
Finding Near-Optimal Maximum Set of Disjoint
k-Cliques in Real-World Social Networks

Xin Chen‡,♢,▽, Wenqing Lin†,♢,♡, Haoxuan Xie§,▽, Sibo Wang‡, Siqiang Luo§
†Tencent, Shenzhen, China

‡The Chinese University of Hong Kong, Hong Kong SAR, China
§Nanyang Technological University, Singapore

jerchenxin@gmail.com, edwlin@me.com,
haoxuan001@e.ntu.edu.sg, swang@se.cuhk.edu.hk, siqiang.luo@ntu.edu.sg

Abstract—A k-clique is a dense graph, consisting of k fully-
connected nodes, that finds numerous applications, such as
community detection and network analysis. In this paper, we
study a new problem, that finds a maximum set of disjoint k-
cliques in a given large real-world graph with a user-defined
fixed number k, which can contribute to a good performance
of teaming collaborative events in online games. However, this
problem is NP-hard when k ≥ 3, making it difficult to solve.
To address that, we propose an efficient lightweight method
that avoids significant overheads and achieves a k-approximation
to the optimal, which is equipped with several optimization
techniques, including the ordering method, degree estimation in
the clique graph, and a lightweight implementation. Besides, to
handle dynamic graphs that are widely seen in real-world social
networks, we devise an efficient indexing method with careful
swapping operations, leading to the efficient maintenance of a
near-optimal result with frequent updates in the graph. In various
experiments on several large graphs, our proposed approaches
significantly outperform the competitors by up to 2 orders of
magnitude in running time and 13.3% in the number of computed
disjoint k-cliques, which demonstrates the superiority of the
proposed approaches in terms of efficiency and effectiveness.

I. INTRODUCTION

Given an undirected graph G, a k-clique in G consists of
exactly k nodes in G, which are connected to each other.
The k-clique is widely used in various applications, such as
community detection [1]–[3] and social network analysis [4],
[5]. Two k-cliques of G are disjoint if they do not share any
nodes in common. In this paper, we study a new problem,
i.e., the maximum set of disjoint k-cliques, which finds a set
of disjoint k-cliques, denoted by S, in G for a fixed k ≥ 3 such
that the number of k-cliques in S is maximum. Note that, the
problem is NP-hard and cannot be addressed by the algorithms
of maximum matching [6], as discussed in Section III.

Computing the maximum set of disjoint k-cliques can be
found in various real-world applications, especially in social
networks. For example, in a multiplayer online battle arena
(MOBA) game of Tencent [7]–[10], which is one of the largest
internet company in China, there are lots of teaming events to
enhance the activities of players in the game using the social
network, as shown in Figure 1(a). In particular, each player

♢ Co-first authors: Xin Chen, Wenqing Lin.
♡ Corresponding author: Wenqing Lin.
▽ Work done when Xin Chen and Haoxuan Xie were interns at Tencent.

(a) A screenshot of the event (b) Team structures

Fig. 1: A teaming event in a game

can join at most one team with up to 4 members, and is
allowed to send invitations to friends in the same team to win
the gaming rewards. For convenience, the game automatically
generates all the teams and assigns each player to a team. The
performance of the event is measured by the conversion rate,
which is the ratio of players who win the rewards. As shown
in Figure 1(b), players joining teams structured as k-cliques
with 6 edges, i.e., all players in the team are friends to each
other, exhibit the highest conversion rate, which outperforms
the second-best teams with 5 edges by 25.6%. This can be
attributed to the dense structure of k-cliques that facilitate
more effective communication among all team members than
non k-cliques. As a result, finding the maximum set of disjoint
k-cliques could significantly enhance the performance of the
teaming event. Note that, the maximum set of disjoint k-
cliques could contain a large portion of nodes in the real-
world graphs, e.g., 75% of the nodes in Dataset Orkut when
k = 4. As for the uncontained nodes, the maximum set of
disjoint dense-connected k nodes can be found iteratively in
the residual graph which removes the already contained nodes,
until all nodes are settled. Besides, the number of k could be
sufficiently large, e.g., 5 in Honor of Kings1 and 6 in QQ
Speed Mobile2. More applications could be found, such as
roommate allocation [11], where a room contains k beds and a
good arrangement is to make the roommates in a room form as
a k-clique in the graph constructed based on their preferences,
which is equivalent to finding the maximum set of disjoint k-
cliques on the preference graph.

To address this problem, a straightforward approach takes
three steps: (i) First, we list all k-cliques in the graph; (ii)

1https://www.honorofkings.com/
2https://speedm.qq.com/

Then, we construct a condensed graph, called clique graph
(see Definition 2) , by taking each k-clique as a condensed
node and adding a condensed edge between two condensed
nodes if the corresponding k-cliques are not disjoint; (iii)
Finally, we adopt the algorithms for the maximum independent
set (MIS) on the clique graph, which leads to the maximum
set of disjoint k-cliques. However, this approach suffers from
several deficiencies that render it impractical for handling large
graphs, explained as follows. Firstly, the clique graph could be
exponentially large and dense, e.g., the number of 3-cliques
(resp. the condensed edges) in the Facebook dataset is at least
400 (resp. 100 thousand) times than the number of nodes (resp.
edges) in the graph as shown in Table I. Secondly, computing
the maximum independent set on large dense graphs is highly
expensive [12]. In the experiments, we find that this approach
can merely handle the graphs with only thousands of nodes.

Due to the hardness of computing the maximum set of dis-
joint k-cliques, we aim to find the near-optimal solution with a
theoretical performance guarantee. Instead of constructing the
costly clique graph in the previous approach, our approaches
do not need to materialize all the k-cliques, which significantly
reduces the overheads of space consumption and running time.
In particular, we develop a basic framework by starting from a
node v in the graph G, and identifying a k-clique c incident to
v. Afterwards, we remove all the nodes in c from G, as well as
the corresponding edges, resulting in a residual graph G′. Note
that, if there are not any k-cliques incident to v, we remove
only v from G. We continue to identify the new k-clique in
G′, until the residual graph is empty. Therefore, we only need
to maintain the k-cliques incident to the processed nodes and
well prune the computation on the other nodes that have been
in the chosen k-cliques, which largely narrows down the search
space, rendering it possible to handle the large graphs widely
existing in the real-world applications.

While the proposed framework is simple, there are several
issues requiring non-trivial techniques to improve its perfor-
mance in terms of both efficiency and effectiveness. Recall that
we process the nodes in G sequentially, which poses a node
ordering. As a result, the node ordering can greatly affect the
performance of the proposed framework. To explain, consider
that we process nodes in descending order of their degree in
G, i.e., we start from the node with the largest degree among
the unprocessed ones. Since a node v with a large degree
might be associated with a large number of k-cliques, the
process of node v would be able to prune a large portion
of the search space due to disjointness. Furthermore, it might
also result in the case where a small-degree node is difficult to
be included in a k-clique, which might be pruned by the large-
degree nodes, leading to the number of disjoint k-cliques being
far from the maximum one. On the other hand, if we process
the nodes in ascending order of their degree in G, the k-clique
c computed on a small-degree node could include some large-
degree nodes, making c incident to a massive number of the
other k-cliques. In other words, this ordering could face the
same issue as the previous ordering.

To address these issues, we propose to consider the node

degree in the clique graph constructed in the aforementioned
method, instead of the original graph. As such, we are able
to identify a better ordering of nodes to generate the set of
disjoint k-cliques by taking into account the relations between
k-cliques, which is also adopted in the algorithms for MIS (see
Section III). However, computing the exact node degree in the
clique graph is still costly, due to that it requires constructing
the clique graph, whose size is too large to be processed.
To alleviate this issue, we devise an approach to estimate
the degree of each node in the clique graph efficiently and
effectively with tight lower and upper bounds. Specifically,
we first calculate the number of k-cliques incident to each
node in G by performing the k-clique listing algorithm in G
without storing all the k-cliques. As a result, we are able to
derive the estimation of the node degree in the clique graph for
each k-clique c by exploiting the number of k-cliques incident
to the nodes in c, as well as their neighbors in G, which also
provides tight lower and upper bounds of the node degree
in the clique graph. Based on that, we develop an efficient
pruning strategy using the estimation of k-clique’s degree in
the clique graph, which enables us to look ahead at the nodes
going to be processed, rendering it powerful in reducing the
search space. Besides, we show that the proposed approach
can achieve a k-approximation to the optimal solution, which
guarantees its effectiveness. In the experiments, our proposed
approach significantly outperforms the competitors in terms of
both the quality of results and the required running time. For
instance, in the Orkut dataset consisting of 3 million nodes
and 117 million edges, compared to the competitors with
k = 6, our proposed approach generates 13.3% more disjoint
k-cliques and achieves a speedup by one order of magnitude.

Nevertheless, real-world graphs often change frequently.
For instance, the social network in the MOBA game of
Tencent has a sufficiently large number of edge insertions or
deletions in a day, caused by the construction or destruction
of friendships between players, proportional to at least 1% of
all edges in the graph. As a result, how to maintain the high-
quality maximal set of disjoint k-cliques for dynamic graphs
would be important, due to the requirements for both accuracy
and efficiency in the aforementioned applications. To explain,
the deletion of existing edges makes the computed results
inaccurate, i.e., some nodes in the graph are not connected
after the deletion of edges. On the other hand, the insertion
of new edges could affect the results by producing more
disjoint k-cliques. To address this issue, a straightforward
approach is to re-compute the maximal set of disjoint k-
cliques on the updated graph. However, this approach is highly
costly, making it impractical for real-world applications, due
to that (i) computing the maximum disjoint k-clique set is
expensive, and (ii) the update of the graph could be frequent
in the applications, which would require timely responses for
queries. Therefore, we devise an efficient updating method
that builds an indexing structure for each k-clique C in
the result set S, which is a subset of k-cliques incident to
C. As such, when dealing with an update affecting C, we
can identify a replacement of C from the index and update

the index accordingly, which is significantly faster than re-
computing from scratch. Our dynamic approach is shown to
be both efficient and effective based on experimental results.
For instance, in the Orkut dataset, when k is 6, the average
processing time for each update is just a few microseconds.
Besides, the size of the updated S even increases slightly due
to incurring more disjoint k-cliques.

Contributions. In summary, the contributions are as follows.

• We study the new problem of finding the maximum set of
disjoint k-cliques in graphs, which has various applications
in social networks. Besides, we show that this problem is
NP-hard. (Section II)

• We devise a lightweight method that avoids the significant
overheads and achieves a k-approximation to the optimal,
which is equipped with several optimization techniques,
including the ordering method, degree estimation in the
clique graph, and a lightweight implementation. (Section IV)

• We extend the proposed approaches to handle the dynamic
graphs, which is required by real-world applications. We
develop an efficient indexing method with careful swapping
operations that allows us to maintain a near-optimal result
under sufficiently fast updates of edges. (Section V)

• Our experiments show that our approach scales to graphs
with millions of nodes, outperforming competitors in both
efficiency and effectiveness. In particular, it finds up to
13.3% more k-cliques and achieves a speed-up of two orders
of magnitude compared to competing methods (Section VI).

II. PRELIMINARIES

In this section, we introduce the basic concepts and the
problem definition. Let G = (V,E) be an undirected graph,
where V is the set of nodes with cardinality n = |V |, E is
the set of edges with cardinality m = |E|, and each edge
connecting nodes u and v is denoted by ⟨u, v⟩. We first define
the core concept, k-clique, as follows.

Definition 1 (k-Clique). A k-clique C is a graph with exactly
k nodes, denoted by C = (u1, u2, ..., uk), which are incident
to each other in the graph. That is, we have ⟨u, u′⟩ ∈ E for
any u ∈ C and u′ ∈ C.

Note that, k is a user-defined fixed parameter and should be
no less than 3. We say two k-cliques C1 and C2 are disjoint
if they share no common nodes. Based on this, we define the
aforementioned clique graph, as follows.

Definition 2 (Clique Graph). Given all k-cliques in G, the
clique graph of G, denoted by GC , is an undirected graph,
where (i) each k-clique of G is a node in GC , and (ii) there is
an edge connecting any two nodes in GC if the corresponding
k-cliques are not disjoint.

Next, we define the disjoint k-clique set as follows.

Definition 3 (Disjoint k-Clique Set). A disjoint k-clique set,
denoted by S, is a set of k-cliques such that each clique in S
is disjoint with all other cliques in S.

(a) A graph G (b) 3-cliques in G

(c) A maximal set S1 of G (d) A maximum set S2 of G

Fig. 2: A running example.

The size of a disjoint k-clique set S is defined as the number
of k-cliques in S. We say that S is maximal if we can not add
any other k-clique in G into S without violating the disjoint
constraint. Furthermore, we say that S is maximum if its size
is the largest among all disjoint k-clique sets in G. Note that,
the maximum disjoint k-clique set is a maximal one and not
unique, i.e., there could be several different disjoint k-clique
sets of the largest size.

Example 1. In Fig. 2(a) and 2(b), there is a graph G with 9
nodes and 15 edges, which leads to seven 3-cliques in G, i.e.,
(v1, v3, v6), (v3, v5, v6), (v5, v6, v8), (v5, v7, v8), (v7, v8, v9),
(v4, v7, v9), and (v2, v4, v9), denoted by C1, C2, · · · , C7 re-
spectively. Besides, Fig. 2(c) and 2(d) show two disjoint 3-
clique sets of G, denoted by S1 and S2 respectively. Note that,
S1 and S2 are maximal due to that we cannot include any other
disjoint 3-clique to these two sets, and S2 is maximum since
the size of S2 is the largest. Furthermore, we can construct
the clique graph GC of G, as shown in Fig. 3. Two nodes in
GC have an edge only if the two corresponding cliques have
common nodes. For example, C1 and C2 share the node v3,
resulting in an edge ⟨C1, C2⟩ in GC . □

Finding the maximum set of disjoint k-cliques is extremely
costly, which can be explained in the following theorem.

Theorem 1. The problem of finding the maximum set of
disjoint k-cliques is NP-hard when k ≥ 3 and is fixed.3

Therefore, it is highly difficult to compute the maximum
set of disjoint k-cliques, not to mention that the graph could
be sufficiently large. To approach this problem, we resort
to the approximate solution that is able to generate a near-
optimal maximum set of disjoint k-cliques with a theoretical
performance guarantee on its size compared to the optimal.

III. RELATED WORK

Next, we review the related problems, i.e., listing k-cliques,
maximum matching, and the other related work.
Listing k-cliques. A plethora of previous work have studied
the algorithm design for efficiently listing k-cliques [14]–[19],
which can be roughly summarized with a two-step framework:
(i) First, given the graph G = (V,E), we construct a directed
acyclic graph (DAG) of G, denoted by G⃗ = (V, E⃗), by

3Due to the limitation of pages, all proofs are in the technical report [13].

Algorithm 1: BASICFRAMEWORK(G)

Input: An undirected graph G = (V,E), k
Output: A maximal set S of disjoint k-cliques of G

1 S ← ∅
2 Let η be a total ordering on V

3 G⃗ = (V, E⃗)← directed version of G, where u→ v if
η(u) > η(v)

4 valid(v)← true ∀v ∈ V
5 for each node u in ascending order of η(u) do
6 if valid(u) = true and |N+(u)| ≥ k − 1 then
7 if FindOne(k − 1, N+(u), {u}) = true then
8 for each node v in the newly found clique C do
9 valid(v)← false

10 Remove v from G⃗

11 S ← S ∪ C

12 return S
13
14 Procedure FindOne(l, V ′, C)
15 if l = 2 then
16 Find an edge ⟨u, v⟩ of G⃗ and form a k-clique C ∪{u, v}
17 return true

18 else
19 for each node u ∈ V ′ do
20 if |N+(u)| < l − 1 then
21 continue

22 if FindOne(l − 1, N+(u), C ∪ {u}) = true then
23 return true

24 return false

exploiting a total ordering of nodes, such that G⃗ is the same
as G except that each edge in E⃗ has a direction that points
from the node with a small ordering to the other node with a
large ordering. The out-neighbor of u in G⃗ is connected with
the out-going edge of u in G⃗. (ii) Then, for each node u ∈ V ,
we enumerate all k-cliques incident to u by initializing a set
C consisting of u and recursively adding a node v /∈ C into
C if v is the out-neighbor of all nodes in C and the size of
C is less than k. Note that, with the total ordering of nodes,
each k-clique of G is generated only once in the framework,
which effectively avoids the redundant computation and leads
to a time complexity O(k · m · (d/2)k−2) [14] where d is
the maximum node degree of G. However, these algorithms
for listing k-cliques cannot address the problem of finding the
maximum set of disjoint k-cliques, due to that the number
of k-cliques could be exponentially large and it requires the
computation of maximum independent set on the listed k-
cliques as aforementioned.

Maximum matching. When k = 2, finding the maximum
set of disjoint k-cliques is equivalent to finding the maximum
matching in general undirected graphs. To address this prob-
lem, there exist numerous works [6], [20]–[23] with a tight
bound on the running time complexity. However, this problem
is a special case of our studied problem, which is a more
generalized case.

Fig. 3: The clique graph GC of G in Fig. 2.

Other related work. There are some other work that are
related to our studied problem, i.e., diversified maximal cliques
and edge-cut graph partitioning, which are explained as fol-
lows. First, The problem of diversified maximal cliques [24]–
[26] aims to find at most a user-defined number of cliques
to cover the most number of nodes in the graph, which is
different from the studied problem that requires that each
clique in the solution has the same size, i.e., k. As a result, the
techniques for diversified maximal cliques cannot be adopted
in our studied problem, not to mention the dynamic cases.
Second, the edge-cut graph partitioning [27], [28] divides
the set of nodes into a user defined number of disjoint and
even-sized subsets of nodes, such that the number of cutting
edges connecting different subsets is minimized. However, the
graph structure induced on each subset produced by graph
partitioning algorithm cannot be guaranteed to be dense, which
is essential to the applications as explained in Fig. 1, rendering
inapplicable in our studied problem.

IV. PROPOSED ALGORITHMS

In this section, we first present a basic framework that
avoids the overheads in building the clique graph (Section
IV-A). Then, we show the optimization techniques based on
the framework to generate a near-optimal result efficiently. To
generate a near-optimal result, we propose the ordering method
(Section IV-A) and degree estimation in the clique graph
(Section IV-B). Further, to reduce the significant overheads
in the computation and memory consumption, as well as
to preserve a near-optimal result, we develop a lightweight
implementation (Section IV-C).

A. Basic Framework

As discussed in Section I, given a graph G = (V,E), a
straightforward approach is to (i) construct the clique graph
by listing all k-cliques of G and then (ii) apply the algorithms
for MIS on the clique graph to generate the maximum disjoint
k-clique set of G. However, this approach is highly costly,
rendering it impossible to handle sufficiently large graphs. To
address this issue, we propose a framework that does not need
to construct the expensive clique graph, which significantly
reduces the overheads. In particular, the framework begins
with an empty set S . Then, it works in several iterations. In
each iteration, we add a k-clique C in G to S if C is disjoint
with the k-cliques in S, and remove all nodes in C from G.
The iteration terminates when the residual graph of G is empty
or has no more k-clique that can be added into S. Finally, we
obtain S as a maximal set of disjoint k-cliques of G.

Given a graph G = (V,E), Alg. 1 presents the pseudocode
of the basic framework to compute a maximal set of disjoint k-

(a) A DAG G⃗ of G. (b) Clique (v6, v5, v3). (c) Clique (v9, v8, v7).

Fig. 4: A running example of Alg. 1 on G in Fig. 2.

cliques of G. It first converts G into a DAG (Line 3), denoted
by G⃗ = (V, E⃗), using a total node ordering η, which is able
to effectively avoid redundant computation, as explained in
Section III. For each node u ∈ V , denote N+(u) as the set of
out-neighbors of u in G⃗. In other words, the ordering of nodes
v in N+(u) is smaller than the one of u, denoted by η(u) >
η(v). Besides, every node u maintains a value valid(u) (Line
4), which records whether this node has been included in some
clique of S. Then, for each node u in ascending order, it calls
the procedure FindOne to find a (k − 1)-clique among the
nodes in N+(u) that is first encountered (Lines 5-11). Then,
the first encountered (k−1)-clique and node u form a k-clique.
Given a parameter l, FindOne returns immediately once it
finds a l-clique (Lines 17 and 23). After FindOne returns a
clique C, it directly adds C into S and updates the graph G⃗
by removing nodes of this clique from G⃗ (Lines 8-11).

Example 2. Fig. 4(a) shows a DAG G⃗ of G in Fig. 2 with
the node ordering as η(vi) < η(vj) for any 1 ≤ i < j ≤ 9.
Alg. 1 inspects each nodes in G⃗ in the node ordering. Consider
k = 3. Since only nodes v6, v7, v8, and v9 has at least two out-
neighbors in G⃗, we only need to inspect these nodes. When
processing the node v6 whose out-neighbors are v1, v3, and
v5, we can recursively identify a 3-clique C1 = (v6, v5, v3).
Then, we remove C1 from G⃗ by deleting all edges incident
to nodes in C1, resulting in the graph in Fig. 4(b). After that,
only node v9 has at least two out-neighbors in the residual
graph of G⃗, which would lead to a 3-clique C2 = (v9, v8, v7).
By removing C2 from G⃗ as shown in Fig. 4(c), there are no
more nodes that should be inspected. The algorithm terminates
and outputs the set of 3-cliques containing C1 and C2, which
is a maximal disjoint 3-clique set of G. □

It is worthy noting that Alg. 1 does not list all k-cliques,
due to that each selected k-clique results in the pruning of the
search space. In other words, the selection of k-cliques would
be essential to the performance of the proposed algorithm.
Besides, the total ordering of nodes could affect the result of
S. To explain, suppose that we use the degree ordering, i.e., (i)
a node with a larger degree has a larger total ordering, and (ii)
ties are broken arbitrary if two nodes has the same degree. For
each processed node u, we only need to consider the nodes in
N+(u) for further computation, whose degrees are not larger
than that of u. Thus, after adding a clique C containing u to
S and removing nodes of C from G⃗, the search space only
decreases slightly, where the search space means the number
of cliques in the remaining graph.

Complexity analysis. As Alg. 1 inspects each node in G

Algorithm 2: COMPUTEWITHCLIQUESCORES(G)

Input: An undirected graph G = (V,E), k
Output: A set S of disjoint k-cliques of G

1 S ← ∅
2 Store all k-cliques of G in memory, calculate sc(C) for each

clique C
3 for each clique C in the ascending order of sc(C) do
4 if C is disjoint with all k-cliques in S then
5 S ← S ∪ C

6 return S

and generates each k-clique at most once, its time complexity
should not be more than the one of listing k-cliques. That
is, we have the time complexity of Alg. 1 bounded by
O(k ·m ·(d/2)k−2) [14] where d is the maximum node degree
of G. On the other hand, due to that Alg. 1 does not need to
store all listed k-cliques, its space complexity is O(m+ n).

B. k-Clique Ordering

As aforementioned, the selection of k-cliques to be added
into S could significantly affect the size of S. To address this
issue, we propose an ordering of k-cliques of G based on the
node degree estimation of the clique graph of G, which would
be able to generate a large number of disjoint k-cliques. Note
that, the estimation does not need to construct the clique graph,
which could avoid the overheads as mentioned previously. For
ease of illustration, we first introduce the clique graph related
concepts, and then explain the methodology for estimation
with a theoretical guarantee.

We say that two k-cliques C and C ′ are neighbors in the
clique graph GC if there exists a node u such that u appears
in both C and C ′, i.e., C and C ′ are not disjoint. Based on
that, we have the degree of a k-clique C, defined as follows.

Definition 4 (Clique Degree). Given a clique graph GC and a
clique C in GC , the clique degree of C, denoted by degGC

(C),
equals the number of neighbors of C in GC .

Recall that a straightforward approach is to compute the
MIS on the clique graph, which iteratively adds the minimum-
degree node to an initially empty solution while simultane-
ously removing the selected node and its neighbors from the
graph until the graph is empty. Although this approach can
lead to a near-optimal result by considering the degree of
k-cliques in the clique graph, even such a simple heuristic
method is not easily implemented due to the huge overheads of
calculating the node degree in the clique graph, which requires
the construction of the clique graph.

To address this issue, we devise a scoring method that
effectively approximates the degree of each k-clique in the
clique graph with a theoretical guarantee, as follows.

Definition 5 (Node Score). Given a node u in G, the node
score sn(u) of u is the number of k-cliques containing u.

Therefore, the score of a k-clique c can be computed based
on the scores of nodes in c, which is defined in the following.

Definition 6 (Clique Score). For a clique C, the clique score
sc(C) of C is the total score of nodes in C, i.e.,

∑
u∈C sn(u).

The following examples illustrate these definitions.

Example 3. Consider GC in Fig. 3. The clique degree of
each 3-clique can be computed in GC , e.g., degGC

(C1) = 2
due to that C1 is incident to two 3-cliques C2 and C3 in
GC . Furthermore, we have the node score of v6 as sn(v6) =
3, since there are three 3-cliques containing v6, which are
(v1, v3, v6), (v3, v5, v6), and (v5, v6, v8). Similarly, we have
sn(v5) = 3 and sn(v8) = 3. Moreover, since the 3-clique C3

contains three nodes v5, v6 and v8, we have the clique score
of C3 as sc(C3) = sn(v5) + sn(v6) + sn(v8) = 9. □

As such, we can derive an upper bound and a lower bound
of the clique degree for each k-clique C in G based on the
clique score of C, which is stated as follows.

Theorem 2. For a k-clique C, the degree degGC
(C) of C in

GC satisfies: (sc(C)− k)/(k− 1) ≤ degGC
(C) ≤ sc(C)− k.

In other words, the degree of a k-clique C is highly
related to its clique score sc(C), which means that we can
approximate the degree of C in the clique graph by sc(C).
Consequently, we can obtain the approximation degree of each
k-clique in G without explicitly constructing the condensed
graph , which would incur significant overheads in the com-
putation and memory consumption. We further propose an
algorithm that utilizes the clique score to generate a near-
optimal result set S.

Alg. 2 shows the details of our approach, which first stores
all k-cliques in memory (Line 2) and then processes the k-
cliques in ascending order of their clique scores in iterations
(Lines 3-5). In each iteration, we add a k-clique C into S, if
c is disjoint with all k-cliques in S. The algorithm terminates
when all k-cliques are processed and returns S as the result.

Analysis. In the sequel, we first show that the proposed
algorithm can achieve a k-approximation to the optimal. After
that, we analyze the complexity of the proposed algorithm in
terms of both space consumption and running time.

Lemma 1. Given a clique graph GC and a node C in GC , if
C has at least k+1 neighbors in GC , there exist two neighbors
of C in GC such that these two neighbors are connected with
an edge in GC .

Theorem 3. Any maximal S is a k-approximation solution.

Alg. 2 can produce a near-optimal solution as every clique
is chosen from a nearly global optimal view. However, this
method is not efficient as it has to store all cliques in memory.
Its time complexity is O(k ·m · (d/2)k−2 + τ · log τ), where
τ is the number of all cliques. To explain, it needs to find a
clique with the minimum clique score in each iteration, which
requires an additional cost of O(τ ·log τ). Its space complexity
is O(m+ n+ τ) as it needs to store all k-cliques.

Algorithm 3: LIGHTWEIGHT(G)

Input: An undirected graph G = (V,E), k
Output: A set S of disjoint k-cliques

1 S ← ∅
2 Calculate sn(u) for each node u ∈ V during the enumeration

all k-cliques of G (no need to store k-cliques in memory)
3 Let η be a total ordering on V such that if η(u) < η(v),

then sn(u) ≤ sn(v)
4 G⃗← a directed version of G, where u→ v if η(u) > η(v)
5 MinHeap← ∅, valid(v)← false ∀v ∈ V
6 HeapInit(MinHeap)
7 Calculation(MinHeap,S)
8 return S
9

10 Procedure HeapInit(MinHeap)
11 for each node u ∈ V in parallel do
12 if |N+(u)| ≥ k − 1 then
13 FindMin(l − 1, N+(u), {u}, ∅, sn(u))
14 Push the output clique into MinHeap

15
16 Procedure FindMin(l, V ′, C, Cmin, Scur)
17 if l = 2 then
18 for each node u of V ′ do
19 if Scur + sn(u) ≥ sc(Cmin) then
20 continue

21 for each edge ⟨u, v⟩ of G⃗ do
22 Cnew ← C ∪ {u, v}
23 if sc(Cnew) < sc(Cmin) then
24 Cmin ← Cnew

25 else
26 for each node u ∈ V (G⃗) do
27 if |N+(u)| < l − 1 or Scur + sn(u) ≥ sc(Cmin)

then
28 continue

29 FindMin(l − 1, N+(u), C ∪ {u}, Cmin, Scur +
sn(u))

30
31 Procedure Calculation(MinHeap,S)
32 while MinHeap is not empty do
33 Pop a clique C where node u has the largest node

ordering
34 if C is disjoint with all k-cliques in S then
35 Repeat Lines 8-11 of Algorithm 1

36 else
37 if valid(u) = true and |N+(u)| ≥ k − 1 then
38 FindMin(l − 1, N+(u), {u}, ∅, sn(u))
39 Push the output clique into MinHeap

C. A Lightweight Implementation

Although Alg. 2 does not need to build the condensed graph,
it has the drawback that it requires computing and storing
all k-cliques in G in memory to compute the score of each
clique, which results in significant overheads in memory con-
sumption. To explain, consider the Facebook dataset discussed
in Section I, whose 3-cliques have a number at least 400
times than the number of its nodes. Therefore, storing all

(a) G1 (b) G2

Fig. 5: Two graphs differing by only one edge with the bold
edges in the corresponding maximum set of disjoint 3-cliques.

the k-cliques would explode the memory space, especially for
large graphs. To alleviate this issue, we develop a lightweight
implementation that (i) does not need to store all the k-cliques,
and (ii) produces the same result as the one of Alg. 2.

Alg. 3 presents the proposed lightweight implementation.
The main idea is first to find a k-clique with the local minimum
clique score among the subgraphs induced on the set N+(u)
of out-neighbors of each node u. Then, these locally identified
k-cliques are collected, and a clique with the global minimum
clique score among them is found in each iteration. In detail,
it first calculates the node score for each node (Line 2) and
then sets a total node ordering using the node score (Line
3). It is worth noting that calculating the node score can be
directly performed during the enumeration of all k-cliques,
requiring only a memory cost of O(m + n), as we do not
store any k-cliques in memory. After that, it converts the
original graph G into a DAG G⃗ using the total ordering (Line
4). To efficiently find the clique with the global minimum
clique score, it uses a min-heap MinHeap to maintain cliques
with the local minimum clique score (Line 5). Then, it calls
the procedure HeapInit to initialize MinHeap (Line 6),
which calls the procedure FindMin, for each node u, to
find the clique with the minimum clique score based on
the set N+(u) of out-neighbors of u and pushes this clique
into MinHeap (Lines 11-14). After initializing MinHeap,
it calls the procedure Calculation to produce S by finding a
clique with the global minimum clique score in each iteration
(Line 7). This procedure pops cliques from MinHeap until
MinHeap is empty (Lines 32-39). During this step, when
a clique is disjoint with all k-cliques in S, then we add
this clique to S and update G⃗ accordingly (Lines 34-35).
Otherwise, if its internal node u with the highest node ordering
is still valid, it inspects a new clique with the minimum clique
score based on N+(u) to MinHeap (Lines 37-39).

We implement our score-driven pruning strategy in the
procedure FindMin. The motivation behind this strategy is
to prune certain branches when the sum of the node scores of
the previous recursive nodes is no smaller than the minimum
clique score that has been found, indicating that such branches
can not produce a clique with a smaller clique score. In partic-
ular, FindMin includes a parameter Scur, which represents
the sum of the node score of the previous recursive nodes. With
this, we implement our score-driven pruning strategy (Lines
19-20 and Lines 27-28). Specifically, a branch is pruned when
Scur plus the score of the currently visited node is no smaller
than the minimum clique score that has been found.

Algorithm 4: TRYSWAP(q)

Input: A directed graph G⃗, k, a FIFO queue q of cliques in
S

Output: A set S of disjoint k-cliques
1 while q is not empty do
2 C ← q.pop()
3 Locate all neighboring candidate cliques C(C) of C
4 Use Alg. 2 to find disjoint k-cliques Sdis among C(C)
5 if |Sdis| > 1 then
6 Remove C from S and add cliques in Sdis to S
7 Update the candidate cliques
8 Push any cliques C′ in S whose C(C′) involves new

candidate cliques to q

9 return S

Analysis. With converting G into a DAG G⃗, the computed
k-cliques induced on N+(u) for each node u are disjoint,
and their union exactly corresponds to the entire k-clique set.
Based on this observation, we can first find the clique with
the local minimum clique score on N+(u) for each node
u in parallel and then identify the clique with the global
minimum score among these found cliques. When an invalid
clique from N+(u) is popped, we should update the clique
with the local minimum clique score in N+(u), which incurs
redundant computation. However, such redundant computation
must happen with some nodes becoming invalid and removed
from N+(u), which indicates the size of the computed directed
graph gradually reduces. Furthermore, together with our score-
driven pruning strategy, such redundant computation is limited.
The time complexity of the algorithm is O(n·m·(d/2)k−2). To
explain, Alg. 3 involves redundant k-clique listing computation
where for each node u, it conducts computation in N+(u)
at most n/k times. The space complexity is O(m + n).
Additionally, Alg. 3 can produce the same S as Alg. 2, as
analyzed in Theorem 4, while simultaneously reducing the
time and space overheads.

Theorem 4. Given a fixed node ordering and a fixed ordering
between cliques, Alg. 3 and Alg. 2 produce the same S.

V. HANDLING DYNAMIC GRAPHS

Previously, we assume that the graph is static, while most
real-life graphs are dynamic with frequent updates by inserting
new edges or deleting existing edges, as observed in Section I.
Note that, the case of updates on the nodes can be treated
equivalently as the updates on the edges incident to the
corresponding nodes. Handling updates efficiently for our
studied problem would be of great importance, due to that (i)
some k-cliques incident to deleted edges could no longer exist
in the updated graph, (ii) the result set S might no longer be
the largest one, especially after inserting a sufficient number
of edges, and (iii) the real-world applications would require a
timely response for the updates.

To achieve that, we propose an efficient strategy by first
inspecting a sufficiently small set S of k-cliques that would

Algorithm 5: CONSTRUCTION(S)

Input: A directed graph G⃗, k, a set S of disjoint k-cliques
Output: A set C of candidate k-cliques

1 for each clique C in S in parallel do
2 Let B be the nodes both in C and NF (C)
3 Find all k-cliques C′ except C on B and add C′ to C
4 return C

be affected by the updates, and then swapping k-cliques in S
with the ones in S that would maximize the size of the result
set S. In order to make the inspection efficient, we develop an
indexing approach that can easily retrieve the set S according
to the updates. In the following, we first present the algorithm
designed for efficient swap operations in Section V-A, and
then we introduce the indexing structures in Section V-B, after
which we put all together by explaining the algorithms for
handling the updates based on the swapping operations and
the indexing structures in Section V-C.

A. Swap Operations

The main idea behind our swap operation is to remove a
clique from S and add as many of its disjoint neighboring
cliques as possible to S in order to increase the size of S.
To explain, given a graph G = (V,E) and a set S of disjoint
k-cliques of G, we first identify the nodes, called free nodes,
that are not contained in any clique C ∈ S. As such, the k-
cliques, containing both free nodes and non-free nodes, are the
interesting ones that could lead to increase of the size of S
after the swap operations. We call such k-cliques as candidate
k-cliques, and denote the set of all candidate k-cliques of G
by C. The implication of a candidate k-clique C ′ are two-
fold: (i) C ′ should not contain only free nodes, otherwise C ′

should be added to S, which contradicts that S is a maximal
set of disjoint k-cliques. (ii) On the other hand, C ′ should not
contain only non-free nodes, otherwise the swap operation of
C ′ cannot proceed due to that the non-free nodes are already
contained in some cliques in S. In light of that, the non-free
nodes in a candidate k-cliques should be contained in the same
k-clique in S. Given a k-clique C ∈ S, we denote C(C) as
the set of all the candidate k-cliques C ′ ∈ C such that C and
C ′ have at least one node in common, i.e., C and C ′ are not
disjoint. As shown in Fig. 5, if adding a new edge ⟨v5, v7⟩ to
G1 resulting in the graph G2, the candidate 3-cliques of the
clique C1 = (v3, v4, v5) are (v1, v2, v3) and (v5, v6, v7), where
the latter one is a new formed clique. Therefore, when a k-
clique C ∈ S is updated which requires the swap operations,
we only need to consider the candidate k-cliques in C(C).

Alg. 4 depicts the proposed swap operation. It utilizes a
FIFO queue to store cliques in S that are eligible for swapping.
During each iteration, it pops a clique C from the queue and
attempts to find a set Sdis of disjoint k-cliques using Alg. 2
among its candidate cliques (Lines 2-4). If it finds a non-empty
Sdis, C is removed from S and the cliques in Sdis are added to
S (Lines 5-6), thereby increasing the size of S. Subsequently,

Algorithm 6: INSERTION(⟨u, v⟩)

Input: A directed graph G⃗, k, a new edge ⟨u, v⟩
Output: A set S of disjoint k-cliques

1 if only one node u is a free node then
2 Find new candidate k-cliques containing ⟨u, v⟩
3 if found then
4 C ← the clique in S containing v
5 Queue q.push(C)
6 TrySwap(q)

7 else if u and v are both free nodes then
8 if free nodes can form a clique then
9 Add this new clique to S

10 Update the candidate cliques

11 else
12 Update the candidate cliques
13 Queue q ← ∅
14 Push all cliques C′ in S whose C(C′) involves new

candidate cliques to q
15 TrySwap(q)

16 return S

the candidate cliques are updated, and any clique C ′ in S with
C(C ′) involving new candidate cliques is pushed to the queue
for additional swaps (Lines 7-8).
Analysis. The swap operation is effective as it can expand
S and lead to achieving a nearly local optimum after the
iterations. The time complexity of Alg. 4 is O(k · |S| ·

(
k·d)
k

)
·

log
(
k·d
k

)
). To explain, for each k-clique, the cost of listing

its neighboring k-cliques is O(
(
k·d
k

)
) and it costs O(

(
k·d
k

)
·

log
(
k·d
k

)
) to find a disjoint k-clique set. Besides, the number

of swaps is O(k · |S|). The space cost is O(m+n+ |S|+ |C|).

B. Maintaining Candidate k-Cliques

However, listing candidate k-cliques from scratch for each
swap is expensive, that incurs significantly overheads in re-
dundant computation. Thus, we maintain candidate k-cliques
to reduce the redundant computation cost during each swap
operation. We regard these candidate k-cliques as the indexing
structure for swap operation. Alg. 5 illustrates the proposed
approach for finding all candidate k-cliques. Recall that the
non-free nodes in a candidate k-clique C ′ should come from
the same k-clique C in S, i.e., at most one neighbor of C ′

in the clique graph is contained in S. As such, we need to
find out all candidate cliques for each clique C in S and
collecting them to form a set C of candidate cliques. Given
a clique C in S, we use NF (C) to denote the set of free
nodes that are the neighbors of any node of C in G. To
identify candidate cliques of C, we first inspects the set B of
nodes consisting of both the nodes in C and the corresponding
free nodes in NF (C). Subsequently, we find all k-cliques on
B excepting C, and add them to C (Line 3). For example,
in Fig. 5(a), consider the maximum disjoint 3-clique set of
G1, which is S = {C1 = (v3, v4, v5), C2 = (v9, v10, v11)}.
As for C1, we inspects the nodes in C1 and NF (C1), i.e.,
v3, v4, v5, v1, v2, v6, which leads to a candidate 3-clique of

Algorithm 7: DELETION(⟨u, v⟩)

Input: A directed graph G⃗, k, a deleted edge ⟨u, v⟩
Output: A set S of disjoint k-cliques

1 if u and v are in a clique of S then
2 Let C be the deleted k-clique in S
3 Queue q.push(C)
4 TrySwap(q)

5 else
6 Delete candidate k-cliques containing ⟨u, v⟩.
7 return S

C1, i.e., (v1, v2, v3). On the other hand, C2 has no candidate
cliques, as it has no neighboring free nodes.

Analysis. The size of candidate k-cliques is bounded by |S| ·(
k·d
k

)
. The time cost of Alg. 5 is O(|S| ·

(
k·d
k

)
). The space cost

is O(m+n+ |S|+ |C|). In practice, the quantity of candidate
cliques is not expected to be large due to the strong constraint
of the candidate clique, which requires that internal nodes are
either free nodes or belong to the same clique in S.

C. Handling Updates

We are now ready to propose our dynamic methods by
applying the swap operation and the index. However, the chal-
lenges arise when dealing with edge insertions and deletions:
determining (i) when to apply the swap operation and (ii) how
to identify the set of cliques that have the potential to expand
S as the input of our swap operation. Regarding the second
challenge, after performing edge updates, we select the cliques
in S that include new candidate cliques as input for the swap
operation. Thus, the answer to the first challenge naturally
emerges: the swap operation is applied only when we can
identify cliques in S that involve new candidate cliques. Next,
we formally introduce how our insertion and deletion methods
handle the above challenges.

1) Incremental Update: An edge insertion may create new
candidate cliques that can be used to expand S by our swap
operation, or it may produce new cliques that can be directly
added to S. Alg. 6 presents the details of our incremental
method that deals with two cases. Suppose that the new edge
is ⟨u, v⟩. The first case occurs when only one node u is a
free node, and the second case occurs when both u and v
are free nodes. If neither u nor v are free nodes, nothing
needs to be done. In the first case where only u is a free node
(Lines 1-6), we first find new candidate k-cliques containing
⟨u, v⟩ (Line 2). If new candidate cliques are found, we add
the clique containing v in S to the queue q as the parameter
of conducting TrySwap to expand S. When both u and v are
free nodes (Lines 7-15), if free nodes can form a new clique
among the neighbors incident to u, v and their neighboring
free nodes, we can directly add the new clique to S and
update the corresponding candidate cliques. Notably, we do
not conduct TrySwap in this case as the other cliques in S
will not involve new candidate cliques. When free nodes can
not produce cliques (Lines 12-15), as this new edge may form

new candidate cliques, we first find new candidate cliques.
Then, we push any clique C ′ in S whose C(C ′) involves
new candidate cliques to q and use TrySwap to expand S .
For instance, in Fig. 5, consider adding an edge ⟨v5, v7⟩ in
G1 leading to the graph G2. Due to that v7 is a free node,
the insertion creates a new candidate 3-clique (v5, v6, v7) for
(v3, v4, v5), which already has a candidate 3-clique in G1, i.e.,
(v1, v2, v3). Then, TrySwap removes (v3, v4, v5) from S, and
adds (v5, v6, v7) and (v1, v2, v3) to S, resulting in the increase
of the size of S.
Analysis. The bottleneck of the insertion method is the
TrySwap procedure. Thus, the time complexity of Alg. 6
is O(k · |S| ·

(
k·d
k

)
· log

(
k·d
k

)
). The space complexity is

O(m+ n+ |S|+ |C|).
2) Decremental Update: An edge deletion ⟨u, v⟩ can lead

to the splitting of a clique in S or candidate cliques containing
this edge. Thus, there are two cases to consider. The first case
occurs when both u and v are in a clique of S, which results
in the splitting of this clique in S and makes S not maximal.
Thus, we can apply our swap framework in this split clique
to expand S. The second case occurs when u and v form
candidate k-cliques. We only need to delete such candidate
k-cliques. Alg. 7 presents the details of the edge deletion
method. In the case where u and v are in a clique C of S
(Lines 1-4), we push C to the queue and perform TrySwap
to expand S. Otherwise, if u and v are not in a clique of
S, we directly delete invalid candidate k-cliques containing
⟨u, v⟩ (Lines 5-6). For example, in Fig. 5, consider the deletion
of edges ⟨5, 7⟩ from G2 leading to the graph G1. Note that,
the affected clique (v5, v6, v7) does not have any candidate
3-cliques, due to that the incident clique (v3, v4, v5) has the
node v3, which is contained by the other 3-cliques in S. As
a result, we have S = {(v1, v2, v3), (v9, v10, v11)}, which is
also a maximum disjoint 3-clique set in G1.

Analysis. The bottleneck of the deletion method is also the
TrySwap procedure. Thus, the time complexity of Alg. 7 is
O(k · |S| ·

(
k·d
k

)
· log

(
k·d
k

)
). The space complexity is O(m +

n+ |S|+ |C|).

VI. EXPERIMENTS

We conduct extensive experiments over 10 real-world
graphs on a Linux machine with an Intel Xeon 2.10GHz
CPU and 504GB memory. All algorithms are implemented
in C++ and compiled using g++ with full optimization. By
default, we use 64 threads. The runtime of any algorithm that
exceeds 24 hours will be reported as out-of-time “OOT”. We
also report out-of-memory “OOM” if the memory cost of any
algorithm exceeds the limit. In the experiments, we vary k
from 3 to 6, according to the setting of real-world applications,
as explained in Section I.

A. Experimental Setup

Datasets. We test on 10 real graph datasets with different
scales, as shown in Table I. All datasets are publicly available
on KONECT [29] and Network Repository [30].

10
-1

10
0

10
1

10
2

10
3

3 4 5 6

running time(ms)

k

10
0

10
1

10
2

10
3

10
4

3 4 5 6

running time(ms)

k

10
1

10
2

10
3

10
4

10
5

10
6

3 4 5 6

running time(ms)

k

10
1

10
2

10
3

10
4

3 4 5 6

running time(ms)

k

10
2

10
3

10
4

10
5

10
6

3 4 5 6

running time(ms)

k

(a) FTB (b) HST (c) FB (d) FBP (e) FBW

10
2

10
3

10
4

10
5

10
6

10
7

3 4 5 6

running time(ms)

k

10
3

10
4

10
5

10
6

10
7

3 4 5 6

running time(ms)

k

10
3

10
4

10
5

10
6

10
7

10
8

3 4 5 6

running time(ms)

k

10
4

10
5

10
6

10
7

10
8

3 4 5 6

running time(ms)

k

10
4

10
5

10
6

10
7

3 4 5 6

running time(ms)

k

(f) DS (g) SK (h) FL (i) LJ (j) OR

Fig. 6: Average running time in milliseconds with varying k.

TABLE I: Statistics of datasets. (K,M,B, T = 103, 106, 109, 1012)

Name Dataset n m Number of k-cliques
k = 3 k = 4 k = 5 k = 6

FTB Football 115 613 810 732 473 237
HST Hamsterster 1.86K 12.5K 16.8K 10K 2.77K 285
FB Facebook 4K 88K 1.61M 30M 518M 7.83B

FBP FBPages 28K 206K 393K 837K 2.19M 6.1M
FBW FBWosn 63.7K 817K 3.5M 13.3M 46.5M 145M
DS Dogster 260K 2.15M 5.17M 28.5M 131M 475M
SK Skitter 1.7M 11M 28.8M 149M 1.18B 9.76B
FL Flickr 1.7M 15.6M 548M 26.7B 1.07T 33.6T
LJ Livejournal 5.2M 48.7M 311M 11.4B 589B 28.2T
OR Orkut 3M 117M 628K 3.22B 15.8B 75.2B

Competitors. In the experiment, we adopt 5 competitors:
the exact solution, denoted by OPT, which is calculated by
computing the exact MIS solution with [31] in the clique
graph; the basic framework on G (Alg. 1), denoted by HG;
the method with a k-clique ordering (Alg. 2), denoted by
GC; the lightweight ordering method without our proposed
score-based pruning strategy (Alg. 3), denoted by L; the
lightweight ordering method with our proposed score-based
pruning strategy (Alg. 3), denoted by LP.
Implementation details. Notably, although Alg. 3 and Alg. 2
can produce the same S with a fixed total node ordering and a
fixed total clique ordering (see Theorem 4), we do not maintain
the fixed total clique ordering for efficiency considerations.
Instead, we only guarantee that when a clique is added to S, its
clique score is currently the minimum. In other words, if two
cliques have the same clique score, then we directly add the
first countered one to S. As a result, the quality of S between
these two algorithms may differ slightly. Our implementation
is available at https://github.com/jerchenxin/disjoint-k-clique.

B. Varying k

We first evaluate the performance of our proposed algo-
rithms in running time, output quality, and space consumption.
Figure 6 shows the running time of each algorithm. To
ensure fairness, the running time includes initialization and
calculation time. First, OPT is inefficient. OPT runs OOT or
OOM even on small datasets since computing the clique graph
and the exact MIS is costly. Besides, we can see that the

running time of OPT decreases as k increases in FTB and
HST since the size of FTB and HST is too small and its clique
graph also gets smaller as k increases. Second, HG is the most
efficient, and its running time remains nearly the same with
varying k. Third, GC is much slower than LP, and it runs
OOM for five datasets when k is large. For example, for FL,
LJ, and OR, it runs OOM when k is larger than 3. Fourth,
compared with GC, L and LP are efficient and nearly one to
two orders of magnitude faster than GC. Compared with LP,
when k is 3 and 4, HG is nearly 2X faster in most datasets.
As k increases, the running time of L and LP exhibits nearly
exponential growth. Finally, compared with L, LP is more
and more efficient when k is larger than 3. For example, LP
is nearly one order of magnitude faster in LJ when k = 6.

Table II presents the quality of S of each algorithm. We use
the size of S to represent the quality of S, and the larger the
size, the better the quality. Due to the same quality of S of L
and LP, we only report the quality of S of LP. In this table, we
report the exact size of S for OPT and HG, and the relative size
for GC and LP, denoted by ∆, which is the difference between
the size of their S and that of HG. For example, when k is 3
in FBP, the size of S of HG is 1602 and ∆ of GC and LP is
163 and 164, respectively. Consequently, the size of S of GC
and LP is 1765 and 1766, respectively. First, we can see that
LP and OPT can produce nearly the same S, which indicates
that LP can produce a high-quality solution. Second, we can
see that the size of S of GC and LP is nearly the same. The
slight difference is due to the absence of a strict total node and
clique ordering for efficiency considerations. Third, compared
with HG, the size of S of LP is nearly up to 13.3% larger. For
example, in OR, when k is 6, the size of S of LP is 13.3%
larger. In LJ, when k is 6, the size of S LP is 11.7% larger.
Thus, we conclude that LP can produce a near-optimal S.

Table III summarizes the space consumption of each al-
gorithm. The space consumption of HG and LP is relatively
small due to the linear complexity. In contrast, the space
consumption of GC is significantly higher as it needs to load
all k-cliques in memory. Furthermore, the space consumption

TABLE II: Size of S. (For GC and LP, ∆ is the difference between the size of their S with that of HG)
Name k=3 k=4 k=5 k=6

OPT HG GC (∆) LP (∆) OPT HG GC (∆) LP (∆) OPT HG GC (∆) LP (∆) OPT HG GC (∆) LP (∆)
FTB OOT 32 4 4 25 24 -1 -1 16 16 0 0 11 11 0 0
HST OOT 201 10 10 OOT 52 6 6 15 13 1 1 5 4 1 1
FB OOT 1,195 40 40 OOM 784 48 48 OOM 561 37 37 OOM 413 OOM 31

FBP OOT 5,732 357 348 OOT 2,888 254 249 OOM 1,602 163 164 OOM 967 88 106
FBW OOT 13,114 1,112 1,121 OOM 7,041 661 660 OOM 4,146 443 447 OOM 2,606 307 309
DS OOM 19,974 364 357 OOM 5,044 231 234 OOM 1,787 127 127 OOM 797 78 78
SK OOM 132,009 4,458 4,495 OOM 31,775 2,054 2,058 OOM 10,320 985 987 OOM 4,354 OOM 480
FL OOM 132,308 8,856 8,830 OOM 51,615 OOM 4,069 OOM 24,220 OOM 1,556 OOM 12,937 OOM 307
LJ OOM 874,457 74,976 75,026 OOM 430,014 OOM 41,239 OOM 232,180 OOM 24,684 OOM 133,795 OOM 14,877
OR OOM 861,315 54,590 54,556 OOM 513,758 OOM 49,093 OOM 323,078 OOM 38,041 OOM 212,440 OOM 28,186

TABLE III: Space consumption in megabytes (MB).
FTB HST FB FBP FBW DS SK FL LJ OR

k=3
OPT OOT OOT OOT OOT OOT OOM OOM OOM OOM OOM
HG 1.88 3.55 4.78 8.21 19.2 49.1 267 322 1030 1800
GC 3.75 4.80 160 94.9 423 1070 5350 49500 35500 60800
LP 3.80 4.34 20.7 86.2 221 849 2920 3920 10200 9310

k=4
OPT 18 OOT OOM OOT OOM OOM OOM OOM OOM OOM
HG 1.9 3.52 4.89 8.23 18.9 49.4 266 321 1030 1790
GC 4.18 4.48 3880 180 1860 4170 22300 OOM OOM OOM
LP 3.85 4.36 21.5 93.5 237 911 3350 4360 11500 10100

k=5
OPT 16 115 OOM OOM OOM OOM OOM OOM OOM OOM
HG 1.91 3.61 4.73 8.03 19.1 50.2 271 327 1040 1800
GC 3.77 4.36 67000 347 6150 17500 156000 OOM OOM OOM
LP 3.86 4.32 21.5 101 251 977 3870 4740 12700 10800

k=6
OPT 10 21 OOM OOM OOM OOM OOM OOM OOM OOM
HG 1.98 3.55 4.74 8.38 19.1 51 277 333 1050 1801
GC 4 4.30 OOM 1040 OOM 76000 OOM OOM OOM OOM
LP 3.66 4.39 28.3 107 268 1050 4210 5140 13800 11500

TABLE IV: Comparison with exact solution (ER is error ratio).
Swallow Tortoise Lizard Football Voles Hamsterster

Graph size
n 17 35 60 115 181 1.86K
m 53 104 318 613 515 12.5K

k=3
LP 4 6 19 36 48 211
OPT 4 6 OOT OOT 49 OOT
ER 0% 0% - - 2.04% -

k=4
LP 2 2 13 23 30 58
OPT 2 2 14 25 30 OOT
ER 0% 0% 7.14% 8% 0% -

k=5
LP 0 1 9 16 18 14
OPT 0 1 9 16 18 15
ER 0% 0% 0% 0% 0% 6.67%

k=6
LP 0 1 4 11 13 11
OPT 0 1 4 11 13 11
ER 0% 0% 0% 0% 0% 0%

of OPT is even greater than that of GC, as OPT requires
storing the clique graph in memory, which is exceptionally
large. For example, in the HST dataset with k = 5, the space
consumption of OPT is 26.4 times larger than that of GC.

C. Comparison with Exact Solution

In this experiment, we compare LP with OPT in 6 public
datasets [29] and demonstrate the effectiveness of LP. Given
that computing the exact solution is highly costly, we limit our
evaluation to 6 smaller datasets of different sizes. As shown
in Table IV, LP can produce a solution whose size is close to
that of OPT. For these datasets, in most cases, LP can produce
an optimal solution. Furthermore, it is noteworthy that even
for such small datasets like Lizard, OPT runs out of time when
k = 3, which also underscores the superior efficiency of LP.
We also observe that the error ratio is at most 8%.

TABLE V: Running time (s) on synthetic datasets.
Degree k=3 k=4 k=5 k=6

HG GC LP HG GC LP HG GC LP HG GC LP
8 1.2 3.28 3.98 1.22 2.29 3.24 1.19 1.9 2.77 1.14 1.49 1.96

16 2.2 9.36 6.98 2.41 9.96 6.14 2.3 6.26 5.34 2.4 4.1 4.3
32 4.15 35.5 14.3 4.29 116 15.4 4.45 146 15.3 4.64 123 13.6
64 9.85 194 32.2 8.78 1.66K 47.3 8.86 4.83K 82.4 9.14 OOM 133

TABLE VI: Size of S on synthetic datasets.
Degree k=3 k=4 k=5 k=6

HG GC (∆) LP (∆) HG GC (∆) LP (∆) HG GC (∆) LP (∆) HG GC (∆) LP (∆)
8 275,636 19,394 19,164 160,284 14,764 14,693 57,106 717 719 0 0 0
16 303,408 7,277 7,291 206,693 17,764 17,695 138,749 24,804 24,783 88,509 12,026 12,050
32 317,417 3,509 3,444 228,178 7,460 7,446 171,736 12,707 12,710 130,654 18,749 18,735
64 324,964 1,629 1,683 238,631 3,278 3,273 185,736 5,421 5,405 149,210 OOM 8,131

D. Performance on Synthetic Datasets

In this experiment, we vary the graph density to evaluate
the scalability of HG, GC, and LP. We generate several random
graphs under the Watts-Strogatz model [32] with the number
of nodes equal to n = 1M , while the average node degree is
varied from 8 to 64, leading to the number of edges varied
from 4M to 32M respectively. Table V presents the running
time, and Table VI presents the size of S. We can first
observe that both the size of S and the running time of each
method increase as the graph becomes denser. Besides, the
running time of HG remains nearly the same as k increases.
The running time of GC and LP depends on the number
of k-cliques as collecting all k-cliques and the node score
calculation usually consume most of the time. For example,
when the average degree is 32, the running time of LP first
increases and then decreases when k ≥ 4.

E. Evaluation on Dynamic Graphs

In this section, we evaluate the performance of our proposed
dynamic algorithms in indexing time, index size, update per-
formance, and the quality of S after updates.

First, we evaluate the indexing time and the index size
of the proposed index. Table VII shows the indexing time
and the index size, with the number of candidate cliques
representing the index size. First, we can observe that indexing
time increases with the increase of the index size. For example,
in FBP, with the increase of k, the index size increases, leading
to an increase in indexing time. Second, we can observe our
index is efficient to build, and has a small size. For instance,
in OR when k is 6, it only has 1.92M candidate cliques while
it has 75.2B 6-cliques. To explain, nodes in a candidate clique
can be either free nodes or belong to the same clique in S.
Such a strict constraint limits the index size.

Next, we evaluate the update performance under three
workloads: 10K edge deletions, 10K edge insertions, and
mixed workloads with 20K updates. For FTB and HST, we use
10 and 1K edge deletions and insertions, and mixed workloads

10
2

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

10
2

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

10
2

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

(a) FTB (b) HST (c) FB (d) FBP (e) FBW

10
4

10
5

10
6

3 4 5 6

running time(ns)

k

10
4

10
5

10
6

10
7

3 4 5 6

running time(ns)

k

10
3

10
4

10
5

10
6

10
7

3 4 5 6

running time(ns)

k

10
3

10
4

10
5

10
6

10
7

10
8

10
9

3 4 5 6

running time(ns)

k

10
3

10
4

10
5

3 4 5 6

running time(ns)

k

(f) DS (g) SK (h) FL (i) LJ (j) OR
Fig. 7: Average update time in nanosecond seconds with varying k in deletion, insertion, and the mixed workload.

TABLE VII: Indexing time and index size.
Dataset Indexing Time (ms) Index Size

3 4 5 6 3 4 5 6
FTB 7.1 11.1 11.1 11.3 86 149 419 226
HST 9.91 17.7 11.6 15.5 1.01K 327 274 20
FB 10.5 9.57 19.6 43.4 1.45K 3.03K 3.87K 16.8K

FBP 37.3 41.7 44.9 61.7 9.61K 10.9K 16.3K 25.7K
FBW 58.2 63.7 73.1 88.6 5.98K 9.41K 16.6K 30.2K
DS 307 207 192 190 109K 15.3K 5.18K 3.36K
SK 2.73K 1.83K 1.71K 2.06K 1.51M 453K 188K 132K
FL 1.46K 1.52K 1.84K 2.66K 173K 103K 274K 419K
LJ 5.59K 5.8K 7.16K 14.6K 983K 1.13M 3M 4.73M
OR 4.97K 4.95K 5.19K 7.36K 278K 612K 1.07M 1.92M

TABLE VIII: Quality of S after updates. (∆ is the difference
of the size of S compared with that of building from scratch)

Dataset After Deletion (∆) After Insertion (∆) After Mixed Updates (∆)
3 4 5 6 3 4 5 6 3 4 5 6

FTB 0 0 0 -1 0 0 0 0 0 0 0 0
HST 0 3 -1 0 0 2 1 0 -1 -1 0 0
FB -13 -9 -14 -12 -23 -28 -36 -32 -35 -30 -28 -20

FBP -18 -24 -2 6 -7 -12 -14 -1 -58 -32 -17 -16
FBW -110 -63 -49 -11 -45 -36 -29 -2 -153 -120 -89 -61
DS 38 1 2 1 59 11 3 0 55 -2 -8 -11
SK 35 -3 6 -4 33 26 10 8 -3 20 -5 0
FL -16 -30 193 367 14 0 198 378 -34 -60 190 385
LJ 42 68 51 68 96 88 70 132 -80 21 -17 64
OR -78 -43 36 29 28 -4 34 37 -128 -94 -41 -38

with 20 and 2K updates, respectively, since the graph is small.
For the first and second workloads, we first randomly and
uniformly select 10K edges. Then, we delete these edges to
report the performance for edge deletions and add them back
to report the performance for edge insertions. For the mixed
workloads, we generate 20K updates including 10K insertions
and 10K deletions. All edges are also selected randomly and
uniformly. For 10K insertions, we will first delete them from
G to form a new graph G′. Then, we evaluate the performance
in the mixed workload by applying 20K updates in G′. For
each workload, we report the average running time in Figure
7 and the size of S after updates in Table VIII.

Figure 7 presents the average update time. First, we can
observe that the average update time of three workloads
increases with the increase of k as a larger k incurs more
subgraph computation costs. However, For DS and SK, the
average deletion time drops when k is 4 and 5. To explain,
when k is 4 and 5, the size of candidate cliques of DS and
SK significantly decreases, which leads to the decreased cost

of maintaining the candidate cliques. In addition, compared
with building from scratch, our proposed insertion and deletion
algorithms are efficient. For example, for OR, when k is 3, the
time of building from scratch equals that of 3.6M edge deletion
operations, that of 48.6M edge deletion operations, and that of
6.5M mixed update operations. It shows that only with such a
large amount of updates, the total update time is the same as
that of building from scratch, which indicates the efficiency
of our dynamic algorithms.

Besides, Table VIII shows the size of S after updates
compared with that of building from scratch. We can observe
that S preserves a high quality. For example, for OR after
deletion when k is 3, S decreases by 78, which is only
0.08% of the size of S. For datasets like LJ, the size of S
even increases. To explain, our swap operation can reach a
nearly local optimum, and thus, its size may be larger than
that of building from scratch. Thus, we can conclude that our
proposed dynamic methods are efficient and effective.

VII. CONCLUSIONS

In this paper, we study a new problem, the maximum set of
disjoint k-cliques, which finds essential real-world applications
in social networks but is proved to be NP-hard. To address that,
we propose an efficient lightweight method that achieves a k-
approximation to the optimal. We develop several optimization
techniques, including the node ordering method, the k-clique
ordering method, and a lightweight implementation. Besides,
to handle dynamic graphs, we devise an efficient indexing
method with careful swapping operations, leading to the
efficient maintenance of a near-optimal result with frequent
updates in the graph. In various experiments on several large
graphs, our proposed approaches significantly outperform the
competitors in terms of both efficiency and effectiveness.

VIII. ACKNOWLEDGEMENTS

This work is supported by the Hong Kong RGC GRF
Grant (No. 14217322), Hong Kong ITC ITF Grant (No.
MRP/071/20X), Tencent Rhino-Bird Focused Research Grant,
and Singapore MOE AcRF Tier-2 Grant (T2EP20122-0003).

REFERENCES

[1] C. E. Tsourakakis, “The k-clique densest subgraph problem,” in WWW,
pp. 1122–1132, ACM, 2015.

[2] E. Gregori, L. Lenzini, and S. Mainardi, “Parallel (k)-clique commu-
nity detection on large-scale networks,” IEEE Trans. Parallel Distributed
Syst., vol. 24, no. 8, pp. 1651–1660, 2013.

[3] F. Hao, G. Min, Z. Pei, D. Park, and L. T. Yang, “K-clique community
detection in social networks based on formal concept analysis,” IEEE
Syst. J., vol. 11, no. 1, pp. 250–259, 2017.

[4] D. Duan, Y. Li, R. Li, and Z. Lu, “Incremental k-clique clustering in
dynamic social networks,” Artif. Intell. Rev., vol. 38, no. 2, pp. 129–147,
2012.

[5] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, no. 7136, pp. 664–667, 2007.

[6] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, pp. 449–467, 1965.

[7] S. Zhang, Y. Huang, J. Sun, W. Lin, X. Xiao, and B. Tang, “Capacity
constrained influence maximization in social networks,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023,
pp. 3376–3385, ACM, 2023.

[8] X. Zhang, S. Xu, W. Lin, and S. Wang, “Constrained social community
recommendation,” in Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023, pp. 5586–5596, ACM, 2023.

[9] S. Zhang, J. Sun, W. Lin, X. Xiao, and B. Tang, “Measuring friendship
closeness: A perspective of social identity theory,” in Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, Atlanta, GA, USA, October 17-21, 2022, pp. 3664–3673,
ACM, 2022.

[10] W. Lin, “Large-scale network embedding in apache spark,” in KDD ’21:
The 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, Singapore, August 14-18, 2021, pp. 3271–3279,
ACM, 2021.

[11] G. Huzhang, X. Huang, S. Zhang, and X. Bei, “Online roommate
allocation problem,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pp. 235–241, ijcai.org, 2017.

[12] L. Chang, W. Li, and W. Zhang, “Computing A near-maximum inde-
pendent set in linear time by reducing-peeling,” in SIGMOD, pp. 1181–
1196, ACM, 2017.

[13] W. Lin, X. Chen, H. Xie, S. Wang, and S. Luo, “Finding near-optimal
maximum set of disjoint k-cliques in real-world social networks,” CoRR,
vol. abs/2503.20299, 2025.

[14] M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse real-
world graphs,” in WWW, pp. 589–598, ACM, 2018.

[15] R. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu, “Ordering
heuristics for k-clique listing,” Proc. VLDB Endow., vol. 13, no. 11,
pp. 2536–2548, 2020.

[16] Z. Yuan, Y. Peng, P. Cheng, L. Han, X. Lin, L. Chen, and W. Zhang,
“Efficient k-clique listing with set intersection speedup.,” in ICDE,
pp. 1955–1968, 2022.

[17] M. Yu, L. Qin, Y. Zhang, W. Zhang, and X. Lin, “Aot: Pushing
the efficiency boundary of main-memory triangle listing,” in DASFAA,
pp. 516–533, 2020.

[18] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical computer science, vol. 407, no. 1-3,
pp. 458–473, 2008.

[19] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[20] T. Kameda and J. I. Munro, “A o(|v|*|e|) algorithm for maximum
matching of graphs,” Computing, vol. 12, no. 1, pp. 91–98, 1974.

[21] H. N. Gabow, “An efficient implementation of edmonds’ algorithm for
maximum matching on graphs,” J. ACM, vol. 23, no. 2, pp. 221–234,
1976.

[22] S. Even and O. Kariv, “An o(nˆ2.5) algorithm for maximum matching in
general graphs,” in 16th Annual Symposium on Foundations of Computer
Science, Berkeley, California, USA, October 13-15, 1975, pp. 100–112,
IEEE Computer Society, 1975.

[23] S. Micali and V. V. Vazirani, “An o(sqrt(|v|) |e|) algorithm for finding
maximum matching in general graphs,” in 21st Annual Symposium on
Foundations of Computer Science, Syracuse, New York, USA, 13-15
October 1980, pp. 17–27, IEEE Computer Society, 1980.

[24] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Diversified top-k
clique search,” in 31st IEEE International Conference on Data Engineer-
ing, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pp. 387–398,
IEEE Computer Society, 2015.

[25] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Diversified top-k
clique search,” VLDB J., vol. 25, no. 2, pp. 171–196, 2016.

[26] F. Hao, Z. Pei, and L. T. Yang, “Diversified top-k maximal clique
detection in social internet of things,” Future Gener. Comput. Syst.,
vol. 107, pp. 408–417, 2020.

[27] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” in Proceedings of the ACM/IEEE Conference on
Supercomputing, SC 1998, November 7-13, 1998, Orlando, FL, USA,
p. 28, IEEE Computer Society, 1998.

[28] L. Gottesbüren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier, “Deep
multilevel graph partitioning,” in 29th Annual European Symposium on
Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), vol. 204 of LIPIcs, pp. 48:1–48:17, 2021.

[29] J. Kunegis, “KONECT: the koblenz network collection,” in WWW,
pp. 1343–1350, 2013.

[30] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[31] T. Akiba and Y. Iwata, “Branch-and-reduce exponential/fpt algorithms
in practice: A case study of vertex cover,” Theor. Comput. Sci., vol. 609,
pp. 211–225, 2016.

[32] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

