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Abstract—We study the problem of Quality-of-Service (QoS)-
Aware Personalized PageRank (PPR) computation. Existing stud-
ies mostly focus on improving the PPR query processing time.
However, the query processing time alone may not reflect the ser-
vice quality in real-world PPR-based systems. The query response
time can be a more service-relevant measure in many applications
such as the online game service of Tencent and the related-
pin recommendation module of Pinterest. We make the first
attempt at studying QoS-Aware PPR computation and present
Quota, a system that adapts the state-of-the-art PPR algorithms
to a given environment for minimizing query response time.
Equipped with mathematical tools including queuing theory,
algorithmic complexity analysis, and constrained optimization,
Quota is designed to adapt itself to a wide spectrum of workloads.
We conduct extensive experiments on real datasets and show that
Quota can reduce the query response time compared with state-
of-the-art PPR algorithms, often by a significant margin.

I. INTRODUCTION

Given a source node s and a target node t in a graph, the
Personalized PageRank (PPR) π(s, t) reflects the probability
that a random walk starting from node s terminates at node t.
PPR is a fundamental proximity measure between two nodes in
graphs, and it has been widely adopted in various applications
such as the Whom-to-Follow service of Twitter [1], the game
service of Tencent [2], and the related-pin recommendation of
Pinterest [3]. As real-world graphs (e.g., in the aforementioned
applications) are dynamically evolving with edge inserts or
deletes, it becomes increasingly important to study efficient
PPR queries on dynamic graphs [4].

When performing PPR queries in dynamically evolving
graphs, it is an intrinsic requirement to simultaneously process
PPR queries and data updates. The data update is not only
about updating the graph but may also involve updating the
index built to facilitate queries. For example, Pinterest uses
PPR queries on its underlying user-item preference graph to
support related-pin recommendations for users, and each page
visit will trigger a PPR query. According to the reports [5],
Pinterest has thousands of page visits per second, demon-
strating a high query workload. Meanwhile, the extensive
user base in Pinterest can lead to frequent updates in the
preference graph, which happens in the same duration as
queries, and ultimately forms a mixture workload of queries
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Fig. 1. Timeline of query and update arrivals, as well as the status of the
queue.

and updates. As another example, the online gaming service
of Tencent [6] uses PPR values to measure the proximity
between two game players, where the PPR query is computed
on a game player network formed by players (nodes) and
player interactions (edges). To avoid customer attrition, an
incentive strategy based on PPR has been proven effective in
Tencent [6]. Frequently, a PPR query is issued at the node of
an active player (who regularly uses the service) to sort their
proximity to other inactive players. Those highly-approximate
but inactive players will receive an invite-back message from
the active player. Meanwhile, while applying the incentive
strategy, the player network evolves fast and leads to a mix-
load of PPR queries and data updates. In summary, in real-
world applications based on PPR measures, the workload often
consists of a series of PPR queries and data updates, which
may arrive in a stochastic manner.

In these applications, when the queries and updates arrive
at the system faster than their processing speed, they line up
and form a queue, as shown in Figure 1. The function of the
queue is to ensure that the queries and updates are processed
in a first-come-first-served (FCFS) manner, which is crucial to
guarantee the query accuracy [4], scheduling fairness [7], and
user fairness [8], [9]. In this queuing context, one important
measure to be optimized is the query response time, which
refers to the amount of time taken between the query’s arrival
at the system and the time at which the query’s answer is
computed, also illustrated as Rq in Figure 1. Query response
time is not only determined by the exact query processing
time tq and the processing total time but is also influenced by
the query/update queuing status. To explain, before a query
can be executed, its previous updates on the graph or indexes
have to be enforced, which can incur a significant cost. Hence,
there exists the contention of CPU time between query and



update processing, which often leads to an imbalance of
computing resource allocation between queries and updates.
As the contention intensifies, the user waiting time for queries
can be extended, resulting in lengthy query response time
for the users. In a high-load situation, the queue builds up
quickly, and the response time of a query can be significantly
exaggerated, impacting user satisfaction. Therefore, the query
response time closely reflects the Quality-of-Service (QoS) to
the user in a PPR-based application.
The problem: QoS-Aware PPR Computations. Despite the
importance of queue-based PPR query response time opti-
mization in practical applications, most of the existing PPR
algorithms [10], [11], [12], [13], [14], [15], [16] focus on a
stand-alone PPR query or update, as reviewed in Section III.
However, the query response time does not solely depend
on query or update processing time, but is more related to
the behavior combination of PPR queries and data updates
in a waiting queue, as we discussed earlier. In this paper,
we make the first attempt at PPR computation with a focus
on optimizing the query response time for single-source PPR
(SSPPR) queries or top-k PPR queries over dynamic graphs,
and we name the problem as QoS-Aware PPR Computation.
In particular, given any PPR query and update arrival rates, we
aim to design an algorithmic framework that can adapt itself
to suit the workload in producing a reasonable average query
response time.

QoS-Aware PPR computation is a non-trivial problem. First,
directly applying the state-of-the-art PPR query algorithms
(e.g., Agenda [4], FORA [13]) does not ensure a reasonable
query response time, because they mainly optimize for a
shorter query time at the expense of update time (e.g., updating
index structures). As we have argued, faster query processing
is not necessarily translated into a shorter query response time.
Second, the workload of PPR queries and graph updates may
change over time in recommendation systems. However, the
mainstream PPR algorithms often entail many hyperparam-
eters, making it difficult to set justifiable parameters under
different workloads.

These challenges motivate us to design Quota, 1 a system
that aims to optimize PPR query response time for a wide
spectrum of query and update workload configurations. We
emphasize several main design philosophies of Quota. First,
our purpose is not to design a faster PPR query algorithm
than existing ones which are already close to the optimum
in many aspects due to the promising development in recent
decades. Instead, given the maturity of the PPR algorithms, it
can be more important to design an algorithmic framework to
accommodate some state-of-the-art PPR algorithms as base
algorithms and allow them to be transparently adapted for
optimizing query response time. In this paper, we discuss three
base algorithms: Agenda [4], FORA [13], and SpeedPPR [16],
because Agenda [4] is the state-of-the-art dynamic PPR al-
gorithm, FORA [13] is a representative PPR algorithm that
motivates many later algorithms, and SpeedPPR is one of the

1Quality of Service Optimization for Personalized PageRank over Evolving
Graphs

most query-efficient PPR algorithms in static graphs. Second,
the design of Quota integrates several different branches
of mathematical tools including queuing theory, constrained
optimization, and complexity analysis. Particularly, Quota ab-
stracts the tuning parameters of a typical PPR query framework
and builds a mathematical relationship between the parameters
and the real cost. It then incorporates an in-depth queuing
model to facilitate the transformation of the problem into a
constrained optimization problem. We also design algorithms
to solve the optimization problem to precisely determine the
most suitable parameters for the given workload.

We summarize our main contributions as follows:
• Problem Formulation. We define the problem of QoS-

Aware PPR optimization, which reflects the issues when
applying PPR measures in practical recommendation systems.
The problem is significantly different from the existing PPR
optimization problems which optimize a stand-alone PPR
query or update.
• Auto-Configuration System. We present Quota, a con-

figuration system that can be deployed with some state-of-
the-art PPR algorithms to optimize the query response time.
Quota is an auto-configuration system to enhance the state-of-
the-art approach in adaptability to various query and update
workloads. Quota can be applied to four recent state-of-the-art
algorithms, namely, Agenda [4], FORA [13], SpeedPPR [16],
and TopPPR [17]. To the best of our knowledge, Quota is the
first configuration system that aims to optimize the PPR query
response time for PPR-based systems.
• Reordering Algorithm. In order to further optimize the

query response time, Quota further allows violation of the
FCFS queuing policy with controllable shuffling of the queries
and updates, without affecting the accuracy guarantees. This
forms the reordering algorithm named Seed.
• Extensive Experiments. We have conducted extensive

experiments in various real datasets and settings. Our results
demonstrate that Quota can achieve up to 86%, 40%, 34%,
50% and 33% shorter response time than the state-of-the-
art PPR algorithms Agenda, FORA, SpeedPPR, FORA-TopK
and TopPPR respectively, if deployed with the corresponding
algorithm.

II. PROBLEM DEFINITION

A. PPR Queries
Let G = (V,E) be a directed graph. Given a source node

s ∈ V and a probability α ∈ (0, 1), a random walk from s
is a traversal in G where at each walk step it will move to a
neighbor chosen uniformly at random with probability 1− α,
and otherwise terminate at the current node. The Personalized
PageRank (PPR) value from s to t, denoted by π(G, s, t),
equals the probability that a random walk starting from s
terminates at t. An important task of PPR computation is the
single-source PPR query, defined as follows.

Definition 1. (SSPPR queries) Given a source node s, a
threshold δ ∈ (0, 1), an error bound ϵ, and a failure prob-
ability pf , a Single-Source PPR (SSPPR) query returns an
estimated PPR value π̂(G, s, t) for each vertex t ∈ V , such
that for any π(G, s, t) > δ, we have:



|π(G, s, t)− π̂(G, s, t)| ≤ ϵ · π(G, s, t) (1)
holds with at least 1− pf probability.

SSPPR is a popular form of query in dynamic graphs [11],
[18], [4], and has been seen in burgeoning applications
including query-tracking [19], [20], anomaly tracking [21],
graph neural network [22], and parallel PPR processing [23]
in evolving graphs. We consider SSPPR by default but our
method can be extended to top-k PPR queries (see Sec-
tion VIII-G).

B. Graph Updates
The real-world graphs are dynamic with continuous inserts

and deletes of edges and vertices [24]. We note that the node
inserts and deletes can be replaced by inserting and deleting
the corresponding incident edges, and hence in this paper we
focus on edge updates. We consider the edge arrival model in
[11], [10]. Denote the initial graph as G0 = (V0, E0), and edge
updates Su = {e1, e2, ..., ek, ...} arrive stochastically. Here,
ei = (u, v) is the i-th edge update that will transfer the current
graph Gi−1 into Gi. If ei already exists in Gi−1, ei will be
regarded as the delete from (u, v); otherwise ei is an insert.
Note that the insert of a new node u is linked with an update
ei = (u, v) or ei = (v, u) for a certain node v. The delete
of node u will be triggered immediately if u has no incident
edges. We let ni = |Vi| and mi = |Ei|. If the context is clear,
we also use notations n and m for the numbers of nodes and
edges in the current graph.

C. Query Response Time Optimization
Many online services (e.g., Pinterest, LinkedIn, and

Tencent) incorporate the PPR measure in their user-
recommendation module. Their back-end systems receive the
PPR queries (abbr. queries) from the user side, and the
underlying graph is subject to continuous updates (e.g., edge
inserts or deletes). In other words, the back-end system is
continuously receiving interleaving queries and updates, and
each query or update has a timestamp. In a high-load situation,
the system can build a waiting queue containing the arrived
but unprocessed queries or updates, ordering by their arrival
timestamps. To ensure query accuracy, a query result should
be based on the graph that has executed the updates, which
arrived before the query. In this paper, we put much higher
priority on query response time for its direct reflection on the
quality of service, from the perspective of user experience.
QoS-Aware PPR Optimization. Denote that the response
time of a query is the amount of time taken between its arrival
and finish, including the queuing time. Given a query arrival
rate λq and update arrival rate λu (i.e., there are expected
λq queries and λu updates arriving per second), we aim to
minimize the average response time Rq of SSPPR queries
where the query accuracy satisfies Eq. 1, i.e., ϵ relative error.

III. BACKGROUND

A. PPR Queries in Static Graphs
Push. Forward Push [25], [26] is a classic method for comput-
ing PPR. It is a local power iteration algorithm which passes
the probability along the neighbors. Formally, the Forward

Push conducted in Graph G maintains an estimated vector
π◦(G, s, t) of π(G, s, t), given the source node s and any node
t ∈ V . This estimated vector is also named reserve value.
At the same time, it also maintains a residue value r(G, s, t)
for each t ∈ V . In each iteration, it chooses an arbitrary
vertex t that satisfies r(G, s, t)/dout(G, t) > rmax, where
dout(G, t) is the out-degree of t. Then it performs a Forward
Push operation on the current node t, where α fraction of
residue r(G, s, t) will be added to the reserve π◦(G, s, t). The
extra (1 − α) fraction of residue r(G, s, t) will be allocated
uniformly to the neighbors of t. Hence, each neighbor of t will
receive the residue value of (1−α)r(G, s, t)/dout(G, t). Value
π◦(G, s, t) is the final estimate of π(G, s, t). The detailed
steps of Forward Push can be found in our technique report
[27]. Forward Push entails a time complexity O( 1

αrmax
) [26].

Similarly, Reverse Push [28] inherits the spirit of Forward
Push and calculate PPR π(G, s, t) from other nodes s to a
target node t, which also entails a time complexity O( 1

αrbmax
)

given the threshold rbmax.

Push+Walk. To improve the efficiency, Push+Walk is pro-
posed in FORA [13] and ResAcc [29], which run Forward Push
starting from source node s, and then perform K ·r(G, s, t) for
each t ∈ V , where K is a parameter related to the estimation
accuracy. The threshold rmax controls the degree of doing
Forward Push against conducting random walks. The index-
free FORA computes random walks online, whereas the index-
based version FORA+ precomputes all the random walks
needed for higher efficiency. Another representative work that
uses the same framework is SpeedPPR [16], which combines
Power Iteration [30] and Forward Push. SpeedPPR achieves
more promising results than FORA in some aspects including
query time, accuracy as well as index size.

B. PPR Queries in Dynamic Graphs
In the dynamic graph scenarios, the PPR algorithms should

provide the service for queries as well as updates. The
Query+Update module raises new challenges for those meth-
ods which were mainly designed for improving the query
efficiency. For example, many methods achieve high query
efficiency by constructing an index. However, updating the
graph requires updating the indexes as well, incurring a high
update cost. To handle graph updates, existing literature can
either (a) rebuild the pre-computed index when there comes an
update; or (b) conduct a local update process to maintain the
query accuracy [4], [10]. For example, ApPPR [11] proposes to
conduct a local reverse push and forward push when answering
an added edge, which will update the stored vectors for PPR
computing. However, the focus of ApPPR is to track a fixed-
source PPR query during graph updates and is not able to
benefit our scenario which requires computing random PPR
queries. Along the research direction, Agenda [4] is a recent
state-of-the-art approach that performs the update only when
needed, rendering it more robust when handling different
query and update workloads.
Agenda [4]. Following the Push+Walk framework, Agenda
takes the graph edge inserts and deletes into consideration and



is the first work to consider the query and update sequence
in real dynamic PPR scenarios. Different from the focus of
this paper, Agenda aims to optimize the total cost of handling
queries and updates. In particular, Agenda develops a graph
update mechanism and applies the Push+Walk-based query
in evolving graphs. Note that when there occur edge inserts
or deletes, directly utilizing the obsolete index will cause
unbounded errors. Hence, it may be required to update the
index before a query to maintain the query accuracy. The
novelty of Agenda is that, instead of regenerating the index
immediately, Agenda updates the index only when necessary.
Meanwhile, the update process also monitors a value for each
node to quantify the maximum query error bound caused by
using a stale index. With the aid of such new knowledge,
Agenda can perform the query operations as well as the
efficient updates.

While Agenda optimizes the total running time of queries
and updates, our experiments (Section VIII) show that it is
sub-optimal to optimize query response time. The main issue is
that Agenda adopts a relatively rigid parameter setting. Hence
Agenda determines the portions of forward push, random
walks, and reverse push in a relatively inflexible manner,
leading to sub-optimal performance in some situations.

C. The Research Gap
In summary, there still exists a gap between the current

PPR algorithms (e.g., FORA[13], Agenda [4]) and optimizing
the query response time in practical scenarios. First, the
existing PPR algorithms target the overall running time or
space overhead as the main goal, which neglects the practical
queuing status consisting of queries and updates. Second, to
achieve the optimal queuing status and query response time,
the existing PPR algorithms can only empirically tune the
hyperparameters to transform the query and update time. This
empirical fine-tuning is inefficient and can easily lead to a
sub-optimal solution. Furthermore, once the query or update
arrival rate changes, this kind of artificial fine-tuning needs
time-consuming calculation from scratch because the stale
solution does not apply to the new workload, which further
degrades the system efficiency. Based on these fundamental
challenges, Quota is designed to coordinate the queuing status
adaptively according to different query and update arrival rates,
and further reduce the query response time.

IV. Quota

The goal of Quota is to determine the optimal hyperpa-
rameters that minimize query response time given query and
update arrival rates. When tuning the hyperparameters of a
PPR algorithm, different combinations of query time t̃q and
update time t̃u are often observed, resulting in various query
response times for different query and update arrival rates. For
instance, recent state-of-the-art methods such as Agenda [4],
FORA [13], and SpeedPPR [16] have query and update costs
that are inversely related. Specifically, both SpeedPPR and
FORA have an index-based and an index-free version, with
the former having a low query cost and a high update cost and
the opposite for the latter. Interestingly, the degree of leaning

towards which version can be tuned by hyperparameters,
which sheds light on the optimization potential in different
contexts. Similarly, Agenda also has hyperparameters that
trade query cost for update cost or vice versa. Hence, a natural
question arises: how to tune the hyperparameters to optimize
query response time under diverse workloads and algorithmic
contexts? This motivates the design of Quota to tackle the
QoS-Aware PPR problem.

To fully unleash the potential of hyperparameter tuning,
Quota adopts a drastically different design philosophy com-
pared with the prior art. In the existing works, the hyperparam-
eter settings are workload unconscious, meaning that a single
set of hyperparameters is used for all possible workloads.
However, this lack of flexibility can lead to suboptimal per-
formance when faced with challenging workloads. Further, the
hyperparameters are often determined by minimizing the query
complexity. For example, FORA [13] sets the hyperparameter
rmax to be 1/

√
αmK to optimize its query complexity

O (1/(αrmax) +mrmaxK). However, such an optimization
neglects the hidden constants in the complexity, which poten-
tially impacts the actual optimum. When the hidden constants
come into play, purely optimizing the complexity expression
falls short in searching for the optimal parameters.

To circumvent these issues, Quota takes a novel approach
by modeling the QoS-Aware problem using queuing theory
and constrained optimization techniques that take into account
both workloads and hidden constants. That is, by modeling
response time using query/update time functions t̃q(·)/t̃u(·)
that incorporate hyperparameters and hidden constants, as well
as workload characteristics such as query and update arrival
rates, we can search for the optimal hyperparameter setting that
balances update and query performance, ultimately leading to
better query response times. This idea motivates the design of
Quota, which involves the following three steps (also shown
in Figure 2):
•Step 1-Modeling the expected query/update cost. Given

a PPR algorithm (with query and update functions) and
query/update arrival rates, we first model the query and update
cost functions based on the hyperparameters that shall be
tuned, via a complexity analysis.
•Step 2-Modeling response time. We use queuing theory

to model the query response time with respect to the mean
query and update costs computed in Step 1, which can be
further expressed by a set of hyperparameters.
•Step 3-Optimizing the expected query response time.

Then, when considering the essential constraints, we minimize
the query response time with a set of constraints, which is
efficiently solved by constrained optimization techniques.

In the following sections, we will focus on Steps 2 and 3,
which are the core components of Quota. We will address Step
1, which involves the refinement of different PPR algorithms,
in Section V. Figure 2 provides a helpful overview of the
Quota framework, outlining the roadmap for each section.
A. Modeling Response Time

One important property of a queuing system is the stability.
A system is stable when the input workload is less than the
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Fig. 2. Linking each section to the Quota framework.

system’s service capacity. Let the query arrival rate and update
arrival rate be λq and λu, respectively. The stability of a queue
in dynamic PPR is formally defined as:

Definition 2. The queue is stable only when λq t̃q+λut̃u < 1,
where t̃q and t̃u are the average query time and update time.

A stable queue secures a bounded expected response time
within an extended period of time. On the contrary, if the input
workload equals or exceeds the system’s capacity (e.g., λq t̃q+
λut̃u ≥ 1), it forms an unstable queue and the response time
will be continuously increasing. Due to the disparity between
stable status and unstable status, our discussion is divided into
the corresponding two parts.

1) Stable Status: We aim to express the average response
time of a stable query by the query and update arrival rates, the
mean query and update processing time, and their variances.
In particular, let β ∈ Λ be the chosen hyperparameter vector,
where Λ = Λ1×. . .×Λw is the w-dimensional hyperparameter
space. We assume that the mean query and update time t̃q and
t̃u can be expressed as two functions of β. Here we abuse the
notations t̃q and t̃u so that they can also represent functions.
By the results in [31], one can estimate the average query
response time based on t̃q , t̃u, and their respective coefficients
of variation2 CVq and CVu. In particular,

Rq(β) =
λu t̃2u(β)(1 + CV 2

u ) + λq t̃2q(β)(1 + CV 2
q )

2
(
1− λq t̃q(β)− λu t̃u(β)

) + t̃q(β) (2)

It is important to note that other estimates in [31] that are
under different models are also applicable in our framework.
Due to space constraints, we just discuss one kind of estimate
here. Based on Eq. 2, it can be inferred that the expected
response time of a query, denoted by Rq(β), is prone to
elevate with an increase in the system’s workload, which is
represented as λq t̃q(β)+λut̃u(β). Intuitively, a high workload
close to 1 may lead to congestion in the queue, thereby
deteriorating the performance of the system.

In this paper, for simplicity we only focus on the tuning
process of mean query and update time because tuning the
coefficient of variation is usually insignificant compared with
tuning mean query/update times.

Constraints. The optimization of the optimal response time
is then translated into computing the minimum solution of
the objective function Rq(β). Compared with the ordinary
extremum-seeking problem defined in the entire domain Rw,
the QoS-Aware PPR optimization should guarantee more con-
straint conditions. Particularly, we enforce two constraints for
the hyperparameter vector β:

2Coefficient of variation is a commonly used term to refer to the ratio
between the standard deviation and mean.

• Stability Constraint. Given λq and λu, λq t̃q(β) +
λut̃u(β) < 1.
• Search Space Constraint. The solution of β exists in the

search space Λ.
First, the necessity of maintaining system stability leads

to the constraint λq t̃q + λut̃u < 1, which gives λq t̃q(β) +
λut̃u(β) < 1 when the hyperparameter β is involved. Also,
we need to guarantee that the hyperparameters are searched
in the required space Λ determined by the PPR algorithms.

In a nutshell, Quota aims to search for the optimal hyper-
parameter solution β∗ such that

β∗ = argmin
β

Rq(β), subject to Ci(β) ≤ 0, 1 ≤ i ≤ p, (3)

where Ci(β) is the constraint function and p is the number
of constraint functions. Moreover, when Ci(β

∗) ≤ 0, β∗

satisfies stability constraint and search space constraint.
2) Unstable Status: Unfortunately, Luo et al. [31] do not

give an estimate of the response time when the queue is
unstable, where Eq. 2 becomes invalid to measure the response
time. The main characteristic of unstable queue is that the high
query or update arrival rates can break the stability constraint,
which gives

min
β

(λq t̃q(β) + λut̃u(β)) ≥ 1. (4)

In that case, the system is not stable even with the best pa-
rameter setting. Consequently, it leads to a crowded state such
that Eq. 3 cannot serve as our objective function for reducing
response time. While the response time in the unstable queue
grows infinitely [32], we next prove that the response time of
a specific query is still related to the mean query and update
time in an expected manner, as shown in Lemma 1. All the
proofs can be found in our technical report [27].

Lemma 1. Suppose the queue is unstable given the query
arrival rate λq and update arrival rate λu, i.e., λq t̃q+λut̃u ≥
1. Let WNq denote the response time of Nq-th query, we have

N−1
q WNq =

λq t̃q + λut̃u − 1

λq
,w.p.1 as Nq →∞

Lemma 1 suggests that when Nq is sufficiently large, the
response time of the Nq-th query is determined by the current
index Nq and other queue indicators, such as λq , λu, t̃q , and
t̃u. Therefore, if Eq. 4 is satisfied, we can minimize ρ(β) =
λq t̃q(β)+λut̃u(β) to reduce the response time of each query.
This approach can be explained using queuing theory [32],
[33], where ρ(β) represents the traffic intensity or the system’s
level of congestion. By reducing ρ(β), the system’s workload
is lessened, resulting in a lower response time.

In a nutshell, in the unstable status, Quota aims to search
the optimal hyperparameter solution β∗ such that:

β∗ = argmin
β

ρ(β), subject to Ci(β) ≤ 0, 1 ≤ i ≤ p. (5)

Here we utilize ρ(β) to replace the response time function
Rq(β) in the stable queues. It is evident that when using
ρ(β) as the response time measurement, the stability constraint
cannot be met in this unstable queue. Thus for Ci(β

∗) ≤ 0,
β∗ is only required to satisfy the search space constraint.



TABLE I
OVERVIEW OF THE COST FUNCTIONS, RESPONSE TIME FUNCTION, AND Quota OPTIMIZATION OBJECTIVE FUNCTIONS FOR EACH METHOD.

Method Query Cost (t̃q) Update Cost (t̃u)
Objective Function (Sec. IV-A)

Stable Status Unstable Status

Agenda 1
rmax

· τ1 + λurmax(nrbmax+1)

λq
· τ2 + rmax · τ3 1

rbmax
· τ4 + τ5 minRq(rmax, r

b
max) s.t.

0 < rmax, r
b
max < 1,

λq t̃q + λut̃u < 1

min ρ(rmax, r
b
max) s.t.

0 < rmax, r
b
max < 1TopPPR 1

rmax
· τ1 + rmax(r

b
max)

2 · τ2 + 1
rbmax

· τ3 τ4

FORA 1
rmax

· τ1 + rmax · τ2 τ3

minRq(rmax) s.t.
0 < rmax < 1,
λq t̃q + λut̃u < 1

min ρ(rmax) s.t.
0 < rmax < 1

FORA+ 1
rmax

· τ1 + rmax · τ2 rmax · τ3
FORA-TopK 1

rmax
· τ1 + rmax · τ2 τ3

SpeedPPR log 1
rmaxm

· τ1 + rmax · τ2 τ3

SpeedPPR+ log 1
rmaxm

· τ1 + rmax · τ2 rmax · τ3

Algorithm 1: Online Constrained Optimization
Input : The query and update arrival rates λq and λu

Parameter: Formulation of t̃q(β) and t̃u(β); constraint
functions Ci(β)(1 ≤ i ≤ p)

Output : Optimal hyperparameter β̂
∗

1 /* Objective function formulation */
2 Formulate the objective function Rq(β) and ρ(β) with

t̃q(β), t̃u(β), λq and λu;
3 /* Constrained optimization */
4 Initialize µ0 and v0i (1 ≤ i ≤ p); k ← 0;
5 if min(λq t̃q(β) + λut̃u(β)) ≥ 1 then
6 Φ0(β) = ρ(β) + P 0(β);

7 else
8 Φ0(β) = Rq(β) + P 0(β);

9 while not converge do
10 β̂

∗
= argmin

β
Φk(β); Update vk+1

i ← vki + µkCi(β̂
∗
);

11 Update µk to µk+1 [34]; k ← k + 1;

B. Constrained Convex Optimization
In the optimization process for Eq. 3 or 5, we have two

requirements. First, the constraints in Eq. 3 or 5 must be
satisfied. We refer to these constraints as Requirement (a).
Second, the optimization process should be efficient, meaning
that it should converge fast in a bounded number of iterations.
We term this requirement as Requirement (b). These two
requirements can be met if we use the Augmented Lagrangian
method [35], also see Algorithm 1. Let us first introduce the
basic idea of the Augmented Lagrangian method, and then
discuss why these two requirements are met.

The Augmented Lagrangian method is a penalty-based
approach that replaces a constrained optimization problem
with an unconstrained one. This is achieved by adding a
series of penalty terms derived from the original constraints
to the objective function. One of the key benefits of using the
Augmented Lagrangian method is its guaranteed performance
(refer to Theorem 2). The method employs an iteration-
based approach to search for the optimal solution. In our
case, let P k(β) denote the sum of penalty terms in the k-th
iteration and S(β) represent the objective function. Notably,
the following unconstrained objective function is implemented

in the k-th iteration:
Φk(β) = S(β) + P k(β), (6)

The penalty function P k(β) contains the penalty factor µk

and Lagrange multiplier vki in the k-th iteration. We follow
the specific solution in [34] to initialize the penalty factor µ0

as well as the Lagrange multiplier v0i (1 ≤ i ≤ p) (line 4 in
Algorithm 1). Then we formulate the penalty function as:

P k(β) =
µk

2

p∑
i=1

max(0, Ci(β))
2 +

p∑
i=1

vki max(0, Ci(β))

As for the objective function S(β), we incorporate the
response time function and traffic intensity function in Eq.
3 and 5 to address the stable and unstable status (line 5 to 8),
which is formulated as:

S (β) =

{
Rq (β) if min(λq t̃q(β) + λut̃u(β)) < 1,
ρ(β) otherwise.

Note that searching the minimum of (λq t̃q(β) + λut̃u(β))
can also be addressed by utilizing the Augmented Lagrangian
method. Finally, we successfully transform the minimization
problem of S (β) with constraints into the unconstrained
minimization problem of Φk(β), where the estimated solution
β̂
∗

in the k-th iteration (line 10) is searched by:

β̂
∗
= argmin

β
Φk(β).

In each iteration, the minimum of Φk(β) can be computed
iteratively by the common L-BFGS-B optimizer [36], which
offers the benefits of rapid convergence and minimal memory
usage [37]. Then, we update µk to a larger value (lines 11)
following the method in [34]. Moreover, in order to enhance
the differentiable smoothness [38] of Eq. 6, Augmented La-
grangian will update vki as:

vk+1
i = vki + µkCi(β̂

∗
),

where β̂
∗

is the solution in current k-th iteration. Next we
will demonstrate how we can meet our two requirements.
Meeting Requirement (a). To prove that the Augmented
Lagrangian method satisfies the requirement (a), we slightly
rephrase and cite a key theorem from the conclusion of [39]:
Theorem 1. Assume that S(β) and Ci(β) are continuous
functions, and that the constraint set {Ci(β) ≤ 0} is



nonempty. Given µk is bounded, 0 < vki < vk+1
i for all k

and vki → ∞, we search the solution β̂
∗

for each iteration
of Eq. 6. Then the limit point of sequence {β̂

∗
} is a global

minimum of the original problem in Eq.6.
In summary, by combining the constraint functions, the

optimal value of ϕk(β) will give precedence to the constraint
conditions (Ci(β) ≤ 0). In other words, the final solution β̂

∗

will converge to the circumstance where the constraints are
not violated [40].
Meeting Requirement (b). The primary benefit of using the
Augmented Lagrangian method is that as the penalty parame-
ter µk increases, the quadratic term µk

2

∑p
i=1 max(0, Ci(β))

2

in Eq. 6 will cause the function to become strongly convex,
thereby ensuring a global minimum [41]. By the results of Lan
and Monteiro [42]:
Theorem 2. Given the error tolerance ϵ∗, it requires
O(1/

√
ϵ∗) iterations in the Augmented Lagrangian method to

satisfy |R∗
q − R̂q| < ϵ∗, where R∗

q is the true minimum value
of response time and R̂q is our estimated result.

Theorem 2 states that the time complexity of optimization
process is inversely related to the estimation accuracy, and
is much smaller than that of the PPR query algorithms,
as demonstrated in Section VIII-E. In summary, Quota can
achieve the optimal solution of response time based on the
tunable hyperparameters β with the global optimal value and
a low time complexity.

V. BASE PPR ALGORITHMS

In this section, we analyze several state-of-the-art algo-
rithms in literature and discuss how Quota can incorporate
them. Recall the step 1 introduced in Section IV, we first
model the expected query and update cost utilizing a refined
complexity analysis. For ease of understanding, we provide
the overview of cost function as well as the objective function
of all listed methods in Table I. These methods include the
state-of-the-art algorithm Agenda [4] targeting dynamic graph,
as well as the static PPR algorithms index-free FORA [13],
SpeedPPR [16], index-based FORA+, and SpeedPPR+. Ad-
ditionally, we also incorporate two state-of-the-art top-k PPR
methods FORA-TopK and TopPPR [17] in a similar fashion.
Most of the results are directly extended from the literature,
and we hence leave the detailed reference and analysis in our
technique report [27].

In Table I, we rewrite the time complexity by incorporating
the constant factor τ explicitly. Then we target two important
tunable hyperparameters rmax and rbmax (0 < rmax, r

b
max <

1), which are the thresholds in the Forward Push and Re-
verse Push phase (recall that in Section III). For example,
the hyperparameter vector in a base algorithm Agenda is
β = (rmax, r

b
max) and by the property of Agenda, tuning these

two hyperparameters will not impact the worst-case accuracy
guarantee with respect to the estimated PPR values.

Here we explain the rationale why Quota can effectively
reduce response time of the listed PPR algorithms. Previ-
ous studies shown in Table I have predominantly focused
on assessing the complexity of queries and updates, often

overlooking the real-world queue status. This oversight can
result in sub-optimal response time solutions. As a general
framework, Quota can be easily applied to these representative
algorithms and search the optimal solutions (e.g., in Eq. 3 and
Eq. 5), which align with the queue status and the response
time can be naturally reduced.

VI. RELAXING FCFS
A. Main ideas

In our previous discussions, we relied on the FCFS queuing
principle as a fundamental requirement. However, there is
potential to relax this constraint, as delaying certain minor
updates may not significantly impact current queries [4]. This
relaxation opens up opportunities for optimizing response
times. Nonetheless, a challenge arises when we relax FCFS,
as reordering queries and updates may raise concerns about
maintaining bounded query accuracy. Notably, index-based
algorithms (e.g., Agenda, FORA+, SpeedPPR+ as analyzed in
Table I) must consider index-updates, where the index refers
to some precomputed random walks starting from each node.
The delays of index-updates could lead to greater inaccuracy.

To tackle this challenge, we introduce Seed, 3 a queue-
reordering algorithm that relaxes the FCFS queuing require-
ment while ensuring a bounded query error. The core idea
of Seed involves elevating the processing priority of certain
queries over some earlier-arrived updates. The algorithm con-
tinuously monitors the upper-bound of query error resulting
from such adjustments to ensure an acceptable level of accu-
racy is maintained. By employing Seed, we strike a balance
between optimizing response times and preserving query ac-
curacy in the presence of reordered queries and updates.
B. Techniques

To formalize our reordering algorithm, we first show what
will happen after reordering the queue elements. Let Qi be
a query on the graph Gi, and the k-th edge update after Qi
as Uk. Without loss of generality, we consider a case where
there are k updates between Qi and Qi+k and the sequence in
the queue can be formalized as Γ = QiU1U2...UkQi+k. When
processing with the original sequence, we obtain the estimated
PPR π̂(Gi+k, s, t) upon the new graph Gi+k given the source
node s and target node t. When we reorder the sequence as
Γ′ = QiQi+kU1U2...Uk, we can only process Qi+k with the
stale graph Gi to obtain the estimated PPR π̂(Gi, s, t). Then
we express the overall inaccuracy of Qi+k compared with the
true PPR π(Gi+k, s, t) as:

|π (Gi+k, s, t)− π̂ (Gi, s, t)| ≤ |π (Gi+k, s, t)− π (Gi, s, t) |︸ ︷︷ ︸
Ordering Inaccuracy

+ |π (Gi, s, t)− π̂ (Gi, s, t) |.

In the above equation, |π (Gi, s, t)− π̂ (Gi, s, t) | is decided
by the base PPR algorithms. As a trade-off for query response
time deduction, Seed will produce an additional inaccuracy
caused by |π (Gi+k, v, t)−π (Gi, v, t) | when we process Qi+k

before k edge updates U1U2...Uk. Considering all nodes we
define the ordering inaccuracy.
Definition 3. (Ordering Inaccuracy). Given the query source
node s, graph Gi and the graph Gi+k after k edge updates,
the Ordering Inaccuracy of s is:

3Sequence Reordering



σ(Gi+k, Gi, s) = max
t∈Vi

|π (Gi+k, s, t)− π (Gi, s, t)| .

To measure the maximum difference between PPR values
given an edge update (ui+1, vi+1), we have the following
lemma:
Lemma 2. For an edge update (ui+1, vi+1), given any s, t ∈
Vi, the following holds:

σ(Gi+1, Gi, s) ≤
(e(Gi, s)− α)(1− α(1− α))

α2dout (Gi+1, ui+1)
,

where e(Gi, u) =
dout(Gi,u)−α(1−α)(dout(Gi,u)−1)

dout(Gi,u)
, u, v ∈ Vi.

Similar to the derivation in Lemma 2, we can extend
Ordering Inaccuracy σ(Gi+1, Gi, s) to σ(Gi+k, Gi, s) when
incurring k updates:

σ(Gi+k, Gi, s) ≤
k∑

j=1

(e(Gi+j−1, s)− α)(1− α(1− α))

α2dout (Gi+j , ui+j)
.

Upon integrating Seed, we present the pseudocode of Quota
as Algorithm 2. To begin, Line 3 initializes a pending update
queue denoted as Up, initially empty. Next, Seed retrieves
the next arrived operation, denoted as R, and examines its
type. If R is an Update, the algorithm adds R to the pending
queue (Line 6). If R is a Query with a specified source node
s, Seed calculates the current error upper bound, denoted as
esum(s), accumulated by the pending queue (Line 10). If this
upper bound exceeds a given threshold ϵr, Seed executes all
updates stored in Up and adds the new edges to the current
graph (Line 12). Note that for index-based methods, the update
includes updating their random walk indexes. By setting a
reorder error threshold ϵr, Seed examines whether the query
can be processed upon the stale graph, which puts much higher
priority on query response time for its direct reflection on
the quality of service. Naturally, Algorithm 2 returns the PPR
with at most additional ϵr error. Moreover, we explore the
overall performance and response time after applying Seed.
Note that the overall performance can be effectively measured
by the total processing time λq t̃q+λut̃u. The following lemma
shows that the Seed algorithm generally will not degrade the
overall performance and the query response time, highlighting
the benefits using Seed.
Lemma 3. If the cost of each query and update remains
unchanged after applying Seed, then the term λq t̃q + λut̃u
also remains unchanged after applying Seed. Let W ∗

Nq
and

WNq be the response time of Nq-th query before and after
applying Seed, we have WNq

≤ W ∗
Nq

.
VII. OTHER RELATED WORK

Hyperparameter search. Classical hyperparameter search-
ing approaches such as Grid Search and Random Search
exhaustively enumerate or randomly sample hyperparameter
combinations to compute the optimal one. These methods,
however, entail high computation cost especially when en-
countered a large search space [43]. Bayesian Optimization
[44] collects the feedbacks from the possible hyperparameter
combinations, and uses the Gaussian processes to build the
objective function, which can compress the searching space

Algorithm 2: Quota
Input : Graph G = (Vi, Ei), workload sequence Γ,

reorder error threshold ϵr , query and update
arrival rates λq and λu

Output: Result of workload sequence Γ
1 Invoke Algorithm 1 (Online Constrained Optimization)

with λq and λu;
2 /* Seed */
3 Up = ∅;
4 while R = next(Γ) is not empty do
5 if R is Update then
6 Up.add(R);

7 if R is Query then
8 Obtain the source node s and set esum(s) = 0;
9 foreach Edge update (ui+j , vi+j) in Up do

10 esum(s)+= (e(Gi+j−1,s)−α)(1−α(1−α))

α2dout(Gi+j ,ui+j)
;

11 if esum(s) > ϵr then
12 Execute the updates in Up; Up = ∅;
13 Execute the query R;

and achieve higher efficiency than Random Search. However,
like Grid Search and Random Search, Bayesian Optimization
is not robust to changes in query and update arrival rates in
dynamic PPR scenarios.
Queuing theory. The research on strategic decision-making
in queuing systems can be traced back to the renowned Naor
model [45]. Then the choice of individual arrival time to a
congested bottleneck is extensively investigated in the research
of [46]. This work delves into the “rush hour” problem [47],
where customers must decide when to join the queue, while
considering delay, earliness, and tardiness costs. Recent work
[48] further explores the G/M/1 and M/M/1 models [49] where
customers need to make a decision on whether to join or not
while knowing the arrival time, and then provides the analysis
of the optimal waiting time function.
PageRank algorithms. The PageRank algorithm, developed
by Google [50], leverages the link structure of the web to
assess the importance of web pages. The simplest linear
algebraic method to acquire PageRank scores is the Power
Iteration [51]. Several subsequent algorithms [52], [53], [54]
combine various algebraic techniques, intelligently leveraging
the characteristics of real-world graphs to enhance the effi-
ciency of Power Iteration computation. Additionally, due to
the properties of high efficiency and scalability, the Monte-
Carlo-based methods [55], [56] are developed to conduct
computation in large graphs.
More PPR algorithms. Except for the PPR algorithms
mentioned in Section III, there are other studies on PPR
computations that are based on different settings or approaches
other than using Forward-Push-based or Random-Walk-based
philosophy. These include the top-k PPR [17], [57], [58], [59],
reverse-push-based method [60], [61], distributed-based com-
putation [62], [63], [64], [65], parallel-processing [66], [23],
[62], [59], query-tracking in dynamic graphs [19], [20], [12],
[67], [68], graph-structure-based computation [69], [70], PPR
with small decay factor [71], and one-hop PPR queries [2].



TABLE II
STATISTICS OF THE DATASETS. (K = 103 , M = 106 , B = 109)

Datasets Nodes Edges Type Source

Webs 281.9k 2.3M directed www.stanford.edu
DBLP 613.6k 2.0M undirected www.dblp.com
Pokec 1.6M 30.6M directed pokec.azet.sk

LJ 4.8M 69.0M directed www.livejournal.com
Orkut 3.1M 117.2M undirected www.orkut.com
Twitter 41.7M 1.5B directed twitter.com

As these algorithms mostly employ different settings or are
dominated by the state-of-the-art PPR algorithms we consider,
they are less relevant to our design of Quota, which aims
to build a configuration system to optimize QoS for some
recent state-of-the-art algorithms, particularly for those based
on Forward-Push or Random-Walk procedures.

VIII. EXPERIMENTS

We comprehensively evaluate the QoS performance (i.e.,
query response time) of Quota when deployed on Agenda,
referred to as Quota-Agenda. We also evaluate Quota deployed
on FORA, SpeedPPR and TopPPR, to verify the generality of
Quota designs. We conduct the experiments on a Linux ma-
chine with an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
and 256GB memory.
A. Baseline Methods

We conduct the experiments on Quota-Agenda and other
four representative dynamic PPR algorithms, namely, Agenda
[4], FORA, FORA+ [13], and ResAcc [29]. Agenda [4] is the
state of the art for dynamic PPR queries. FORA+ and ResAcc
are representative PPR algorithms for static graphs. We note
that Agenda and FORA+ are index-based, whereas the other
two are index-free algorithms. We implement Quota on our
own and adapt the baseline algorithms based on the public
code provided by the authors. All the implementations are
in C++ and follow the hyperparameter vectoring in previous
work [57], [4], [13], where α = 0.2, δ = 1

n , pf = 1
n , ϵ = 0.5.

For a fair comparison with other baselines that do not allow
reordering, we first set reorder error threshold ϵr as 0 in our
general performance comparison. We will perform the effec-
tiveness analysis of ϵr in later Section VIII-H. Note that in the
Agenda case, we target two hyperparameters rmax and rbmax,
aiming to search the optimal value starting from the default
value r̄max = 1

αK , r̄bmax = 1
n , and K =

(2ϵ/3+2) log(1/pf )
ϵ2δ .

We report all results using the averages of 10 runs.
B. Datasets and Queries

We evaluate the response time of dynamic PPR queries on
six publicly available graph datasets: Webs, DBLP, Pokec, LJ,
Orkut, and Twitter, as summarized in Table II. These datasets
are chosen to represent different sizes and areas, such as
citation networks, web graphs, and recommendation systems,
to demonstrate the effectiveness of Quota in various graph
application scenarios. In each scenario, the queries and updates
are generated following the given query and update arrival
rates. Specifically, we model the query and update arrivals as
two Poisson processes within a time window. We randomly
select the source node s among the query sequence from the

current node set Vi for SSPPR queries. The number of edge
updates follows a Poisson process with arrival rate λu, where
each update (u, v) selects the two nodes u and v randomly
from Vi.

(a) Webs (b) DBLP

(c) Pokec (d) LJ

(e) Orkut (f) Twitter
Fig. 3. Response time on 6 public datasets.

C. Arrival Rate and Constant Calculation
To simulate the dynamic workloads in real PPR scenarios,

we take the query and update arrival rates as the system input,
and measure the response time of different algorithms during
a certain time window. We note that each PPR algorithm
with which we compare Quota has various query and update
processing time on different datasets. For example, the average
query processing time of index-based FORA+ on Webs and
Twitter is 0.01 s and 103.10 s respectively. Hence, if the query
arrival rate is larger than λq = 100 on Webs and λq = 0.01
on Twitter, the queue will be unstable. To consider both stable
and unstable status for experimental purposes, we set the query
and update arrival rates (λq , λu) and simulation time window
T for all compared algorithms as follows.

For the small-scale graphs Webs and DBLP, we set λq =
100 and λq = 10 respectively and the simulation time window
T = 10s. For larger datasets Pokec, LJ, and Orkut, we
set λq = 0.1 and T = 1000s. Finally, for the largest
graph Twitter, we set λq = 0.01 and T = 10000s. To
check the robustness of Quota with different workloads, we
set various update arrival rates to formulate the different
characteristics of the query and update queue. In particular,
we set λu/λq = {1/8, 1/4, 1/2, 1, 2, 4, 8} for each dataset,
which will cover a wide spectrum of interesting scenarios.
For example, the experiments on Webs will be conducted
with the query arrival rate λq = 100 and update arrival rate
λu = {12.5, 25, 50, 100, 200, 400, 800}. Under such a specific
setting, we formulate multiple competition statuses between
the queries and updates in the queue. Finally, we remark that



the values of τ are easy to be gauged as we can independently
time the actual sub-process costs and infer the constants fairly
precisely.

D. Response Time on Different Workloads
For all algorithms, we process dynamic workloads with

different combinations of query and update arrival rates. We
investigate the response time of Quota-Agenda (expressed
as Quota) and other baselines on 6 public datasets, which
are shown in Figure 3. Additionally, we integrate the Seed
algorithm into Quota and FORA+ when setting ϵr = 0.5
(denoted as Quota∗ and FORA∗ respectively) and explore the
performance after reordering. The red cross represents the cost
that is above the maximum threshold. Below, we highlight our
interesting observations.

(1) Effectiveness for reducing response time. As expected,
Quota-Agenda outperforms baselines when processing various
workloads on all the tested datasets. Compared with the
original algorithm Agenda, Quota-Agenda entails a signif-
icantly shorter query response time when processing most
workloads. We note that the optimization effect differs for
different datasets. For example, when λu/λq = 1/8, Quota
mildly reduces the response time of Agenda, by (90.36 −
78.75)/90.36 = 12.85% on Webs dataset, because the tested
dataset is relatively small and the workload containing queries
and updates is not that heavy. In such cases, the queue is short
and the response time is small. In contrast, when the same
ratio λu/λq is applied to the large Twitter dataset, the scale
of the graph and the heavy workload will drastically reduce
the query response time, which reaches 1236.45s for Agenda.
With the support of Quota, Quota-Agenda fine-tunes the mean
query and update time, achieving a much lower response time
of 197.27s. Additionally, we note that the response time for
Quota and FORA+ can be further reduced when we allow for
additional errors and reorganize the sequences by invoking
Seed. This is because queries receive higher priority when the
impact of updates is not substantial, allowing an earlier query
processing and thus a lower response time.

In summary, Quota effectively optimizes the queuing status
to reduce the user’s waiting time.

(2) Robustness to the evolving environments. We fix the
query arrival rate λq for each dataset. The ratio λu/λq simu-
lates the evolving workloads and working environments, which
reflects different contention situations between queries and
updates. The results in Figure 3 demonstrate that Quota auto-
matically configures itself based on different workloads. We
observe that Quota-Agenda outperforms the other algorithms
in most cases. For example, in the largest dataset Twitter,
Quota-Agenda achieves the response time deduction for at
least 1200 seconds against Agenda when ratio λu/λq ranges
from 1/8 to 8. Interestingly, when the workload becomes
extremely update-heavy (e.g., λu/λq = 8), Quota-Agenda’s
performance converges to those of baseline algorithms such as
Agenda and FORA. The main reason is that such an update-
heavy situation is the most favorable case for these baseline
algorithms that entail low update costs.

Except for the workloads shown in Figure 3, we further
evaluate the performance of Quota in an evolving situa-
tion where the query and update rates fluctuate over time.
Specifically, we track the response time on DBLP every 10s
and apply the following 5 workload patterns: query-inclined
(λq = 10 → 30, λu = 5), balanced (λq = 10 → 15, λu =
10 → 15), update-inclined (λq = 5, λu = 10 → 30), update-
declined (λq = 5, λu = 30 → 10), and query-declined
(λq = 30 → 10, λu = 5). As an illustration, in the query-
inclined pattern, the intervals keeping stable rates follow a
Poisson distribution with an average of 10s, while the query
rate steadily rises from 10 to 30. We continuously monitor
the rates and perform the hyperparameter search every 1s.
As shown in Figure 4, we observe that Quota can adapt to
this evolving situation and swiftly tune the hyperparameters,
achieving reduced response times. Since we only tune the
hyperparameters which have no impact on the worse-case
accuracy guarantees, Quota consistently maintains a high level
of accuracy in terms of PPR estimation results across all
patterns. Besides, we also compare with Quota-c, a Quota
version that neglects the hidden constants in the query and
update cost functions. Our experimental result highlights that
neglecting the influence of hidden constants result in sub-
optimal outcomes in the hyperparameter search, leading to a
significant increase in response time.

Fig. 4. Response time and empirical absolute error of Quota and Agenda
with dynamic workloads. Quota-c is the Quota version that neglects hidden
constants.

(3) Robustness to the arrival patterns of requests. In order
to further evaluate the performance of Quota in evolving
scenarios, we consider the situation where the queries and
updates arrive at our system following multiple patterns. We
relax the request arrival setting based on Poisson distribution
and utilize the Uniform distribution, Geometric distribution,
Normal distribution and Gamma distribution to formulate the
arrival time. We trigger the queries and updates based on LJ
datasets with the rate λq = λu = 0.1 and T = 1000s utilizing
these distributions. Moreover, we extract the true event stream
log from Wikipedia [72] and examine the utility of Quota in
real application scenarios. Note that we monitor the request ar-
rivals and obtain the real-time λq and λu in this case. As shown
in Table III, the response time of Agenda is sensitive to the
arrival time distribution due to the crowded queue. Meanwhile,
we verify the Quota does not degrade performance on the
various kinds of workload sequences and achieves the response
time deduction ranging from (6.90 − 5.19)/6.90 = 24% to
(203.78.52 − 17.96)/203.78 = 91.19%. This indicates that
Quota still performs effectively in a variety of workloads.



(a) FORA (b) FORA+ (c) SpeedPPR (d) SpeedPPR+

Fig. 5. Optimization results on FORA and SpeedPPR.

TABLE III
RESPONSE TIME (SECS) UNDER DIFFERENT ARRIVAL PATTERNS.

Method Uniform
distribution

Geometric
distribution

Normal
distribution

Gamma
distribution

Wikipedia
Stream

Agenda 203.78 161.22 217.52 122.57 6.90
Quota 17.96 15.68 26.64 19.99 5.19

TABLE IV
TIME COST OF CONFIGURATION.

Datasets Grid
Search

Random
Search

Bayesian
Optimization Quota

Webs 96.48 56.84 25.68 0.07
DBLP 2893.83 3054.14 1968.24 0.09

LJ 165638.74 148058.36 96852.21 0.07
Twitter - - - 0.08

E. Efficiency of Constrained Optimization
To better understand the configuration process of Quota, we

give a 3-D visualization of the auto-configuration process per-
formed by Quota. As an example, we show the hyperparameter
search space and the corresponding response time caused by
the configuration result when performing Agenda on Pokec and
λq = 0.1, λu/λq = {1/4, 1/2, 1, 2} in Figure 6 (a), (b), (c),
(d) respectively. For a better comparison, we use the ratio of
the tuned hyperparameter rmax (resp. rbmax) over the default
setting of r̄max = 1

αK (resp. r̄bmax = 1
n ) to demonstrate the

optimization result. The red point marked “Original setting of
Agenda” shows the situation where rmax and rbmax equal to the
default setting as rmax/r̄max = 1, rbmax/r̄

b
max = 1. The blue

point marked “Selected configuration of Quota” represents
the configuration result computed by Quota. We see that the
default setting of Agenda cannot be the optimal configuration
to achieve a low query response time for different workloads.
Nevertheless, Quota conducts the constrained optimization
based on the hyperparameter search space and successfully
chooses the configuration with the lowest response time (e.g.
rmax/r̄max = 0.65, rbmax/r̄

b
max = 0.03 in the (b) case).

To further illustrate Quota’s efficiency, we investigate the
time cost of the general hyperparameter search algorithms such
as Grid Search, Random Search and Bayesian Optimization
mentioned in Section VII. When we employ an incomplete
search space such as rmax, r

b
max = {0.1, 0.2, ..., 1}, these

methods need to first pick up a configuration and test the final
response time output. As shown in Table IV, Grid Search and
Random Search may take up to 80 runs of Agenda to achieve
the comparable performance as Quota-Agenda does, where
each run consumes much time ranging from 1.44s for Webs
to 16368s for Twitter. However, Quota only needs less than
0.1s to achieve the optimal solution even when the workloads

change. The rationale behind this remarkable difference is
that Quota incorporates the intrinsic time cost information
of the target algorithms and has no need to depend on the
computed result (i.e., response time). Correspondingly, once
the workload changes, Quota will directly seek the optimal
hyperparameter automatically within a short period of time,
which again underscores the importance of an adaptive and
configuration framework.

(b) (c) (d)(a)

Fig. 6. Quota configuration.

F. Experiments on FORA and SpeedPPR
We further demonstrate the generality of Quota designs,

and report the experimental results of Quota-FORA, Quota-
FORA+, Quota-SpeedPPR, and Quota-SpeedPPR+, which
respectively build Quota upon FORA, FORA+, SpeedPPR,
and SpeedPPR+ based on our designs in Section IV. Here
we generate the queries and updates for FORA, FORA+,
SpeedPPR, and SpeedPPR+ in the same manner as Agenda.

Following the experimental setting of Quota-Agenda, we
conduct the optimization processes of FORA, FORA+,
SpeedPPR, and SpeedPPR+ on the representative dataset
DBLP. The optimization results after applying Quota on FORA
and SpeedPPR are summarized in Figure 5. It can be seen
that when combined with Quota, all four algorithms can sig-
nificantly reduce the response time, regardless of whether the
algorithm is index-free or index-based and the corresponding
ratio between query and update arrival rates.

We refer to the optimization results of index-free FORA
and index-based FORA + for a more detailed discussion. For
index-free FORA, since the update process can be finished by
adding or deleting an edge using O(1) time, Quota automat-
ically detects that the key to optimizing query response time
is to minimize the query time. From Figure 5 (a) we observe
that the default value of rmax = 1√

mK
used in FORA may

not always be the optimal setting to achieve the most efficient
query process, where the hyperparameter rmax can be further
tuned to improve the query efficiency. Quota shows a promis-
ing tuning result that it improves the query efficiency of index-
free FORA by 25% on average across all the cases we tested. A
similar situation happens for the index-based version FORA+,
where Quota achieves a more pronounced improvement by
up to 40%. The improvement derives from two perspectives.



First, the theoretical optimal solution rmax = 1√
mK

neglects
the hidden time constant as well as the practical time cost
of each sub-process (e.g., Forward Push and Random Walk).
By adding the hidden constant factors into modeling, Quota
conducts a more accurate estimation for the mean query and
update costs, enabling a more efficient optimization of the
query response time. Second, the default setting of rmax may
not be robust to different workloads when we test the index-
based FORA+ algorithm. This is expected because as the
workload becomes update-heavy, even though FORA+ can
efficiently complete a query using only 0.1s on average, its
update cost (particularly, index refreshes) is significant. As
a result, the query response is severely delayed, reaching up
to 9.46s (when λq = 10 and λu = 80). Fortunately, Quota
incorporates the query and update arrival rates into the target
function for optimization, effectively compromising this effect
and enabling the system to adapt to various workloads.

Except for FORA and FORA+, Quota also improves
SpeedPPR and SpeedPPR+ by up to 27% and 34%. Based
on the above experimental results, we conclude that Quota
has the remarkable potential to be extended to other state-
of-the-art algorithms and significantly optimizes the response
time for a wide spectrum of workloads.

G. Quota on Top-k PPR
Top-k SSPPR is a PPR query type that only returns the ap-

proximate top-k highest PPR scores with respect to the source
node, which is used in some applications [73], [74]. We also
incorporate two state-of-the-art top-k PPR methods FORA-
TopK [13] and TopPPR [17] in a similar fashion (namely,
tuning their internal parameter rmax), and evaluate the effect
brought by Quota. The results on LJ datasets follow the same
setting mentioned above. As is shown in Figure 7, compared
with the default setting of two fundamental algorithms, Quota
can adapt to multiple query and update arrival rates, giving
us up to 50% and 33% improvement of the response time
for FORA-TopK and TopPPR, respectively. Our results hint
that the original default settings in both methods are not
ideal for QoS optimization and thus leave significant room
for improvement.

(a) FORA-TopK (b) TopPPR
Fig. 7. Optimization results on FORA-TopK and TopPPR.

H. Impact on the Reordering Algorithm

We perform an effectiveness analysis of Seed by setting vari-
ous values for ϵr and show the impact on Quota’s performance.
As mentioned in Section VI, Seed enables Quota to achieve a
balance between the response time and the overall accuracy of
queries. To verify this point, we further investigate how ϵr can
impact the response time and accuracy. Particularly, we build

Quota upon two index-based algorithms Agenda and FORA+
again when setting different threshold ϵr = {0, 0.1, 0.2, ..., 1}.
We select an update-heavy workload (λq = 10, λu = 40) from
the workload settings on DBLP datasets. As shown in Figure
8, with the increase of ϵr, the response time will gradually
decrease, which implies the queries have a higher priority and
can be finished faster. Meanwhile, we calculate the true PPR
error by comparing the PPR output by Quota with the ground-
truth PPR values. Interestingly, the true error is significantly
lower than that of the theoretical guarantees, demonstrating
the practical value of the reordering algorithms in reducing
the response time.

Moreover, to support our claim in Lemma 3, we conduct
the experiments on the overall time cost when applying
various query and update rates on Webs datasets following
our aforementioned settings with ϵr = 0.5. Fig. 9 (a) shows
that applying Seed has negligible impact on the overall perfor-
mance λq t̃q +λut̃u. In contrast, the response time distribution
before and after applying Seed ((λq = 100, λu = 100)) has
been shifted. Fig. 9 (b) shows that Seed offsets the response
time distribution and there is a larger portion of queries
acquiring the short response time (e.g., below 1000ms), and
this naturally gives a lower average response time.

(a) Quota-Agenda (b) Quota-FORA+

Fig. 8. Response time and true absolute error when setting different ϵr .

(a) Overall performance (b) Response time distribution

Fig. 9. The comparison of overall performance and response time distribution
after applying Seed.

IX. CONCLUSION
This paper makes the first attempt to optimize Quality-of-

Service-Aware PPR computation, which aims to minimize the
query response time for PPR queries on dynamically evolving
graphs. We present Quota, which is an auto-configuration
system that converts the state-of-the-art PPR algorithms to
counterparts that optimize the query response time. Quota
incorporates several interesting mathematical tools includ-
ing queuing theory, complexity analysis, and constrained
optimization. Ultimately, Quota achieves a successful auto-
configuration under various query and update workloads.
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APPENDIX

A. Frequently used notations and Forward Push algorithm

TABLE V
FREQUENTLY USED NOTATIONS IN THIS PAPER.

Notations Descriptions

Gi(Vi, Ei) Directed graph after i edge updates
ni,mi ni = |Vi|,mi = |Ei|
n,m Numbers of nodes and edges in the current graph.
π(Gi, s, t) PPR of node t from the source node s in graph Gi

r(Gi, s, t) Residue of node t from the source node s in Gi

π◦(Gi, s, t) Reserve of node t from source node s in graph Gi

dout(Gi, t) out-degree of node t in graph Gi

ϵ PPR accuracy guarantee
pf Failure probability of accuracy guarantee
δ PPR threshold
α Teleport probability of random walks
λq, λu Query/update arrival rate
Rq Average response time
Vq, Vu Variance of the query/update time
t̃q, t̃u Average query/update time
rmax, r

b
max Threshold in Forward Push and Reverse Push

τ Time constant

Algorithm 3: Forward Push
Input : Graph G = (V,E), teleport probability α, source

node s, residue threshold rmax

Output: Reserve π◦(G, s, t) and residue r(G, s, t) for each
t ∈ V

1 Initialize residue r(G, s, s) = 1; r(G, s, t) = 0 and reserve
π◦(G, s, t) = 0 for each t ∈ V ;

2 while ∃t ∈ V s.t. r(G,s,t)
dout(G,t)

> rmax do
3 foreach v that is an out-neighbor of t do
4 r(G, s, v)+ = (1− α) · r(G,s,t)

dout(G,t)
;

5 π◦(G, s, t)+ = α · r(G, s, t);
6 r(G, s, t) = 0;

B. Incorporating Agenda

In this section, we show how to integrate Quota on
Agenda [4], a recent state-of-the-art dynamic PPR algorithm.
We give refined analysis that is particularly useful for the
integration.

1) Complexity of Agenda: In order to model the mean query
and update time, we first conduct an in-depth analysis of its
query and update costs. As mentioned in Section III-B, Agenda
applies the Push+Walk framework on the query and conducts
the random walk index update only when needed. The query
and update algorithms in Agenda can be wrapped up using a
few sub-processes as follows.

• Query: Forward Push, Lazy Index Update, Random Walk.
• Update: Reverse Push, Index Inaccuracy Update.
Splitting the query or update into sub-processes facilitates

the later cost modeling. Next, we provide the analysis for more

TABLE VI
COST FUNCTIONS OF Agenda SUB-PROCESSES.

Sub-processes Time Cost Function
Forward Push 1

rmax
· τ1

Query
Lazy Index Update λurmax(nrbmax+1)

λq
· τ2

Random Walk rmax · τ3

Update Reverse Push 1
rbmax

· τ4
Index Inaccuracy Update 1 · τ5

details of the query and update process in Agenda, in order to
incorporate Agenda into Quota.
Query-Forward Push. By Lemma 13 in [11], Forward Push
in Algorithm 3 has a complexity of O( 1

αrmax
), where rmax is

the threshold for Forward Push (see Line 2 of Algorithm 3).

Query-Lazy Index Update. Given K =
(2ϵ/3+2) log(1/pf )

ϵ2δ , we
have the following lemma [75]:

Lemma 4. An edge insert or delete in Agenda will trigger

at most
2mrmax(nrbmax+1)

ϵδnα fraction of the overall index to be
updated.

In dynamic PPR scenarios, we assume that there occur
λq queries and λu updates per second. Therefore the overall
faction of the index that needs to be updated due to these

λu updates per second is at most O

(
2λumrmax(nrbmax+1)

ϵδnα

)
.

Finally, we can derive the amortized index update fraction for

each query as O

(
2λurmaxm(nrbmax+1)

λqϵδnα

)
.

Query-Random Walk. In the Random Walk sub-process, there
are r (Gi, s, t) · K random walks sampled for each residue
value r(Gi, s, t) where t ∈ Vi. The total number of random
walks sampled is

∑
t∈Vi

r(Gi, s, t)·K. Since the residue value
is computed by the Forward Push sub-process, we have:∑

t∈Vi

r (Gi, s, t) ·K ≤ nrmaxK

The number of random walks sampled during the Random
Walk sub-process is O(nrmaxK).
Update-Reverse Push. We adopt the conclusion of Theorem
1 in Fast-PPR [61] to derive the complexity of Reverse Push.
That is, given the reverse threshold rbmax and the graph
average degree d̄ = m

n , the complexity of Reverse Push is
O
(

d̄
αrbmax

)
= O

(
m

αnrbmax

)
.

Update-Index Inaccuracy Update. During the last sub-
process of update, Index Inaccuracy Update computes the
inaccuracy value for any node t ∈ Vi. Hence, the complexity
of Index Inaccuracy Update is O(n).

2) Query and Update Cost Functions: With the above
analysis, we can express the practical computation cost based
on the hyperparameters in Agenda and some constant factors.
Particularly, the amount of time consumed by the algorithms
is related to the time complexity expression and the hidden
constant factors [76]. Taking the Forward Push as an example,



we can quantify the cost of Forward Push as 1
αrmax

·τ1, where
1

αrmax
refers to the corresponding complexity expression for

Forward Push and τ1 refers to the unit time cost of changing
a node’s residue or reserve value.

Without loss of generality, we target two important tunable
hyperparameters rmax and rbmax (0 < rmax, r

b
max < 1), which

are the thresholds in the Forward Push and Reverse Push
sub-process. Given β = (rmax, r

b
max), we note that tuning

these two hyperparameters will still maintain the worst-case
accuracy guarantee with respect to the estimated PPR values.
We simplify the time complexity and the extra coefficients
(e.g., α, δ,m etc.) are reflected in the time constant τ . Based
on the cost of each sub-process summarized in Table VI, we
can express t̃q and t̃u as:

t̃q(rmax, r
b
max) =

1

rmax
· τ1︸ ︷︷ ︸

Forward Push

+
λurmax(nr

b
max + 1)

λq
· τ2︸ ︷︷ ︸

Lazy Index Update

+

rmax · τ3︸ ︷︷ ︸
Random Walk

, t̃u(rmax, r
b
max) =

1

rbmax

· τ4︸ ︷︷ ︸
Reverse Push

+ 1 · τ5︸ ︷︷ ︸
Index Update

,

where τi(1 ≤ i ≤ 5) denotes the different constant factors.
For the reason that τi incorporates the coefficients in the
query and update time complexity, we note that τi depends
on the experiment setting and will be measured during our
implementation. The formulated mean query and update cost
functions can be integrated into the optimization process in
Section IV-A, and utilized to compute the optimal settings for
rmax and rbmax.

3) Constraint Functions: Last, we present the constraint
functions designed for Agenda to finalize the target func-
tion Φ(β) in Eq. 6. Given the hyperparameter vector β =
(rmax, r

b
max), we need to ensure that the hyperparameters

are searched in the hyperparameter space Λ, where we have
0 < rmax < 1 and 0 < rbmax < 1. In order to meet the
constraint requirements, the constraint functions are designed
as follows:

C1(rmax, r
b
max) = λq t̃q(rmax, r

b
max) + λut̃u(rmax, r

b
max)− 1,

C2(rmax, r
b
max) = −rmax, C3(rmax, r

b
max) = rmax − 1,

C4(rmax, r
b
max) = −rbmax, C5(rmax, r

b
max) = rbmax − 1,

where C1(rmax, r
b
max) represents the stability constraint and

other functions are due to the search space constraint.

C. Incorporating FORA and SpeedPPR

In the previous section, we presented the optimization
process of Quota using the state-of-the-art algorithm Agenda.
However, it is worth noting that Quota can be easily in-
tegrated with other PPR algorithms that include query and
update processes. In this section, we demonstrate how to
incorporate Quota into two other representative state-of-the-art
algorithms that use similar Push+Walk structures: FORA [13]
and SpeedPPR [16]. For completeness, we also provide a
complexity analysis of index-free FORA, SpeedPPR, index-
based FORA+, and SpeedPPR+ as follows.

For each query, as given in [13], both FORA and
FORA+ consume O

(
1

αrmax
+mrmaxK

)
time, where K =

(2ϵ/3 + 2) log (2/pf )/(ϵ
2δ). For the index-free FORA, the

update process is only conducted by adding or deleting
an edge on the graph, which costs O(1) time only. For
FORA+ that does not provide an update function, we
achieve the update operation by regenerating the index.
This consumes O (mrmaxK) time because there requires
to generate such number of random walks. Similarly, as
shown in [16], for both SpeedPPR+ and SpeedPPR, each
query consumes O(m log 1

rmaxm
+ mrmaxW ) time, where

W = 2(2ϵ/3 + 2) log n/(ϵ2δ). Moreover, each update will
take O(1) time in the index-free method SpeedPPR, but
O(mrmaxW ) to reconstruct the index for SpeedPPR+.

We note that while the query costs for FORA and FORA+
have the same form, they entail different empirical perfor-
mance. To explain, in the random walk sub-process during a
query, FORA conducts random walks online, whereas FORA+,
being an index-based method, directly extracts the random
walk results from the index. Consequently, FORA and FORA+
entail different constant coefficients. A similar analysis also
applies to SpeedPPR and SpeedPPR+.

For the index-free FORA and SpeedPPR, the update process
maintains O(1) time cost and the response time optimization
is equally transformed into optimizing query time. Although
FORA [13] attempts to achieve the theoretical minimization of
query time complexity O (1/(αrmax) +mrmaxK) by setting
the default hyperparameter as rmax = 1/

√
αmK where

K = (2ϵ/3 + 2) log (2/pf )/(ϵ
2δ), our experimental results in

Section VIII prove that the default setting may not be the
optimal solution for minimizing the query time. On the con-
trary, Quota takes the practical time cost of each sub-process
of the target algorithm into consideration and fundamentally
improves the query efficiency.

Employing Quota on FORA and SpeedPPR is relatively
simple since there only exists a tunable hyperparameter rmax

which has no effect on the accuracy guarantees. After con-
sidering different time constants, the mean query and update
time function in FORA, FORA+, SpeedPPR, and SpeedPPR+
can be formulated in Table I (bottom).
• FORA. After considering the hyperparameter rmax and

the time constant τ1 and τ2 corresponding to Forward Push
and Random Walk sub-processes, we can formulate the mean
query and update time of FORA as:

t̃q(rmax) =
1

rmax
· τ1 + rmax · τ2, t̃u(rmax) = 1 · τ3,

where the equation of t̃u(rmax) holds because the index-free
version of FORA is updated by only adding or deleting an
edge.
• FORA+. The index-based FORA+ differs from the index-

free FORA in that FORA+ needs to update the random walk
index when there comes an edge insert or delete, incurring:

t̃q(rmax) =
1

rmax
· τ1 + rmax · τ2, t̃u(rmax) = rmax · τ3



TABLE VII
RESPONSE TIME (MILLISECS) UNDER EXTREME SITUATIONS.

λq = 10
λu = 10

λq = 10
λu = 20

λq = 10
λu = 40

λq = 200
λu = 200

λq = 200
λu = 400

λq = 200
λu = 800

Agenda 16.68 19.53 31.17 3477.76 4105.62 4379.24
Quota 7.69 8.13 16.44 3064.76 3638.41 4072.92

The query and update cost functions for SpeedPPR and
SpeedPPR+ can be derived in a similar fashion as discussed
before. To complete the optimization process for FORA and
SpeedPPR, we replace the mean query and update functions
in Eq. 2 with the derived equations. Then, we formulate
the objective function for FORA, FORA+, SpeedPPR, and
SpeedPPR+ and perform the constrained optimization process
similar to that of Agenda.

In conclusion, Quota can be easily applied to these two rep-
resentative algorithms, which highlights the versatility of the
Quota framework. Extensive experiments on these algorithms
are presented in Section VIII.

D. Response time under extreme situations
Expect for the extremely workload-heavy situations men-

tioned above, we additionally simulate several extremely
workload-light and workload-heavy situation and assess the
robustness of Quota. The corresponding experimental results
in Table VII evaluate the performance of Quota and Agenda on
the Webs datasets under specific query and update rate settings.
We note that even in these cases, Quota-Agenda still achieves
comparable performance, demonstrating its robustness.

E. Details of applying Wikipedia datasets
Wikipedia datasets are from [77] and we extract 100 events

including page queries and changes from the event data of
[72]. We record the source node, request type, and arrival time
stamp to simulate the real workload. We repeat this process
for 10 times and then record the mean page query response
time.

F. More results under dynamic situations
In order to prove the effectiveness of Quota under dynamic

situations, we provide more results on DBLP following the
setting demonstrated in Figure 4, while shuffling the order
of various patterns and verify the performance in different
workloads. The results in Figure 10 coincide with the observa-
tion in Figure 4: Quota can quickly tune the hyperparameters
and reduce the response time when maintaining a high level
of accuracy in different evolving workloads. Moreover, we
reconduct the experiments in Figure 3 but change the update
rates over time. Specifically, the term λu/λq changes from
1/8 to 8 almost every 10s on Webs and DBLP datasets
(also following a Poisson distribution) and every 1000s on
Pokec and LJ datasets. We continuously monitor the rates
and perform the hyperparameter search every 1s on Webs and
DBLP datasets and every 100s on Pokec and LJ datasets. As
shown in Figure 11, Quota continues to effectively reduce
response times over time, even when faced with evolving
update rates. This further demonstrates the robustness of Quota
in dynamic scenarios.

(a)

(b)

(c)

(d)

Fig. 10. More results about the response time and empirical absolute error
of Quota and Agenda with dynamic workloads.

G. Cost Balance Among Sub-Processes

As analyzed in Section IV, Quota coordinates the queuing
status by tuning the hyperparameters and maintaining the
optimal trade-off between average query and update time. To
further illustrate this point by experiments, we summarize the
average cost of sub-processes in Agenda and Quota-Agenda
on the representative tests and review how Quota achieves the
cost balance among sub-processes. In Table VIII, we provide
the optimization result when λq = 0.1 and λu = {0.05, 0.2}
on LJ datasets, respectively. From the overall performance in
Figure 3 and the example in Table VIII, we observe that Quota
can adaptively tune the average time cost of sub-processes in
query and update according to query and update arrival rates.
Particularly, Quota inherently balances the computing resource
allocated for queries and updates. One can refer to the statistics
for λq = 0.1 and λu = 0.05, which indicates that by the trade-



(a) Webs (b) DBLP

(c) Pokec (d) LJ

Fig. 11. More results about the response time under dynamic situations.

offs among all sub-process costs, Quota successfully optimizes
the queuing status and ultimately reduces the response time of
Agenda by up to 86.44%(= (55.08− 7.47)/55.08).

TABLE VIII
AVERAGE COST (SECS) WHEN λq = 0.1 AND λu = {0.05, 0.2}.

Sub-process Agenda Quota-Agenda
λu = 0.05 λu = 0.2 λu = 0.05 λu = 0.2

Forward Push 1.24 1.19 2.76 5.67
Lazy Index Update 7.70 16.84 0.54 1.76

Random Walk 0.73 1.03 0.71 0.88
Reverse Push 0.05 0.05 2.70 1.59

Index Inaccuracy Update 0.01 0.01 0.01 0.01
Query cost 9.67 19.06 4.01 8.31
Update cost 0.07 0.07 2.72 1.60

Response time 55.08 249.25 7.47 50.94

H. Proof of Lemma 1

By definition, the response time of Nq-th query is the
difference between its arrival time ANq

and departure time
DNq

:

WNq
= DNq

−ANq
(7)

The query arrivals follow the Poisson distribution and the
arrival time ANq

is calculated based on the query rate λq:

N−1
q ANq

=
1

λq
,w.p.1 as Nq → ∞ (8)

Following the FCFS policy, the Nq-th query will be pro-
cessed only when all of the previous queries and updates are
finished. Hence for the departure time DNq

, it includes three
sources of time cost: (1) the query cost QNq of these Nq

queries; (2) the update cost UNq before Nq-th query; (3) the
idle time ξ in the queue. Then by the linearity of expectation,
we have:

DNq
= QNq

+ UNq
+ ξ

Note that QNq
= Nq ·t̃q , and when the Nq-th (Nq → ∞) query

arrives, there are (Nq/λq) ·λu updates before this query. This
gives us UNq = (Nq/λq) · λu · t̃u, and hence,

N−1
q DNq = t̃q +

λut̃u
λq

+N−1
q ξ,w.p.1 as Nq → ∞

Finally, based on the strong laws of large numbers in [78],
[79], when Nq → ∞, the idle interval between two continuous
requests (query or update) in an unstable queue will converge
into 0. That is, the idle time ξ will converge into a limited
value and the queue will converge to the status which is totally
saturated with queries and updates, which leads to:

N−1
q ξ ≡ 0,w.p.1 as Nq → ∞.

We then calculate the expected value of departure time DNq
:

N−1
q DNq

≡ t̃q +
λut̃u
λq

,w.p.1 as Nq → ∞. (9)

We derive Eq. 7 by incorporating Eq. 8 and Eq. 9 as:

N−1
q WNq ≡ λq t̃q + λut̃u − 1

λq
,w.p.1 as Nq → ∞

I. Proof of Lemma 2

First, we need to prove a preliminary lemma:

Lemma 5. Given any u, v ∈ Vi(u ̸= v), the following holds:

π(Gi, u, v) ≤ e(Gi, u)− α. (10)

where e(Gi, u) =
dout(Gi,u)−α(1−α)(dout(Gi,u)−1)

dout(Gi,u)
, u, v ∈ Vi.

Proof. By Lemma 1 of [2], we have π (Gi, u, w) ≥ α(1 −
α)/dout(Gi, u), where w is any out-neighbor of u. And
π(Gi, u, u) is larger than α. Considering all neighbor w of
u and v (v also might be one neighbor of u), we have

π(Gi, u, v) + π(Gi, u, u) +
∑

w∈(Nei(u)−v)

π(Gi, u, w) ≤ 1.

(11)

Then we can obtain the upper bound of π(Gi, u, v) as:

π(Gi, u, v) ≤ 1−
∑

w∈(Nei(u)−v)

π(Gi, u, w)− α (12)

≤ 1− α(1− α)

dout(Gi, u)
· (dout(Gi, u)− 1)− α

The proof is finished.

We know π(Gi, s, t) is the probability that a random walk
starting from s ends at t. We express the node set passed by
this random walk as s ⇝ t. We can divide this probability
into two part:

π(Gi, s, t) = Pr(Gi, ui+1 ∈ s⇝ t) + Pr(Gi, ui+1 /∈ s⇝ t)
(13)



After updating (ui+1, vi+1), the probability that a random
walk from s not passing ui+1 ends at t will not change. For
the term of Pr(Gi, ui+1 ∈ s⇝ t), we have:

Pr(Gi, ui+1 ∈ s⇝ t) = Pr(Gi,Walk from s first passing
(14)

ui+1) · π(Gi+1, ui+1, t).

Hence we have:

|π (Gi+1, s, t)− π (Gi, s, t)| (15)
= |Pr(Gi+1, ui+1 ∈ s⇝ t)− Pr(Gi, ui+1 ∈ s⇝ t)|
= |Pr(Gi,Walk from s first passing ui+1) · π(Gi+1, ui+1, t)

− Pr(Gi,Walk from s first passing ui+1) · π(Gi, ui+1, t)|
= Pr(Gi,Walk from s first passing ui+1) · |π(Gi+1, ui+1, t)

− π(Gi, ui+1, t)|

The probability of a random walk from s passing ui+1 is
π(Gi,s,ui+1)

α , and the probability of a random walk from s first
passing ui+1 is smaller than π(Gi,s,ui+1)

α . Moreover, we utilize
the conclusion in Theorem 1 in [4] and then we have:

max
t∈Vi

|π (Gi+1, u, t)− π (Gi, u, t)| ≤
π (Gi, u, ui+1)

αdout (Gi+1, ui+1)
.

(16)

We use ui+1 to replace u in Eq. 16, we have
|π(Gi+1, ui+1, t)− π(Gi, ui+1, t)| ≤ π(Gi,ui+1,ui+1)

αdout(Gi+1,ui+1)

Hence we have:

|π (Gi+1, s, t)− π (Gi, s, t)| (17)

≤ π(Gi, s, ui+1)

α
· |π(Gi+1, ui+1, t)− π(Gi, ui+1, t)|

≤ π (Gi, s, ui+1)π(Gi, ui+1, ui+1)

α2dout (Gi+1, ui+1)

Then we uitilize the result of Lemma 5, we have
π (Gi, s, ui+1) ≤ e(Gi, s) − α, and π(Gi, ui+1, ui+1) ≤
1− α(1− α) and we finish the proof.

J. Proof of Lemma 3

We first prove that λq t̃q + λut̃u will remain the same after
applying Seed. Under the Poisson distribution, we define there
exist Nq queries and Nu updates in a time window T , and we
know Nq

T = λq,
Nu

T = λu,w.p.1 as T → ∞. Then we have:

(Nq t̃q +Nut̃u)/T = λq t̃q + λut̃u,w.p.1 as T → ∞. (18)

Here we assume that the cost of each request will remain
the same after reordering. Before applying Seed, the overall
consumption to process all requests is Nq t̃q + Nut̃u. After
applying Seed, the order of these requests changes while the
overall consumption is still Nq t̃q +Nut̃u. Given a same time
window T (T → ∞), the term λq t̃q + λut̃u will not change
after we apply Seed.

Assume the original response time of the Nq-th query before
reordering is W ∗

Nq
. Then we prove that for the Nq-th query, the

response time WNq after applying Seed satisfies WNq ≤ W ∗
Nq

.

Following the proof of Lemma 1, the response time W ∗
Nq

can
be formulated as:

W ∗
Nq

= D∗
Nq

−A∗
Nq

= Q∗
Nq

+ U∗
Nq

+ ξ∗ −A∗
Nq

, (19)

where Q∗
Nq

is the query cost of these Nq queries, U∗
Nq

is the
update cost before Nq-th query, ξ∗ is the idle time, and A∗

Nq

is the arrival time of Nq-th query. Next we see the status after
applying reordering and we denote the corrosponding variables
as QNq

, UNq
, ξ, and ANq

.
To measure the response time of Nq-th query, we need to

consider two situations: (a) when receiving Nq-th query, the
pending update queue Up is empty; (b) when receiving the
Nq-th query, the pending update queue Up is not empty. For
(a), before processing Nq-th query, the requests before this
query have been finished and QNq

= Q∗
Nq

, UNq = U∗
Nq

, ξ =
ξ∗. Furthermore, the arrival time A∗

Nq
will not be affected by

the reordering algorithm, and we have ANq
= A∗

Nq
. In this

situation, we have WNq
= DNq

− ANq
= QNq

+ UNq
+

ξ − ANq
= W ∗

Nq
. For (b), the only difference with (a) is

that there exist updates in the pending queue Up. Hence the
time consumption UNq of processing updates will be reduced
and we have UNq ≤ U∗

Nq
. In this situation, we have WNq =

DNq
−ANq

= QNq
+ UNq

+ ξ −ANq
< W ∗

Nq
. Summarizing

the results above, we have WNq
≤ W ∗

Nq
, and the proof is

finished.
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