
Efficient Batch One-Hop Personalized PageRanks

Siqiang Luo
University of Hong Kong

sqluo@cs.hku.hk

Xiaokui Xiao
National University of Singapore

xkxiao@nus.edu.sg

Wenqing Lin
Tencent

edwlin@tencent.com

Ben Kao
University of Hong Kong

kao@cs.hku.hk

Abstract—Personalized PageRank (PPR) is a classic measure
of the relevance among different nodes in a graph. Existing work
on PPR has mainly focused on three general types of queries,
namely, single-pair PPR, single-source PPR, and all-pair PPR.
However, there are applications that rely on a new query type
(referred to as batch one-hop PPR), which takes as input a set
S of source nodes and, for each node s ∈ S and each of s’s
neighbor v, asks for the PPR value of v with respect to s. None
of the existing PPR algorithms is able to efficiently process batch
one-hop queries, due to the inherent differences between batch
one-hop PPR and the three general query types. To address the
limitations of existing algorithms, this paper presents Baton, an
algorithm for batch one-hop PPR that offers strong practical
efficiency.

I. INTRODUCTION

Given two nodes s and t in a graph G, the Personalized
PageRank (PPR) of t with respect to s, denoted as π(s, t), is

defined as the probability that a random walk (with decay)

from s would terminate at t. The importance of PPR has

motivated numerous solutions [4], [7], [10], [11], [8] that

aim to improve the efficiency of PPR computation. Existing

solutions mainly address three types of PPR queries: 1) single-
pair PPR, which returns π(s, t) for a given pair (s, t); 2)

single-source PPR, which returns π(s, v) for a given s and

every node v in G; 3) all-pair PPR, which returns π(u, v) for

all possible node pairs (u, v).
Although these generic query types cover a number of

applications (e.g., [5], [6], [9]), we observe that there is often

a need for more specialized form of PPR queries. In particular,

we consider a problem that we encounter in Tencent’s massive

online gaming platform with a social network G of billions

of users. The platform has a PPR-based mechanism that aims

to attract inactive users back to the platform, and it works as

follows. First, for each inactive user s, the platform inspects

her friends in the social network, and identifies the ones who

are active and have large PPR values with respect to s. Then,

the platform asks each v of those friends to send a message

to s to invite her back, and gives v a reward if s returns

to the platform upon receiving the message. A/B tests show

that this PPR-based mechanism is much more effective than

other mechanisms considered. Nonetheless, the computation

of PPR poses a significant challenge for deploying the PPR-

based mechanism in Tencent, as the number of inactive users

can be up to billions. That is, given a large subset S of the

nodes in G, we need an efficient method to compute, for each

node s ∈ S, the PPR values of s’s neighbors with respect to s.

We refer to this type of queries as batch one-hop PPR queries.

A naive solution to process batch one-hop PPR is to

answer the query using existing algorithms for single-pair,

single-source, or all-pair PPR queries; nevertheless, this incurs

tremendous computation overheads. In particular, if we are to

answer a batch one-hop query using a single-source algorithm,

then we need to invoke the algorithm once for each node

in S. Assuming that |S| = 108 and that each invocation

of the algorithm requires 100 seconds (which is typical for

the state of the art [11]), the total processing cost would be

1010 seconds (≈ 317 years), which is prohibitive. Similarly,

answering the query using a single-pair PPR algorithm would

result in efficiency issues, because (i) we need to apply the

algorithm once for each edge adjacent to the nodes in S, and

(ii) the number of such edges is often two orders of magnitude

larger than |S|. All-pair PPR algorithms are inapplicable,

either, as their O(n2) space overheads restrict their application

to small graphs only.

Contributions. This paper presents a comprehensive study on

batch one-hop PPR queries, and proposes Baton (Batch One-

Hop Personalized PageRanks), an algorithm that offers strong

practical efficiency. Our experimental evaluation shows that

Baton outperforms the state of the arts by several orders of

magnitude in terms of running time.

II. PRELIMINARIES

A. Problem Definition

Let G(V,E) be a directed graph with node set V and edge

set E. Given a source node s ∈ V and a decay factor α,

a random walk from s is a traversal of G starting from s,

such that at each step of the traversal, it terminates with α
probability and, with the other 1 − α probability, moves to a

randomly selected out-neighbor of the current node. For any

node t, the Personalized PageRank (PPR) [9] of t with respect

to s, denoted as π(s, t), is defined as the probability that a

random walk from s stops at t. We aim to answer batch one-
hop PPR queries with accuracy guarantees, defined as follows.

Definition 1 (Approximate Batch One-Hop PPR Queries):
Given a set S of nodes in a graph G, a threshold δ, an error

bound ε, and a failure probability pf , an approximate batch

one-hop PPR query returns an estimated PPR π̂(s, v) for every

node pair (s, v) such that s ∈ S and v is an out-neighbor of

S, such that for all π(s, v) ≥ δ,

|π(s, v)− π̂(s, v)| ≤ ε · π(s, v) (1)

holds with a probability at least 1− pf . �

1562

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00142

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Forward-Push(G, s, rmax, α)

Input: Graph G, source node s, residue threshold rmax,

probability α
Output: π◦(s, u), r(s, u) for all u ∈ V

1 for u ∈ V do
2 r(s, u) = 0, π◦(s, u) = 0, d(u) = out degree of u

3 r(s, s) = 1
4 while exists u ∈ V such that r(s, u) > rmax · d(u) do
5 Push-Step(G, s, α, u)

Algorithm 2: Push-Step(G, s, α, u)

1 for each v that is an out-neighbor of u do
2 r(s, v) = r(s, v) + (1− α) · r(s,u)d(u)

3 π◦(s, u) = π◦(s, u) + α · r(s, u)
4 r(s, u) = 0

B. Main Competitors

Monte-Carlo (MC). The MC method [4] is a classical so-

lution for PPR estimation. To achieve the accuracy guarantee

in Equation 1, it generates ω = Ω
(

log (1/pf)
ε2δ

)
random walks

starting at s to estimate π(s, t) for every node t. If ω′ of them

terminate at t, then ω′
ω is an unbiased estimate of π(s, t).

Forward Push. Forward push [3] is a method for answering

single-source PPR queries (see Algorithm 1). It maintains, for

each node u ∈ V , a reserve π◦(s, u) and a residue r(s, u),
which are dynamically updated by a propagation process from

the source node s. Initially, all reserves and residues are set

to 0, except that the residue of s is set to 1. The propagation

is then repeatedly conducted based on Algorithm 1. In brief,

conducting a forward push on node u transfers α portion of its

residue to its reserve, while the remaining (1− α) portion is

equally distributed to the out-neighbors of u. It can be shown

that when the residue threshold rmax is set close to 0, the final

reserves are close to the actual PPR scores.

BiPPR and HubPPR. BiPPR [7] is a method for single-pair

PPR queries that improves over MC and forward push. Given

a node pair (s, t), BiPPR conducts a number of random walks

from s as well as a reverse push [2] from t, and then combines

the information obtained to derive an estimation of π(s, t).
The reverse push algorithm is similar in spirit to the forward

push method, except that (i) it follows the incoming edges of

each node instead of the outgoing edges, and (ii) it derives

the residue and reserve of each node in a different manner. It

is shown in [7] that for randomly chosen t, BiPPR requires

O

(√
m log (1/pf)

nε2δ

)
expected time to achieve the accuracy

guarantee in Equation 1, which is a significant improvement

over MC and forward push. HubPPR [10] is an enhancement

of BiPPR that it (i) improves query efficiency with indexing

and (ii) retains the theoretical guarantees of BiPPR.

FORA. FORA [11] is the state-of-the-art method for single-

source PPR queries, and it is based on a combination of MC

and forward push. Specifically, it first conducts a forward

push with threshold rmax from the source node s, and then

performs random walks from each node v, such that the

number of random walks from v is proportional to its residue.

It is proved in [11] that, for each node u ∈ V , the estimate

π̂(s, u) = π◦(s, u) + c(u)/K is an unbiased estimate of

π(s, u), where π◦(s, u) is the reserve of u, K is the total

number of random walks that have been performed, and c(u) is

the number of random walks that end at u. It is also shown that,

by setting K = O
(
rsum · (2ε/3+2) log (2/pf)

ε2δ

)
, FORA achieves

the accuracy guarantee in Equation 1, where rsum is the sum

of residues of nodes when the forward push terminates.

The key of FORA is to determine a good threshold

rmax to balance the costs of the forward push phase and

the random walk phase. Wang et al. [11] suggest setting

rmax = O
(

ε√
m
·
√

δ
(2ε/3+2) log (2/pf)

)
, so that the total

cost of forward push and random walks is optimized as

O

(√
(2ε/3+2)m log (2/pf)

ε2δ

)
. In addition, Wang et al. [11] also

propose an indexed version of FORA, referred to as FORA+,

that offers high query efficiency at the costs of space and

preprocessing.

Adaptation to Batch One-Hop PPR. MC and FORA can

be adopted to answer batch one-hop queries by performing

one single-source query for each node s in S. Meanwhile, if

we are to apply BiPPR and HubPPR to process batch one-

hop queries, then we need to perform one single-pair query

for each node pair (s, v), such that s ∈ S and v is an out-

neighbor of s. As we demonstrate in our experiments (see in

Section IV), such adoptions result in inferior efficiency.

III. OUR SOLUTION

A. Lower Bound for One-Hop PPR

Let (s, v) be any node pair in G, and suppose that we

are to estimate π(s, v) with ε relative error. Intuitively, the

estimation is more difficult when π(s, v) is small, since the

margin of error decreases with π(s, v). (This also explains why

the time complexities of MC, BiPPR, HubPPR, and FORA are

all inverse proportional to the PPR threshold δ.) On the other

hand, if we know in advance that π(s, v) is large, then we

could be less stringent in estimating π(s, v), as there is more

room for error. This motivates us to derive a lower bound for

one-hop PPR values, so as to guide our algorithm for batch

one-hop PPR. In particular, we have the following lemma 1.

Lemma 1: For any node s and any out-neighbor t of s, we

have π(s, t) ≥ α(1−α)
d(s) , where d(s) is the out-degree of s.

The above result can be exploited to reduce the overhead of

batch one-hop PPR queries. For example, consider the FORA

algorithm (discussed in Section II-B), which answers any

single-source PPR query from a node s in O

(√
m log (1/pf)

ε2δ

)

1All the proofs of lemmas can be found in [1].

1563

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

expected time, and ensures ε relative error for any π(s, v) ≥ δ.

Applying FORA to answer a batch one-hop query would

require one single-source query for each node s ∈ S, leading

to a total expected cost of O

(
|S|

√
m log (1/pf)

ε2δ

)
.

As mentioned in Section II, δ is typically set to O(1/n),
which could be much smaller than α(1−α)/d(s). Therefore, if
we are to invoke FORA for a batch one-hop query, we can set
δ = α(1− α)/d(s) instead. By Lemma 1, FORA would still
ensure ε relative error in the estimation of π(s, v), as long as
v is an out-neighbor of s. As such, the expected cost of using
FORA to process the query is

O

⎛
⎝∑

s∈S

√
m log (1/pf)

ε2(α(1− α)/d(s))

⎞
⎠ = O

⎛
⎝
√

m log (1/pf)

ε2

∑
s∈S

√
d(s)

⎞
⎠

In contrast, setting δ = O(1/n) would result in a total

expected cost of O

(√
m log (1/pf)

ε2 · |S|√n

)
, which is inferior

since |S|√n >
∑

s∈S
√
d(s) holds. Similarly, we can incor-

porate the lower bound in Lemma 1 into BiPPR and HubPPR,

so as to reduce their expected time complexities for batch one-

hop queries.

B. The Baton Method

To better utilize the lower bound in Lemma 1, we present

the Baton method shown in Algorithm 3 for batch one-hop

PPR queries. At the first glance, Baton may seem similar

to FORA as they both perform forward push from each

node s ∈ S, followed by generating random walks from

the nodes with non-zero residues. There is one crucial differ-

ence, however: Baton’s forward push phase performs a push
step on a node u whenever r(s, u) > d(u)

α·K(s) (2), where

K(s) =
(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α) is a constant that increases with

the out-degree d(s) of s (see Lines 2-4 in Algorithm 3); in

contrast, FORA’s forward push phase applies a push step

on u whenever r(s, u) > d(u) · rmax (3), where rmax =

O
(

ε√
m
·
√

δ
(2ε/3+2) log (2/pf)

)
is a constant independent of s.

In other words, Baton is more likely to “push” when d(s) is

large, whereas FORA does not consider d(s) when deciding

whether a push step is needed. In what follows, we will explain

(i) the rationale between these two design choices, (ii) why our

design is non-trivial with respect to FORA, and (iii) how our

design leads to significantly improved performance.

First, when the “push condition” in Equation 3 is

adopted, the forward push method (i.e., Algorithm 1) runs

in O(1/rmax) time [3]. FORA relies on this result to bound

the cost of its forward push phase [11], and hence, it also

adopts Equation 3. As such, changing the push condition from

Equation 3 to Equation 2 is non-trivial, as it invalidates the

time complexity analysis in [11], and requires new analytical

results to be derived for the revised forward push method.

Second, the reason that Baton uses the push condition in

Equation 2 is that it helps Baton achieve improved asymptotic

performance by striking a better balance between forward push

and random walks. To explain, suppose that we encounter, in

the forward push phase, a node u with reserve π◦(s, u) and

Algorithm 3: Baton(G, S, ε, pf , α)

Input: Graph G, source node set S, PPR relative

accuracy guarantee ε, failure probability pf ,

probability α
Output: PPR estimate π̂(s, u), for all s ∈ S, u ∈ N(s)

1 for s ∈ S do
2 K(s) =

(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α)

3 while exists u such that r(s, u) > d(u)
α·K(s) do

4 Push-Step(G, s, α, u) (by Algorithm 2)

5 for t ∈ Nout(s) do
6 π̂(s, t) = π◦(s, t)

7 for v ∈ V and r(s, v) > 0 do
8 for i = 1 to (r(s, v) ·K(s)) do
9 Conduct a random walk from v

10 if the random walk terminates at t then
11 if t ∈ Nout(s) then
12 π̂(s, t) = π̂(s, t) + 1

K(s)

residue r(s, u). If we choose not to perform a push step on u,

then according to Lines 8-12 in Algorithm 3, the random walk

phase would need to generate r(s, u)·K(s) random walks from

u. On the other hand, if we apply a push step on u, then u’s

out-neighbor’s total residue is increased by (1 − α) · r(s, u),
and then u’s residue is reset to 0; in that case, the random

walk phase needs to generate (1− α) · r(s, u) ·K(s) random

walks from u’s out-neighbors, but does not require any random

walk from u. Therefore, performing the push step on u reduces

the number of random walks required by α · r(s, u) · K(s),
at the cost of O(d(u)) computation (since each of u’s out-

neighbor needs to be visited). This explains why Baton’s push

condition is r(s, u) > d(u)/(α ·K(s)): it ensures that d(u) <
α · r(s, u) ·K(s), which roughly indicates that a push step on

u could reduce the total computation cost of the forward push

and random walk phases.

IV. EXPERIMENTS

Settings. Our tested graphs are shown in Table I. We compare

Baton with MC [4], HubPPR [10], FORA+ [11], and the

respective optimized versions of the state-of-the-art algorithms

HubPPR-OPT and FORA-OPT using the tightened accuracy

bounds (Lemma 1). FORA-OPT is the improved method we

described in Section III-A. (we name the method FORA-

OPT to distinguish it with the original FORA.) Details about

HubPPR-OPT can be found in [1]. The implementations

of HubPPR [10] and FORA+ [11] are obtained from their

respective authors. All the methods are implemented by C++.

For each dataset, we choose 1000 source nodes uniformly at

random to compute the 1000 one-hop PPR queries, whose

running times are averaged and reported. Following [7], [10],

[11], we set δ = 1/n, pf = 1/n, and ε = 0.5 by default. Our

1564

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Datasets. (K = 103, M = 106, B = 109)

Name n m Type Additional Info.
DBLP 613.6K 2.0M undirected dblp.com
Web-St 281.9K 2.3M directed stanford.edu
Pokec 1.6M 30.6M directed pokec.azet.sk
LJ 4.8M 69.0M directed livejournal.com
Orkut 3.1M 117.2M undirected orkut.com
Twitter 41.7M 1.5B directed twitter.com

Fig. 1: Efficiency.

experiments are conducted on a Linux machine with an Intel

2.6GHz CPU and 64GB memory.

Performance. Figure 1 (a) shows the per-query efficiency of

the methods. We omit the running times of HubPPR, HubPPR-

OPT and MC for the largest Twitter dataset, because 1) MC

fails to finish within 500 seconds per query; 2) We are not able

to build the index of HubPPR/HubPPR-OPT for the billion-

edge graph, due to the excessively large memory required.

As expected, the classic algorithm MC runs relatively slow,

and if S is a large subset of V , it would fail to handle a

moderate sized graph Pokec. For example, let us set |S| = 1M .

Then, if to estimate the overall cost based on the scaled

average query time, MC takes 89s×1M=2.8 years to compute

the batch one-hop PPRs for Pokec, which is not satisfactory.

The state-of-the-art algorithms, i.e., FORA and HubPPR, sig-

nificantly outperform MC. However, they are still much slower

compared with their respective optimized algorithms, i.e.,

FORA-OPT and HubPPR-OPT. The improvement of FORA-

OPT and HubPPR-OPT is expected because the tightened

bound indicated in Lemma 1 allows the number of random

walks to be significantly reduced, while still maintaining the

worst-case accuracy guarantee.

Baton consistently outperforms the other algorithms. In

particular, Baton is around 3 orders of magnitude faster than

FORA and HubPPR. Even compared with FORA-OPT and

HubPPR-OPT, Baton is still around one order of magnitude

faster. That means, among all the methods we compare, Baton

is the most suitable to process batch one-hop queries, due to

its significant improvement in efficiency.

As we analyzed in Section III-A, Baton employs an opti-

mized mechanism to minimize the overall cost. To illustrate,

we summarize the average costs of forward push phase and

random walk phase for FORA-OPT and Baton on the repre-

sentative datasets in Table II. The push cost is defined by the

number of executing Line 2 in Algorithm 2. For example,

TABLE II: Statistics of two phases in FORA-OPT and Baton.

Dataset (method) Push cost Random walk cost Total
DBLP (FORA-OPT) 29,956 746 30,702
DBLP (Baton) 607 1,864 2,471
LJ (FORA-OPT) 166,220 3,134 169,354
LJ (Baton) 1,064 5,918 6,982

when a push-step (Algorithm 2) is performed on node u,

Line 2 is executed d(u) times, and therefore d(u) reflects the

cost of conducting a push step. The cost of random walks, as

we mentioned in Section III-B, is reflected by the number of

random walks. From Table II we observe that FORA-OPT is

overly using push. One can refer to the numbers of Baton for

LJ dataset, which indicates that by conducting pushes at a cost

of 1064, the remaining workload of random walks becomes

5918. However, FORA-OPT uses 166220/1064=156 times

more push costs than Baton, only to reduce the workload of

random walks by (5918− 3134)/5918 = 47%. This over-use

of push renders FORA-OPT being significantly outperformed

by Baton. In particular, as shown in Figure 1, Baton is 25.4

times faster than FORA-OPT in DBLP, and 67.5 times faster

in LJ. The superiority of Baton over FORA-OPT agrees well

with our analysis in Section III-A.

V. CONCLUSION

We conducted a comprehensive study on the batch one-hop

PPR queries.We propose Baton, an adaptive mechanism that

answers the batch one-hop PPR queries cost-effectively. Baton

incorporates various optimizations, resulting in a method that

is orders of magnitude faster than the state of the arts.

ACKNOWLEDGMENTS

This work is supported in part by grant MOE2015-T2-2-

069 from MOE Singapore.

REFERENCES

[1] “https://sites.google.com/view/baton-ppr,” Technical Report, 2018.
[2] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. Mirrokni, and S.-H.

Teng, “Local computation of pagerank contributions,” Algorithms and
Models for the Web-Graph, pp. 150–165, 2007.

[3] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in FOCS, 2006, pp. 475–486.

[4] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experiments,”
Internet Mathematics, vol. 2, no. 3, pp. 333–358, 2005.

[5] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, “Wtf:
The who to follow service at twitter,” in WWW, 2013, pp. 505–514.

[6] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong, J. Liu,
and Y. Jing, “Related pins at pinterest: The evolution of a real-world
recommender system,” in WWW (Companion), 2017, pp. 583–592.

[7] P. Lofgren, S. Banerjee, and A. Goel, “Personalized pagerank estimation
and search: A bidirectional approach,” in WSDM, 2016, pp. 163–172.

[8] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi, “Computing
personalized pagerank quickly by exploiting graph structures,” VLDB,
vol. 7, no. 12, pp. 1023–1034, 2014.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[10] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, “HubPPR: effective
indexing for approximate personalized pagerank,” VLDB, vol. 10, no. 3,
pp. 205–216, 2016.

[11] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “FORA: Simple and
effective approximate single-source personalized pagerank,” in KDD,
2017, pp. 505–514.

1565

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

