖 ≤ 𝑘 ,
we denote the subgraph induced on 𝑉𝑖 as 𝐺𝑖 .

Consider Eq. 1 in the random walk based approaches. For each

node 𝑢 in𝐺 , we can separate its neighbors 𝑣 by inspecting whether

𝑢 and 𝑣 are in the same partition, i.e., 𝜌 (𝑢) = 𝜌 (𝑣).
Hence, we can modify Eq. 1 as

O𝑟 = log
∏
𝑢∈𝑉

∏
𝑣∈𝑁𝑆 (𝑢)
𝜌 (𝑢)=𝜌 (𝑣)

Pr(𝑣 | 𝑓 (𝑢)) + log
∏
𝑢∈𝑉

∏
𝑣∈𝑁𝑆 (𝑢)
𝜌 (𝑢)≠𝜌 (𝑣)

Pr(𝑣 | 𝑓 (𝑢)) .

Let O𝑝 and O𝑛𝑝 be the first and second parts of the right hand
side formula respectively. Note that, O𝑝 focuses on the nodes in

the same partition. In other words, it considers only the probability
of nodes 𝑢 and 𝑣 , which are both in the subgraph 𝐺 ′ ⊆ 𝐺 induced
on a partition𝑉 ′ ∈ P. As a result, we can approximate O𝑝 with the
probabilities of nodes in each subgraph𝐺𝑖 of𝐺 individually, where
1 ≤ 𝑖 ≤ 𝑘 . Given a network embedding 𝑓𝑖 , denote the log likelihood
of nodes in 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) as

O(𝑓𝑖) = log
∏
𝑢∈𝑉𝑖

∏
𝑣∈𝑁𝑆𝑖 (𝑢)

Pr(𝑣 | 𝑓𝑖 (𝑢)),

where 𝑁𝑆𝑖 (𝑢) is the set of sampled neighbors of 𝑢 in𝑉𝑖 . Hence, we

can approximate O𝑝 using
∑𝑘
𝑖=1 O(𝑓𝑖). Note that, since P is a node

disjoint partitioning, each node 𝑢 in 𝐺 would be covered by only a

𝑓𝑖 where 1 ≤ 𝑖 ≤ 𝑘 .
Now consider O𝑛𝑝 , which concentrates on the probabilities of

nodes 𝑢 and 𝑣 that are not in the same partition, i.e., 𝜌 (𝑢) ≠ 𝜌 (𝑣).
Denote the log likelihood of sampled neighbors of nodes in 𝐺𝑏 as

O(𝑓𝑏) = log
∏
𝑢∈𝑉𝑏

∏
𝑣∈𝑁𝑆𝑏 (𝑢)

Pr(𝑣 | 𝑓𝑏 (𝑢)),

where 𝑁𝑆𝑏 (𝑢) is the set of sampled neighbors of 𝑢 in 𝑉𝑏 . Hence,
we have O(𝑓𝑏) as the approximation of O𝑛𝑝 .

Putting all together, to maximize Eq. 1, we can perform the

maximum likelihood optimization for each induced subgraph and

border subgraph of 𝐺 respectively, which approximates O𝑟 .
On the other hand, for the matrix factorization based approaches,

Eq. 2 can be expanded in a similar way:

O𝑚 =
𝑘∑
𝑖=1

∑
𝑢∈𝑉𝑖

∑
𝑣∈𝑉𝑖

(𝑓 (𝑢)ᵀ · 𝑓 (𝑣) − A𝑢,𝑣)
2

+
∑
𝑢∈𝑉

∑
𝑣∈𝑉

𝜌 (𝑣)≠𝜌 (𝑢)

(𝑓 (𝑢)ᵀ · 𝑓 (𝑣) − A𝑢,𝑣)
2 .

Consequently,O𝑚 can also be approximated by independently com-

puting the network embedding for the subgraphs of 𝐺 , which can

be analyzed similar to the one of random walk based approaches.

It is worthy noting that although the proposed approach ap-

proximates network embedding via subgraphs, its performance can

still outperform the other implementations, as shown in Section 5.

This is because the proposed approach differentiates the internal

and external information between nodes with the induced and bor-

der subgraphs respectively, which together augment the structural

information preserved by the produced network embeddings of

nodes.

4 DISTRIBUTED NETWORK EMBEDDING

To compute the network embedding for large graphs on multiple

machines, one straightforward approach is to exploit the parameter

server [19] which is widely used for machine learning on big data.

In the architecture of parameter server, the workers are falling into

two types, namely clients and servers, where the clients can easily

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3273

0

0.1

0.2

0.3

0.4

0.5

 1 2 3 4 5 6 7 8 9

border node ratio

number of iterations

Metis
SparkGP

0.7

0.8

0.9

1.0

 1 2 3 4 5 6 7 8 9

border node ratio

number of iterations

Metis
SparkGP

(a) Youtube (b) Flickr.

Figure 2: Border node ratio, defined as the number of border

nodes over the number of nodes in the given graph.

access the data stored in the servers with push/pull operations.

However, due to that the training of network embedding would

require random access to different portions of the graph, it would

incur an extremely high cost in the communication between clients

and servers, rendering this approach highly inefficient.

To address this issue, we propose an approach based on Apache

Spark running in three phases, as follows.

• First, we recursively divide the graph 𝐺 into several even-

sized subgraphs𝐺 ′. In particular, a graph𝐺 is partitioned to

generate several subgraphs, as well as a border graph which

will be further partitioned if its size is still large. As such, the

embedding of a node in𝐺 is constructed as the combination

of the embeddings in the subgraphs and the border subgraph

respectively.

• Then, for each subgraph𝐺 ′ produced by the recursive graph

partitioning algorithm, we compute its network embedding

independently. As such, we are able to compute the network

embedding for all subgraphs efficiently with the distributed

computing framework, and avoid the costly communication

among different machines.

• Finally, the embeddings of each node in all subgraphs are

fused, resulting in the embedding of each node in 𝐺 , as
explained in Section 3. By this means, we are able to take

into account both the internal and external connections of

nodes for the network embedding of 𝐺 .

In the sequel, we elaborate the details of each phase in the proposed

approach.

4.1 Recursive Graph Partitioning

There exist a number of algorithms for graph partitioning, such

as Metis [16]. However, most of them are tailored for a single ma-

chine, rendering them unsuitable for processing large graphs with

distributed computing. To facilitate the graph partitioning for large

graphs in Spark, we adopt the approach [3], denoted by SparkGP,

which exploits the greedy strategy by swapping nodes iteratively

to minimize the cuts among different partitions.

Recall that, given a graph𝐺 , we divide𝐺 into 𝑘 partitions, which

lead to 𝑘 induced subgraphs and a border subgraph 𝐺𝑏 . After that,

we compute the network embedding for all subgraphs in parallel,

each of which is processed in a single machine. However, the size

of the border subgraph could be still large that are too difficult to

be processed by a single machine (see Figure 2).

To remedy this issue, we propose to partition the graph 𝐺 recur-

sively. Specifically, we first partition𝐺 into 𝑘1 induced subgraphs,

G2
(1)

G1
(1)

Gk1
(1)

Gb
(1)

G

G2
(2)

G1
(2)

Gk2
(2)

Gb
(2)

Figure 3: Recursive graph partitioning on 𝐺 with 2 itera-

tions.

denoted by𝐺
(1)
1 ,𝐺

(1)
2 , . . . ,𝐺

(1)
𝑘1

and a border subgraph𝐺
(1)
𝑏

, where

𝑘1 equals the 𝑘 , i.e., the initial number of graph partitions. If the

size of 𝐺
(1)
𝑏

is still large, we perform the second round of graph

partitioning on 𝐺
(1)
𝑏

, resulting in another 𝑘2 induced subgraphs

𝐺
(2)
1 ,𝐺

(2)
2 , . . . ,𝐺

(2)
𝑘2

and the border subgraph 𝐺
(2)
𝑏

. Note that, 𝑘2

is not necessarily equal to 𝑘1, due to that the size of 𝐺
(1)
𝑏

is often

smaller than the size of 𝐺 . In particular, to make sure that the in-

duced subgraphs of 𝐺
(1)
𝑏

are of similar size as the ones of 𝐺 , we

have 𝑘2 =
|𝑉 (1)
𝑏

|

|𝑉 |
𝑘1, where 𝑉

(1)
𝑏

is the set of nodes of 𝐺
(1)
𝑏

. After

that, we recursively partition the border subgraph𝐺
(2)
𝑏

, until (i) the

border subgraph 𝐺
(𝑗)
𝑏

in the 𝑗-th iteration can fit in the memory of

a single machine, or (ii) the number of iterations 𝛾 has reached a

user-defined maximum number, which will be discussed later. As a

result, the recursive graph partitioning algorithm divides the graph

𝐺 into several induced subgraphs generated in a few iterations, as

well as a border subgraph in the last iteration.

Figure 3 shows a tree to illustrate the recursive graph partitioning

on the graph𝐺 with 2 iterations. If a graph is partitioned due to its

sufficiently large size, its subgraphs are denoted as its children on

the tree. Therefore, all leaves on the tree are the resulting subgraphs

computed by the recursive graph partitioning algorithm.

To demonstrate the necessity of recursive graph partitioning

, we run Metis and SparkGP on the Youtube and Flickr graphs

respectively (see Table 1). Figure 2 shows the number of border

nodes over the number of nodes in two graphs respectively. Initially,

more than 30% of nodes in Youtube graph are border nodes, and

Flickr graph has more than 90% of nodes that are border nodes.

As we recursively partition the border subgraphs, the number of

border nodes decreases greatly for both Metis and SparkGP.

Note that, there are two parameters 𝑘 and 𝛾 in the proposed

approach, whose setting would affect the performance of the pro-

posed algorithm. In the following, we show that 𝑘 and 𝛾 can be

configured automatically.

Consider 𝑘 . If 𝑘 is too large, while the computation on subgraphs

would be fast due to their small size, the number of induced sub-

graphs becomes a lot, leading to a border subgraph of larger size.

Hence, the running time of recursive graph partitioning would

increase, and the final embedding for a large 𝑘 would be lack of

effectiveness, as shown in Section 5. On the other hand, if 𝑘 is too

small, the subgraphs would be too large to be processed efficiently

on a single machine. Therefore, the choice of 𝑘 should take into

account the size of available memory𝑀 on a single machine. Given

a graph 𝐺 = (𝑉 , 𝐸), let 𝑛 be the number of nodes in 𝑉 and Δ is the

average size of memory for storing the set of neighbors for a node

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3274

Table 1: Datasets.

Dataset #Nodes #Edges #Labels

Blog1 10,312 333,983 39

Flickr1 80,513 5,899,882 195

Youtube1 (YT) 1,138,499 2,990,443 47

Spammers2 (SP) 5,321,961 546,799,071 2

UK20023 (UK) 18,484,053 298,113,385 0

Twitter4 41,652,230 1,468,365,182 0

Friendster5 (FS) 68,349,466 2,586,147,869 0

in 𝐺 . Since the graph partition algorithm divides 𝐺 into several

even-sized subgraphs, the number of nodes in a subgraph is around
𝑛
𝑘 . Hence, we have

𝑛
𝑘 Δ ≤ 𝑀 such that the size of a subgraph is less

than the memory size of a single machine. In other words, we can

estimate 𝑘 =
𝑛Δ𝑀 �.

On the other hand, the selection of the number of iterations 𝛾
should consider the length of embeddings of the nodes, since (i) the

embedding computed by an iteration consists of the embeddings

on induced subgraphs and the border subgraph, and (ii) the length

of embeddings in the later iteration is smaller than that of the prior

ones. To make the embedding of the border subgraph on the 𝛾-th
iteration useful, its vector length should be more than a threshold,

e.g., 10. Assume that the fraction of border subgraph’s embedding

in the given iteration is 𝛿 , where 0 < 𝛿 < 1. One way to decide 𝛿 is

by considering both the sizes of𝐺 and𝐺𝑏 , i.e., 𝛿 = |𝑉𝑏 |
|𝑉 |+ |𝑉𝑏 |

. Hence,

we have 𝑑𝛿𝛾 ≥ 10, where 𝑑 is the length of final embeddings in𝐺 ,

which results in an upper bound of 𝛾 , i.e., 𝛾 ≤ log
𝑑/10
1/𝛿

.

4.2 Processing on Subgraphs

Given the subgraphs generated by the recursive graph partitioning

algorithm running in 𝛾 iterations, we compute the embedding of

all nodes in 𝐺 by one MapReduce job. Specifically, in the Map

phase, the network embedding of each subgraph 𝐺 (𝑗) is computed

in a machine independently by any existing network embedding

techniques, such as node2vec [12], where 1 ≤ 𝑗 ≤ 𝛾 . Then, for

each subgraph 𝐺 (𝑗) , we emit all nodes and their embeddings in

𝐺 (𝑗) as key-value pairs, where the key is the node 𝑣 in 𝐺 (𝑗) and

the value consists of three parts: (i) the iteration number 𝑗 , (ii) the

identifier 𝑞 to inspect whether 𝐺 (𝑗) is the border subgraph, and

(iii) the embedding of 𝑣 in 𝐺 (𝑗) . Let 𝑞 = 1 be the identifier for the

border subgraph, and 𝑞 = 0 for the induced subgraph. After that,

all key-value pairs are shuffled among machines and aggregated,

such that the embeddings of the same node 𝑣 are sent to the same

machine. Finally, all embeddings of node 𝑣 are fused according

to the iteration number 𝑗 and the identifier 𝑞, leading to the final

embedding of 𝑣 , which will be explained in Section 4.3.

Note that, to facilitate the computation of network embedding on

the subgraphs, we require the embedding length as one of the hyper-

parameters. To achieve that, we calculate the embedding length for

each subgraph recursively. For example, the border subgraph 𝐺
(1)
𝑏

of 𝐺 has an embedding length of
𝛿𝑑�, where 𝑑 is the embedding

1http://socialcomputing.asu.edu/pages/datasets
2https://linqs-data.soe.ucsc.edu/public/social_spammer
3http://law.di.unimi.it/webdata/uk-2002
4http://konect.uni-koblenz.de/networks/twitter
5http://konect.uni-koblenz.de/networks/friendster

length of nodes in 𝐺 and 𝛿 is the fraction of border subgraph’s em-

bedding in the final embedding, as discussed in Section 4.1. Hence,

each induced subgraph of 𝐺 has the embedding length equal to

𝑑 −
𝛿𝑑�. If 𝐺
(1)
𝑏

is still large for a single machine, we recursively

partition its embedding length
𝛿𝑑� for the subsequent subgraphs
with the fraction 𝛿 .

As aforementioned, the recursive graph partitioning algorithm

results in only one border subgraph, i.e., 𝑞 = 1, which is generated

in the last iteration. Besides, since the induced subgraphs produced

in each iteration are node disjointed, the embedding length of the

induced subgraphs in the same iteration are the same. Therefore,

we can exploit the iteration number 𝑗 and its identifier 𝑞 to identify

the embedding length for the subgraph 𝐺 (𝑗) , denoted as ℓ (𝑗, 𝑞).
Hence, we have

ℓ (𝑗, 𝑞) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if 𝑞 = 1 and 𝑗 < 𝛾 ;

𝛿 𝑗𝑑�, if 𝑞 = 1 and 𝑗 = 𝛾 ;

𝛿 𝑗−1𝑑� −
𝛿 𝑗𝑑�, otherwise.

In other words, the sum of all ℓ (𝑗, 𝑞) equals 𝑑 , i.e.,∑
1≤ 𝑗≤𝛾 and 𝑞∈{0,1}

ℓ (𝑗, 𝑞) = 𝑑.

4.3 Embedding Fusion

Given the key-value pairs generated from all subgraphs, the ones

of the same node 𝑣 are aggregated as a set, denoted by 𝐵(𝑣). Based
on that, we inspect all embeddings in 𝐵(𝑣) once to obtain the final

embedding 𝑓 (𝑣) of 𝑣 in 𝐺 .
To explain that, we first calculate the starting position 𝑠 (𝑗, 𝑞) in

𝑓 (𝑣) for each embedding 𝑓𝑗,𝑞 (𝑣) ∈ 𝐵(𝑣) with respect to the sub-

graph 𝐺 (𝑗) . Specifically, 𝑠 (𝑗, 𝑞) is equal to the sum of all ℓ (𝑗 ′, 𝑞′)
where 𝑗 ′ ≤ (𝑗+𝑞) and𝑞′ = 0, i.e., we have 𝑠 (𝑗, 𝑞) =

∑
𝑗 ′ ≤(𝑗+𝑞) ℓ (𝑗

′, 0).
Then, we create for the node 𝑣 a length-𝑑 vector 𝑓 (𝑣) initialized
with zero values. After that, for each embedding 𝑓𝑗,𝑞 (𝑣) ∈ 𝐵(𝑣),
we replace with 𝑓𝑗,𝑞 (𝑣) the values in 𝑓 (𝑣) whose positions start
from 𝑠 (𝑗, 𝑞). Finally, we obtain the final embedding 𝑓 (𝑣) of 𝑣 after
all replacements are completed. As there is only once scan of the

embedding in 𝐵(𝑣), the complexity of embedding fusion is linear

to the length of embedding, i.e., 𝑂 (𝑑).

5 EXPERIMENTAL EVALUATIONS

To evaluate the performance of the proposed approach, named

DistNE, we adopt 7 datasets that are widely used in the literature,

as shown in Table 1. In particular, there are 4 datasets each of

which has multiple labels on their nodes, and 2 datasets containing

billions of edges, which can not be handled by most of the previous

algorithms, as shown in Section 5.1.

Based on the datasets, we evaluate the performance of DistNE

against 7 state-of-the-art methods (see Section 7), i.e., node2vec [12],

NetSMF [29], ProNE [37], SepNE [20], MILE [21], ParNE [9], and

Pytorch-BigGraph (PBG) [17]. Note that, while we exploit node2vec

in the implementation of DistNE, the other single-machine network

embedding algorithms can also be used in DistNE.

By default, we set the length of embedding 𝑑 = 128. Besides, for

each previous algorithm, we adopt the parameters provided by their

authors as the default ones. We run these algorithms on an in-house

cluster with 51 machines installed with CentOS 6.4, each of which

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3275

101

102

103

104

105

Blog Flickr Youtube Spammers UK2002 Twitter Friendster

running time (seconds)

datasets

node2vec
NetSMF

ProNE
SepNE

MILE
ParNE

PBG
DistNE

Figure 4: Running time on all datasets.

DistNE-Embedding DistNE-Partition DistNE

 0

 1000

 2000

 3000

 4000

 5000

50 100 200 400 800

running time (seconds)

k

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50 100 200 400 800

running time (seconds)

k

(a) UK2002. (b) Twitter.

Figure 5: Varying 𝑘 .

has an Intel(R) Xeon(R) CPU E5-2670 CPU with 2.30GHz and 16GB

memory. For those running on single machine, we randomly choose

one machine from the cluster. In each experiment, we perform each

algorithm 5 times and report the average reading.

5.1 Experiments on Efficiency

First, we evaluate the running time of each algorithm on all datasets,

where 5 of them have more than one million of nodes respectively.

We omit the result of an algorithm on a dataset, if (i) the algorithm

cannot handle the dataset with the issue of memory overflow, or

(ii) the algorithm cannot finish within 24 hours. As shown in Fig-

ure 4, DistNE is able to handle all datasets, and outperforms the all

competitors on all datasets. In particular, DistNE is more than an

order of magnitude faster than node2vec on the Youtube dataset,

and more than 7 times faster than MILE on the UK2002 dataset,

which demonstrates the superiority of the distributed computing

approach compared with the single-machine ones. Besides, the

results of the matrix based approaches, i.e., NetSMF, ProNE, and

SepNE, are missing on most of the large graphs, such as Twitter and

Friendster. This is because of the high cost in matrix manipulations

that cause the issue of memory overflow, rendering them difficult

to handle large graphs. Furthermore, DistNE achieves more than 4

times faster than PBG on the Friendster dataset, since PBG incurs

lots of overheads in the communication between clients and servers.

DistNE is more efficient compared with PBG, since DistNE employs

the share-nothing distributed computing framework and allows the

embedding to be computed via subgraphs of sufficiently small size

in a divide-and-conquer manner. Note that, the result of ParNE on

the largest dataset, namely Friendster, is missing, since it cannot

finish within 24 hours, which is caused by the intensive cost in

embedding replacements, as explained in Section 7.

5.2 Experiments on Parameter Sensitivities

We now study the parameters, i.e., the number of machines and the

number 𝑘 of partitions, that would affect the performance of the

proposed distributed computing algorithm.

ParNE PBG DistNE

 0

 10000

 20000

 30000

 40000

 50000

 60000

10 20 30 40 50

running time (seconds)

number of machines

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

10 20 30 40 50

running time (seconds)

number of machines

(a) UK2002. (b) Twitter.

Figure 6: Varying the number of machines.

Figure 5 depicts the running time of DistNE on the datasets

UK2002 and Twitter respectively by varying 𝑘 from 50 to 800. In par-

ticular, we decompose the running time of DistNE into two parts: (i)

the one for recursive graph partitiong, denoted by DistNE-Partition,

and (ii) the one for computing network embedding on subgraphs, de-

noted by DistNE-Embedding. As shown, the running time of DistNE

decreases when 𝑘 increases, since the size of subgraphs becomes

smaller, leading to the large decrease in the running time of network

embedding on the subgraphs. Note that, while the running time of

recursive graph partitioning increases slightly when 𝑘 increases, it

is not the dominating one.

Figure 6 shows the running time of the distributed computing

solutions, i.e., ParNE, PBG, and DistNE, on the datasets UK2002 and

Twitter respectively by varying the number of machines. Specifi-

cally, we set the number of machines as the value in the range from

10 to 50. As we can see, when we increase the number of machines,

the running time of all algorithms decreases, due to the power of

parallelism. Besides, our proposed approach DistNE consistently

outperforms the others in all cases. Note that, the speedup is not

linearly proportional to the number of machine, due to the overhead

of communication between machines.

5.3 Experiments on Link Prediction

In this set of experiments, we evaluate the performance of all algo-

rithms on all datasets by running the task of link prediction. In order

to perform the link prediction task, for each dataset𝐺 = (𝑉 , 𝐸), we
randomly remove
𝛼 |𝐸 |� edges from 𝐸, where 0 < 𝛼 < 1. Denote

the set of removed edges as 𝐸𝑠 , and the set of residual edges as 𝐸𝑟 .
Then, we compute the largest connected component𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐)
of the graph induced on 𝐸𝑟 . Denote 𝐸𝑝 as the set of edges in 𝐸𝑠
with nodes both in 𝑉𝑐 . Finally, we can generate the training set as

the edges in 𝐸𝑐 , and the testing set consisting of two equal-sized

parts, i.e., (i) the positive edges which are in 𝐸𝑝 , and (ii) the negative
edges which are pair of nodes𝑢 and 𝑣 such that (𝑢, 𝑣) is not an edge

in 𝐸. Note that, in the experiments, we set 𝛼 = 10% and the number

of positive edges in the testing set equals the one of negative edges.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3276

Table 2: Performance in link prediction evaluated by precisions with cosine similarity and euclidean similarity.

Algorithm
Cosine Similarity Euclidean Similarity

Blog Flickr YT SP UK Twitter FS Blog Flickr YT SP UK Twitter FS
node2vec 0.9628 0.8624 0.9731 - - - - 0.9580 0.8369 0.9514 - - - -
NetSMF 0.9669 0.8512 - - - - - 0.9593 0.8172 - - - - -
ProNE 0.9716 0.8697 0.9745 - - - - 0.9612 0.8436 0.9591 - - - -
SepNE 0.9633 0.8710 0.9728 0.7313 - - - 0.9595 0.8493 0.9568 0.7246 - - -
MILE 0.9458 0.8307 0.9437 0.6823 0.8567 0.6117 - 0.9128 0.8071 0.9232 0.6483 0.8188 0.6359 -
ParNE 0.9657 0.8369 0.9518 0.7139 0.8473 0.6294 - 0.9628 0.8353 0.9408 0.6946 0.8519 0.6530 -
PBG 0.9614 0.8598 0.9746 0.7519 0.8708 0.6517 0.6381 0.9572 0.8379 0.9554 0.6819 0.8435 0.6417 0.6189

DistNE𝑛𝑏 (𝑘 = 50) 0.9527 0.8408 0.9653 0.7244 0.8521 0.6359 0.6283 0.9394 0.8217 0.9304 0.7036 0.8380 0.6311 0.6055
DistNE (𝑘 = 100) 0.9691 0.8587 0.9802 0.7557 0.8723 0.6664 0.6418 0.9625 0.8482 0.9527 0.7299 0.8571 0.6589 0.6204
DistNE (𝑘 = 50) 0.9754 0.8618 0.9813 0.7588 0.8792 0.6704 0.6476 0.9680 0.8456 0.9649 0.7369 0.8627 0.6690 0.6245

Based on that, we compute the network embedding on the training

set for each dataset, and then calculate the similarity of all pairs of

nodes in the testing set. Finally, we compute the precision as the

fraction of positive edges in the most similar |𝐸𝑝 | pairs of nodes in
the testing set.

Table 2 presents the precisions of all algorithms on all datasets.

Note that, in order to study the effect of 𝑘 in the performance of Dis-

tNE, we vary 𝑘 from 50 to 100. As we can see, when 𝑘 = 50, DistNE

outperforms the competitors in almost all the cases. In particular,

on the Twitter dataset, DistNE improves PBG by 4.25% in euclidean

similarity and 2.82% in cosine similarity, due to that DistNE utilizes

induced subgraphs and border subgraphs to preserve the internal

and external structural information that favors the prediction of

close relations, resulting in the superior performance. Besides, when

𝑘 = 100, the performance of DistNE is still better than most of the

competitors, but it degrades slightly, since more partitions leads

to more edge cuts that lose the connection between nodes. More-

over, when 𝑘 = 50, we compare DistNE with the version without

processing border subgraphs, denoted by DistNE𝑛𝑏 . As shown in

Table 2, DistNE𝑛𝑏 cannot provide satisfactory performance, since

it ignores the external information on the border subgraphs.

5.4 Experiments on Node Classification

Then we evaluate the effectiveness of DistNE by performing the

node classification tasks on 4 datasets, i.e., Blog, Flickr. Youtube,

and Spammers, whose nodes have multiple labels. In particular,

we run all algorithms on each dataset, and obtain the network

embedding of each dataset. Besides, we randomly split the set of

nodes with labels into two even-sized disjoint subsets, denoted

by training and testing sets respectively. Afterwards, treating the

network embedding as features of nodes, we build on the training

set a multi-class logistic regression classifier that utilizes one-vs-

rest technique and L2 regularization. Finally, following the previous

work [12], we measure the performance of all algorithms in task

of node classification on the testing set by micro-F1 and macro-F1

scores.

Table 3 provides the micro-F1 scores and macro-F1 scores of all

competitors on the 4 datasets. As aforementioned, we vary 𝑘 from

50 to 100 for DistNE. Observe that, when 𝑘 = 50, DistNE consis-

tently outperforms the competitors on all datasets. In particular, on

the Flickr dataset, DistNE is better than the second-best approach,

i.e., SepNE, by 4.27% improvement in Macro-F1 score and 3.87%
in Micro-F1 score. This is because DistNE separates the internal

and external structural information of nodes, which empowers

more discrimination. Besides, when 𝑘 = 50, DistNE significantly

outperforms DistNE𝑛𝑏 , which illustrates that the external infor-

mation on the border subgraphs highly augments the quality of

network embedding. Furthermore, when 𝑘 = 100, while the perfor-

mance of DistNE decreases slightly, it is still better than most of the

competitors, which again demonstrates the superiority of DistNE.

6 DEPLOYMENT

We have deployed the proposed distributed algorithms in several

online games of Tencent with various applications, as illustrated in

the sequel.

6.1 Deployment Setup

In this paper, we present two different games, denoted by X and

Y respectively. Game X is a multiplayer online battle royale game,

and Game Y is a multiplayer online battle arena game. For each

game, we construct its social graph by taking each player in the

game as a node and the friendship between two players as an edge.

Both graphs have several billions of edges, as shown in Table 4.

After that, we run the distributed network embedding algorithms

on the social graphs of games X and Y respectively using the in-

house cluster with 51 machines, as explained in Section 5. Then, we

obtain the network embedding of players in each game, which are

then used in the downstream applications, i.e., friend recommenda-

tion and item recommendation. In each application, we train the

model for recommendation by taking the network embedding of

players as their features. Besides, we compare the network embed-

dings produced by DistNE with the alternative approach, i.e., PBG,

which is evaluated by the online A/B testing [31] that randomly

assigns a fraction of live traffic to the treatment groups, i.e., the play-

ers receiving the recommendations from the different approaches.

Besides, we update the network embedding of players every 7 days

by re-running the algorithms on the latest social graphs, and report

the average readings over 4 consecutive observation periods, each

of which lasts 7 days.

Table 5 shows the running time of DistNE and PBG on both

games respectively. DistNE is faster than PBG by 91.11% (resp.

60.56%) on Game X (resp. Game Y), due to the superior parallelism

with subgraphs, as explained in Section 5.1.

6.2 Friend Recommendation

In the online games, a player might want to connect with the

other players for the purpose of social to interact with interesting

people, or gaming requirements that encourage players to play

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3277

Table 3: Performance in node classification evaluated by F1

scores.

Algorithm
Micro-F1 score Macro-F1 score

Blog Flickr YT SP Blog Flickr YT SP
node2vec 0.2922 0.1286 0.1952 - 0.2213 0.0834 0.1264 -
NetSMF 0.2883 0.1267 - - 0.2177 0.0796 - -
ProNE 0.2986 0.1353 0.2041 - 0.2269 0.0902 0.1291 -
SepNE 0.2951 0.1368 0.2149 0.4286 0.2229 0.0913 0.1358 0.3671
MILE 0.2831 0.1219 0.1859 0.4059 0.2134 0.0765 0.1173 0.3493
ParNE 0.2918 0.1240 0.2114 0.4133 0.2198 0.0782 0.1309 0.3556
PBG 0.2937 0.1311 0.1985 0.4174 0.2231 0.0860 0.1278 0.3582

DistNE𝑛𝑏 (50) 0.2623 0.1234 0.1933 0.4064 0.2076 0.0742 0.1216 0.3489
DistNE (100) 0.2992 0.1403 0.2156 0.4311 0.2285 0.0920 0.1366 0.3731
DistNE (50) 0.3026 0.1421 0.2170 0.4355 0.2317 0.0952 0.1394 0.3789

Table 4: The graphs in the deployed games of Tencent.

Game Type #Nodes #Edges
X Shooting 0.27 billion 8.54 billion
Y MOBA 0.76 billion 20.58 billion

Table 5: Running time on the graphs of games.

Algorithm Game X Game Y
PBG 25.8 hours 51.7 hours

DistNE 13.5 hours 32.2 hours

the games together. However, it is difficult for a player to search

among billions or millions of players. Instead, we provide an in-

game module to recommend at most 50 players that one would be

interested in. When the player 𝑣 accesses the module in the games,

𝑣 sees a list of recommended players, on which 𝑣 can click one of

them 𝑢 if interested. After that, the clicked player 𝑢 receives an

invitation of making friends from 𝑣 . Player 𝑢 accepts the invitation

if interested, otherwise reject. As such, we evaluate the approach

for friend recommendation by two metrics: (i) click rate, which is

the fraction of players clicking the recommendations over the ones

seeing the recommendations; and (ii) approval rate, equal to the

fraction of players accepting the invitation over the ones receiving

the invitations.

Based on the network embedding computed by DistNE and PBG

respectively, for each player 𝑣 , we utilize the locality sensitive hash-
ing [18] to compute the players 𝑢 who are not friends of 𝑣 and have
the embedding 𝑓 (𝑢) among the top-50 closest distance to player

𝑣 ’s embedding 𝑓 (𝑣). In the end, we recommend the top-50 closest

players to player 𝑣 .
Table 6 illustrates the performance of PBG and DistNE for friend

recommendation in games X and Y respectively. As shown, DistNE

is consistently better than PBG, since DistNE employs the recursive

graph partition that captures the local structural information of

the graph, which favors the close and well connected relations.

Specifically, in game X (resp. Y), DistNE outperforms PBG by 6.46%
(resp. 6.62%) on click rate and by 12.80% (resp. 3.70%) on approval

rate.

6.3 Item Recommendation

Another application of DistNE in the games is the item recommen-

dation, where we are to recommend each player a list of items

to purchase in the in-game shop. To achieve that, we utilize the

machine learning methods to learn the preference of players to

the items. In particular, we first extract the features of players by

DistNE on the graph, and also from the gaming data, such as de-

mographics and game profiles. Besides, we generate the features of

items from the purchasing data. Then, we exploit the purchasing

and viewing data to generate the labels for the pairs of player 𝑣
and item 𝑖 . That is, we label (𝑢, 𝑖) as positive if 𝑢 purchased 𝑖 , and
negative if 𝑢 saw 𝑖 but did not purchase 𝑖 . Based on the positive

and negative labels, as well as the features of players and items, we

train a binary classifier using XGBoost [4], which is thereafter used

to predict the probability that a player purchases a given item.

Table 7 compares the purchase rate for the models using PBG and

DistNE in the games X and Y respectively. As we can see, DistNE

outperforms PBG by 5.21% (resp. 3.78%) in game X (resp. Y), which

demonstrates the effectiveness of induced subgraphs and border

subgraphs that well preserve the internal and external structural

information respectively.

7 OTHER RELATEDWORK

Besides the work introduced in Section 1 and Section 2.2, there are

some other work aiming at accelerating the generation of network

embedding on a single machine, which can be roughly classified

into two categories, as follows. One category of these work, such

as MILE [21] and GraphZoom [7], coarsens the graph recursively

in several iterations, each of which halves the size of graph, and

computes the network embedding for the smallest coarsened graph,

which are used to generate the embeddings of the input graph.

However, due to the recursive computation, this line of work is

difficult to be translated in parallel. Another category of these work

exploits the sparsification or the separation of graph by matrix

manipulations to reduce the computational cost, such as Progle [38],

NetSMF [29], ProNE [37], and SepNE [20]. However, the matrix

manipulations are costly for large graphs, especially when the

size of graph has already exploded the memory space of a single

machine. Recently, Lin et al. [23] devise an efficient and effective

method for the initialization of network embedding algorithms,

which utilizes the graph partition technique. However, this method

targets at the quality of initialization, rendering it insufficient for

the ultimate goal of network embedding. Moreover, there are some

work [36] speedup the processing of graph neural network by

mutli-threading technique, which cannot be directly translated in

distributed computing for the problem of network embedding.

Furthermore, to consider the locality of graph structure, some

work [8, 10, 25] incorporate the community information in the

network embedding, or generate multiple embeddings with respect

to different local structures. However, these approaches do not take

into consideration the metrics of distributed computing, e.g., load

balancing and communication minimization.

On the other hand, there exist some work for computing random

walks on large graphs [22, 34], which can be used to generate the

training samples in the network embedding algorithms. However,

they cannot solve the massive cost of model training, which would

require the exchange of data between nodes on the graph. The other

line of research [14] focuses on the inductive network embedding

by sampling and aggregating neighbors, which is orthogonal to the

problem of this paper, i.e., the transductive one.

8 CONCLUSIONS

In this paper, we present DistNE as an efficient and effective dis-

tributed algorithm for network embedding on large graphs. We

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3278

Table 6: Performance in friend recommendation.

Algorithm
Game X Game Y

Click Rate Approval Rate Click Rate Approval Rate
PBG 0.2042 0.1148 0.3216 0.7033

DistNE 0.2174 0.1295 0.3429 0.7293

Table 7: Purchase rate in item recommendation.

Algorithm Game X Game Y
PBG 0.0653 0.2381

DistNE 0.0687 0.2471

devise the recursive graph partitioning technique that divides the

graph into sufficiently small subgraphs by considering the size of

available memory and the number of border nodes. As such, the

subgraphs can well preserve the internal and external structural in-

formation of nodes. Then, the network embedding of all subgraphs

are computed independently in parallel, and aggregated with a lin-

ear cost to generate the final embeddings. In various experiments,

we demonstrate that DistNE is faster than the state-of-the-art ap-

proaches by several times and outperforms the competitors in the

tasks of link prediction and node classification. Finally, we deploy

DistNE in the applications of two games of Tencent respectively,

and show that DistNE improves the baselines by a large fraction in

the evaluation metrics.

REFERENCES
[1] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.

2012. Four degrees of separation. InWeb Science 2012, WebSci ’12, Evanston, IL,
USA - June 22 - 24, 2012. 33–42.

[2] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques, and Applications.
IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1616–1637.

[3] Emanuele Carlini, Patrizio Dazzi, Andrea Esposito, Alessandro Lulli, and Laura
Ricci. 2014. Balanced Graph Partitioning with Apache Spark. In Parallel Processing
Workshops - Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,
2014, Revised Selected Papers, Part I. 129–140.

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016.
785–794.

[5] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2019. A Survey on Network
Embedding. IEEE Trans. Knowl. Data Eng. 31, 5 (2019), 833–852.

[6] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In (OSDI 2004), San Francisco, California, USA, December 6-8,
2004. 137–150.

[7] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.
2019. GraphZoom: A multi-level spectral approach for accurate and scalable
graph embedding. CoRR abs/1910.02370 (2019).

[8] Lun Du, Zhicong Lu, Yun Wang, Guojie Song, Yiming Wang, and Wei Chen. 2018.
Galaxy Network Embedding: A Hierarchical Community Structure Preserving
Approach. In IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. 2079–2085.

[9] Chi Thang Duong, Hongzhi Yin, Thanh Dat Hoang, Truong Giang Le Ba, Matthias
Weidlich, Quoc Viet Hung Nguyen, and Karl Aberer. 2019. Parallel Computation
of Graph Embeddings. CoRR abs/1909.02977 (2019).

[10] Alessandro Epasto and Bryan Perozzi. 2019. Is a Single Embedding Enough?
Learning Node Representations that Capture Multiple Social Contexts. In The
World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. 394–404.

[11] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowl.-Based Syst. 151 (2018), 78–94.

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016. 855–864.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: NIPS 2017, Long Beach, CA, USA. 1025–1035.

[15] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng Huai. 2016. An embedding
approach to anomaly detection. In ICDE 2016, Helsinki, Finland, May 16-20, 2016.
385–396.

[16] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Scientific Computing 20, 1
(1998), 359–392.

[17] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alexander Peysakhovich. 2019. PyTorch-BigGraph: A Large-scale
Graph Embedding System. CoRR abs/1903.12287 (2019).

[18] Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, and
Ruihao Zhao. 2017. LoSHa: A General Framework for Scalable Locality Sensitive
Hashing. In SIGIR 2017, Shinjuku, Tokyo, Japan, August 7-11, 2017. 635–644.

[19] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In OSDI 2014, Broomfield,
CO, USA, October 6-8, 2014. 583–598.

[20] Ziyao Li, Liang Zhang, and Guojie Song. 2019. SepNE: Bringing Separability
to Network Embedding. In The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
4261–4268.

[21] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2018. MILE: A
Multi-Level Framework for Scalable Graph Embedding. CoRR abs/1802.09612
(2018).

[22] Wenqing Lin. 2019. Distributed Algorithms for Fully Personalized PageRank on
Large Graphs. In The World Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019. ACM, 1084–1094.

[23] Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng, and Hongyun Cai. 2020.
Initialization for Network Embedding: A Graph Partition Approach. InWSDM
2020: The Thirteenth ACM International Conference onWeb Search and DataMining,
Houston, TX, USA, February 3-7, 2020. 367–374.

[24] Wenqing Lin, Xiaokui Xiao, and Gabriel Ghinita. 2014. Large-scale frequent
subgraph mining in MapReduce. In ICDE 2014, IL, USA, March 31 - April 4, 2014.
IEEE Computer Society, 844–855.

[25] Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia
Hu. 2019. Is a Single Vector Enough?: Exploring Node Polysemy for Network
Embedding. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019. 932–940.

[26] Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, and Chenyi
Zhuang. 2019. A General View for Network Embedding as Matrix Factorization.
In WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019. 375–383.

[27] Linyuan Lu and Tao Zhou. 2010. Link Prediction in Complex Networks: A Survey.
CoRR abs/1010.0725 (2010). http://arxiv.org/abs/1010.0725

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA - August 24 - 27, 2014.
701–710.

[29] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and
Jie Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix
Factorization. In The World Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019. 1509–1520.

[30] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and
node2vec. InWSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018. 459–467.

[31] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Overlap-
ping experiment infrastructure: more, better, faster experimentation. In Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28, 2010. ACM, 17–26.

[32] Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, and Kun Li. 2018. A Survey on
Spark Ecosystem for Big Data Processing. CoRR abs/1811.08834 (2018).

[33] Yufei Tao, Wenqing Lin, and Xiaokui Xiao. 2013. Minimal MapReduce algorithms.
In SIGMOD 2013, New York, NY, USA, June 22-27, 2013. 529–540.

[34] Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. KnightKing: a fast distributed graph random walk engine. In SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019. ACM, 524–537.

[35] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: a unified engine for big data processing. Commun. ACM 59, 11 (2016),
56–65.

[36] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2019. Accurate, Efficient and Scalable Graph Embedding. In
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. IEEE, 462–471.

[37] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning. In IJCAI 2019, Macao, China,
August 10-16, 2019. 4278–4284.

[38] Jie Zhang, Yan Wang, Jie Tang, and Ming Ding. 2018. Spectral Network Embed-
ding: A Fast and Scalable Method via Sparsity. CoRR abs/1806.02623 (2018).

[39] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. PVLDB 12, 12 (2019), 2094–2105.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3279

