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Abstract— Mining frequent subgraphs from a large collection
of graph objects is an important problem in several application
domains such as bio-informatics, social networks, computer
vision, etc. The main challenge in subgraph mining is efficiency,
as (i) testing for graph isomorphisms is computationally intensive,
and (ii) the cardinality of the graph collection to be mined may be
very large. We propose a two-step filter-and-refinement approach
that is suitable to massive parallelization within the scalable
MapReduce computing model. We partition the collection of
graphs among worker nodes, and each worker applies the filter
step to determine a set of candidate subgraphs that are locally
frequent in its partition. The union of all such graphs is the
input to the refinement step, where each candidate is checked
against all partitions and only the globally frequent graphs are
retained. We devise a statistical threshold mechanism that allows
us to predict which subgraphs have a high chance to become
globally frequent, and thus reduce the computational overhead
in the refinement step. We also propose effective strategies to
avoid redundant computation in each round when searching for
candidate graphs, as well as a lightweight graph compression
mechanism to reduce the communication cost between machines.
Extensive experimental evaluation results on several real-world
large graph datasets show that the proposed approach clearly
outperforms the existing state-of-the-art and provides a practical
solution to the problem of frequent subgraph mining for massive
collections of graphs.

I. INTRODUCTION

Applications from several areas such as bio-informatics,

computational chemistry, social networks, the semantic web

and computer vision, make use of large amounts of data en-

coded as graphs. For instance, in the bio-informatics domain,

graphs can naturally model protein structures. By looking at

large sample sets of such graphs and determining common

formations among them, researchers are able to understand

what is the role of a certain protein-protein interaction net-

work. Frequent subgraph patterns in social networks can

help identify relationships within different groups, and help

understand the mechanics of social behavior and interactions.

The necessity to search for patterns within massive amounts of

graph data, coupled with the computationally-intensive nature

of testing graph isomorphism relationships (the fundamental

operation in graph mining) makes the graph mining problem

a very challenging one from a performance standpoint.

There are two broad categories of large-scale frequent sub-

graph mining scenarios: in the first case, there is one single

large graph of massive scale, in the order of terabytes of data,

and frequent subgraph patterns must be found in different

regions of the graph. In the second case, frequent subgraphs

must be found within a large-scale collection of moderate-

sized graphs. The former case is relevant to the social network

domain, whereas the latter finds many applications in the

areas of bio-informatics and computational chemistry. Both

scenarios share a number of common challenges, such as large

data input size, which may exceed the memory resources of

a single machine, and vast amounts of CPU time required to

compute frequent patterns. Given these characteristics, cloud

computing and the widespread MapReduce framework repre-

sent a promising direction to solve these challenging problems.

Several solutions have been proposed for the single-graph

scenario in either a sequential [17], [19], [24], [25] or parallel

computing (MapReduce, MPI) framework [21], [33], [38].

However, our focus is on the equally-important case of mining

a large collection of individual, moderate-sized graphs. This

problem is also known in literature as subgraph mining in a

transaction setting [15]. The objective is to find subgraphs that

occur with support higher than a threshold θ expressed as a

fraction of the collection cardinality, i.e., 0 ≤ θ ≤ 1. The early

solutions to this problem are memory-based [16], [18], [23],

[29], [32], [40], and assume that the entire graph collection fits

in memory. However, as data size increases, the assumption no

longer holds. To address the limited amount of main memory,

some disk-based graph database solutions have been proposed

[37]. These approaches do solve the memory limitation, but

they incur significant overhead for accessing the data, as the

number of disk I/Os is very high. The work in [15] is the only

one so far to employ MapReduce for mining a large collection

of graphs. That solution takes an incremental approach, similar

in concept to the Apriori algorithm [18] for graph mining.

Specifically, in the first step, a fraction of the graph collection

is mapped to each worker, which determines the local support

(on its data partition) for all possible single-edge subgraphs.

A subsequent reduction phase determines the global support

for each such subgraph, and candidates that do not meet the

global support threshold are discarded. The program continues

to the next step where all two-edge subgraphs are generated

from the set of retained candidates, and so on until all frequent

subgraphs are found. Although this method uses MapReduce,

the large number of resulting steps still creates significant

performance problems, as we will prove experimentally in

Section VII.

We propose a two-step filter-and-refinement approach that

uses MapReduce, but considers a completely different compu-

tation workflow than the work in [15]. The proposed workflow
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is more suitable to massive parallelization, and works as

follows: first, in the filter step, the collection of graphs is

partitioned among worker nodes, and each worker determines

a set of locally frequent subgraphs on its local partition. As

opposed to [15], there is no restriction on the size of such

subgraphs. Next, the union of all local candidates is processed

in the refinement step, where each candidate is evaluated

across all partitions, not only that where it originated, and

only the globally frequent subgraphs are retained. The benefit

of the two-step approach is that it reduces the amount of

communication among worker nodes, and at the same time

it allows for a high degree of parallelism within each step.
Recall that, an important source of computational overhead

in graph mining is testing for subgraph isomorphism (a NP-

hard problem). To improve efficiency, we devise a statistical

model that predicts which subgraphs have a high chance to

become globally frequent, and thus reduce the overhead of

redundant subgraph isomorphism testing in the refinement

step. Furthermore, we propose effective strategies for reusing

computation at each worker in the process of isomorphism

testing for subgraphs that share edges.
Communication cost is also an important concern, as large

amounts of intermediate data may be generated and transferred

among workers. Excessive network transmission increases

the overall execution time of graph mining, and may also

lead to bottlenecks and failures. To reduce the amount of

communication, we devise a lightweight graph compression

scheme which reduces the amount of information that needs

to be transferred between machines, while at the same time

keeping the encoding/decoding computational overhead low.
In summary, our contributions are:

(i) A novel two-step filter-and-refinement computation

workflow which uses MapReduce for frequent subgraph

mining, is highly parallelizable and avoids excessive

amounts of data communication.

(ii) A statistical model for predicting which locally frequent

subgraphs are likely to also be globally frequent. The

model increases slightly the amount of computation in

the filter step, but has as benefit significant gains in the

refinement step.

(iii) A strategy for reusing computation in the expensive

process of isomorphism testing for graphs that share

edges. We investigate both a top-down and a bottom-

up approach targeted at reducing computational cost at

each worker node.

(iv) A lightweight technique for graph compression that

reduces significantly the amount of data transmission

between the worker nodes and the file system, and

hence decreases further the overall runtime of the mining

algorithm.

(v) An extensive experimental evaluation on several real-

world graph datasets which shows that the proposed

approach clearly outperforms the existing state-of-the-

art.

The remainder of the paper is organized as follows: Sec-

tion II introduces fundamental concepts and definitions. Sec-
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Fig. 1. Frequent Subgraph Computation.

tion III gives an overview of the proposed approach, whereas

Sections IV and V provide specific details of the filter and

refinement steps, respectively. The graph compression scheme

to reduce communication cost is presented in Section VI. An

extensive experimental evaluation is presented in Section VII,

followed by a review of related work in Section VIII and

conclusions in Section IX.

II. PRELIMINARIES

Section II-A focuses on mining frequent subgraphs, whereas

Section II-B provides a brief MapReduce primer.

A. Mining Frequent Subgraphs

Let G be a set of n graphs where each node and edge is

labeled. We denote each graph G ∈ G as a quadruple G =
(V,E, L, l), where V and E are the set of vertices and edges

in G, respectively, and l is a labeling function that maps each

vertex and edge in G to a label in a finite alphabet L. For ease

of exposition, we assume that all edges in G are undirected

and connected; however, our results can be easily extended to

the case of directed or disconnected graphs.

Given any graph G′ = (V ′, E′, L′, l′), we say G′ is a

subgraph of another graph G = (V,E, L, l), if there exists

an injective function μ : V ′ → V such that ∀(u, v) ∈ E′ it

holds that

(l(u) = l′(μ(u)))∧(l(v) = l′(μ(v)))∧(l(u, v) = l′(μ(u), μ(v))).

In other words, the labels for each edge as well as the labels

for the edge’s endpoints are identical. We use G′ ⊆ G to

denote that G′ is a subgraph of G, and we refer to G as a

super-graph of G′.
The frequency of a graph G′ in G, denoted as f(G′), is

defined as the number of graphs in G that contain G′ as

subgraph. That is,

f(G′) =
∣∣ {G | G ∈ G ∧G′ ⊆ G} ∣∣.

Meanwhile, the support of G′ in G is defined as f(G′)/n, i.e.,

the fraction of graphs in G that are super-graphs of G′. We

say that G′ is a frequent subgraph in G, if the support of G′

is not less than a support threshold θ (0 ≤ θ ≤ 1).

Example 1: Figure 1 shows 13 graphs, g1, · · · , g10, and

G1, G2, G3, where the label of each vertex is in the domain
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TABLE I

SUMMARY OF NOTATIONS

Notation Description
G input collection of graphs

n = |G| number of graphs in G
θ given support threshold

f(G) frequency of G in G
s(G) support of G in G
m number of MapReduce machines (workers)

Mi i-th machine (worker), (i = 1, . . . ,m)

Gi subset of graphs in G that is distributed to Mi

ni = |Gi| number of graphs in Gi

fi(G) frequency of G in Gi

f�
i (G) upper-bound of fi(G) (see Eq. (2))

f�(G) upper-bound of f(G), defined as
∑m

i=1 f
�
i (G)

ρ probability threshold (see Section IV-B)

[0, 2], and the label of each edge is in the domain [1, 3].
For each gi (1 ≤ i ≤ 10), there exists a graph Gj where

1 ≤ j ≤ 3 such that gi is a subgraph of Gj . For instance,

g10 is a subgraph of G1, since we can injectively map all the

vertices and edges of g10 to the vertices and edges of G1.

Consider a graph set G = {G1, G2, G3}, the frequency of g1
is f(g1) =

∣∣{G1, G2, G3}
∣∣ = 3, and, similarly, the frequency

of g10 is f(g10) =
∣∣{G1}

∣∣ = 1. That is, the support of g1 is

s(g1) = 1, and the support of g10 is s(g10) = 1/3. �
Given θ and G, our objective is to identify all frequent

subgraphs in G, as well as the frequency of each frequent

subgraph in G. We aim to accomplish this task using a

MapReduce program on m machines.

B. MapReduce

A MapReduce program, also referred to as a workflow,

consists of several rounds, each of which contains three

phases: map, shuffle, and reduce, as follows:

1) Map. In this phase, each machine reads data from a

distributed file system (DFS), and applies a map function
on the data to convert them into a set of pairs. Each pair

consists of a key and a value.

2) Shuffle. In this phase, the key-value pairs are aggregated

by keys, and the values in the pairs with the same key are

grouped as a list. Each key, along with the corresponding

list of values, is then sent to one of the machines.

3) Reduce. Each machine examines the keys and lists that

it receives in the shuffle phase, and then applies a reduce
function on each list of values. The function transforms

each list into new key-value pairs, which are then stored

in the DFS and can be utilized by subsequent rounds of

the MapReduce program.

In subsequent sections, we focus on the design of the Map

and Reduce functions, as the shuffle phase is automatically

handled by the MapReduce infrastructure (e.g., Hadoop [5]).

Table I summarizes the notations used throughout the paper.

III. SOLUTION OVERVIEW

The proposed filter-and-refinement MapReduce solution is

illustrated in Figure 2 and consists of three rounds of compu-

tation:

Round 1: Filter. In the map phase of this round, each machine

Mi (i = 1, . . . ,m) reads a disjoint subset Gi of G and identifies

a set of graphs Hi, such that (i) each graph G ∈ Hi is the

subgraph of at least one graph in Gi, and (ii) G is likely to

be a frequent subgraph in G. Then, for each graph G ∈ Hi,

Mi outputs a key-value pair where the key is G and the value

indicates fi(G), i.e., the number of graphs in Gi that are super-

graphs of G. Next, in the shuffle phase (not explicitly shown

in the diagram), all key-value pairs having G as key are sent

to the same machine, say Mj . Finally, in the reduce phase, Mj

inspects the list of values with key G, and computes the sum

of all individual frequencies. Based on the sum, Mj evaluates

whether G is likely to be a frequent subgraph in G. If G
cannot be a frequent subgraph, then it is discarded; otherwise,

Mj outputs a key-value pair with key G and value equal to

the sum of frequencies (as we will discuss in Section IV the

value contains some additional information as well).

Round 2: Sorting. The set of key-value pairs obtained from

the filter round is sorted in ascending order of graph size
(defined as number of graph edges) in the key. This is

accomplished by invoking a single-round MapReduce sorting

algorithm such as TeraSort in Hadoop [5]. The sorted sequence

is then stored in the DFS.

Round 3: Refinement. In the map phase, each machine Mi

reads Gi and the sorted sequence S from the DFS. Then,

for each graph G that appears in S, Mi determines fi(G),
the frequency of G in Gi. Next, Mi outputs a key-value pair

〈G, fi(G)〉. Such key-value pairs are re-distributed among the

machines in the shuffle phase. Then, for each key G, the reduce

phase computes the sum of the values corresponding to G.

(Note that this sum equals f(G), the exact frequency of G in

G.) If f(G)/n is not less than the support threshold θ, then

a key-value pair 〈G, f(G)〉 is written to the DFS to indicate

that G is a frequent subgraph in G.

Since there is nothing specific to the studied problem within

the sorting round, we omit it further from consideration, and

focus on the filter and refinement rounds, where the challenges

reside. First, in the filter round, given that each machine Mi

sees only a subset Gi of the graphs in G, we focus on how can

Mi identify subgraphs that are likely to be frequent in G (i.e.,

globally frequent). We refer to such subgraphs as frequent

subgraph candidates. This must be done in a manner that

ensures both correctness and efficiency of the overall solution

(Section IV). Second, in the refinement round, when each

machine Mi computes the frequency of candidate graphs in

Gi, we focus on how to lower the cost of subgraph isomor-

phism tests required to identify super-graphs of the candidates

(Section V). Third, as each machine may generate a relatively

large set of candidate subgraphs, we study how to reduce the

communication overhead in re-distributing and manipulating
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Fig. 2. Proposed Filter-and-Refinement MapReduce Workflow for Frequent Subgraph Mining.

the key-value pairs for the candidates (Section VI).

IV. FILTER ROUND

The filter round distributes graphs in G onto the m ma-

chines, and asks each machine to report candidates for frequent

subgraphs. To ensure completeness of the result, the set of

candidates reported should not incur any false negative, i.e.,

every frequent subgraph in G must be reported as a candidate

by at least one machine.

A. A Preliminary Approach

One simple approach to implement the filter round is as

follows:

1) In the map phase, divide G into m disjoint subsets

G1,G2, . . . ,Gm, and send Gi (i = 1, . . . ,m) to machine

Mi. Next, each Mi reports a graph G as a candidate

whenever fi(G)/ni ≥ θ.

2) In the reduce phase, the union of the sets of candidates

produced by the m machines is written to the DFS.

In other words, we report a graph as a candidate whenever

it is locally frequent on some machine. This avoids false

negatives because if a graph G′ is not reported as a candidate

by any machine, then the frequency of G′ in G must satisfy

the following inequality:

f(G′) =
m∑
i=1

fi(G
′) <

m∑
i=1

(θ · ni) = θ · n,

i.e., we have s(G′) = f(G′)/n < θ, and hence, G′ cannot be

a frequent subgraph.

However, this approach is inefficient as it may lead to a

large number of false positives, i.e., candidate graphs that

are reported even though they are actually infrequent in G.

Consider a graph G such that f(G) < n · θ. For G not to be

reported, it must hold that on each of the m machines

∀i ∈ [1,m], fi(G) < ni · θ. (1)

For Eq. (1) to hold, the graphs in G that are super-graphs of

G must be distributed uniformly to the m machines. However,

such an even distribution is difficult to obtain, especially when

f(G) is close to n · θ, as it requires prior knowledge of the

super-graphs of G in G, which is not available before the map

phase of the filter round.

To reduce the number of false positives, one can utilize the

map phase of the filter round. As a naive strategy, assume

that in the map phase each machine Mi outputs the frequency

for all subgraphs G in Gi (regardless of whether G is locally

frequent or not). Then, in the reduce phase, we can sum up the

frequency of G on each machine to obtain its global frequency

f(G), based on which we can precisely decide whether G
is globally frequent. As such, we can eliminate all false

positives in the candidate graphs, but at the cost of computing

local frequencies for an excessive number of graphs. Next,

we develop a more advanced approach for candidate graph

generation that reduces false positives without incurring the

prohibitive cost of frequency computation for all subgraphs.

B. An Improved Approach

The improved approach for the filter round works as fol-

lows:

1) In the map phase, we distribute each graph G ∈ G
to a randomly selected machine, i.e., each machine Mi

receives a sample set of Gi with a sampling rate 1/m.

2) Then, Mi outputs fi(G) of any graph G that is locally

frequent in Gi (i.e., fi(G) ≥ ni · θ). In addition, for

a selected set of graphs that are locally infrequent in

Gi, Mi also outputs key-value pairs that record the local

frequencies of those graphs.

3) In the reduce phase, for each graph G that is locally

frequent on some machine, we derive an upper-bound

of f(G) (i.e., the global frequency of G). If the upper-

bound is at least θ · n, then we output a key-value pair

for G to indicate that it is a candidate frequent subgraph.

Specifically, the upper-bound of f(G) that we use in the reduce

phase is f�(G) =
∑m

i=1 f
�
i (G), where

f�
i (G) =

⎧⎪⎨
⎪⎩
fi(G), if Mi reports fi(G) in the

map phase

�ni · θ� − 1, otherwise

(2)

That is, whenever fi(G) is unknown, we use �ni · θ� − 1 as

an optimistic estimation of fi(G).

Selection of locally infrequent graphs. For the above ap-

proach to be efficient, we need to carefully select the set
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of locally infrequent graphs output by each machine Mi in

the map phase. If this set is too large in size, performance

will decrease. On the other hand, if it is too small, then the

reduce phase may leave a large number of false positives

in the candidate graphs, since the frequency upper-bound

f�(G) for a candidate graph G tends to be loose when the

local frequencies of G are not reported by a large portion

of the machines. This calls for a method that can selectively
choose locally infrequent graphs from each machine while

maintaining the pruning power of f�(G).
To obtain a good trade-off, one needs to determine when

will a locally infrequent graph be useful for pruning false

positives in the candidate graphs. Consider a graph G′ that

is locally infrequent on machine Mi. Assume that Mi reports

the local frequency of G′ (i.e., fi(G
′)) in the map phase.

Then, fi(G
′) will help eliminate false positives in the reduce

phase only if G′ is reported as a candidate graph by at

least one machine Mj , in which case fi(G
′) will contribute

to the calculation of the upper-bound f�(G′) that decides

whether G′ should be pruned. In other words, Mi should report

fi(G
′) only if G′ is locally frequent on some other machine

Mj . Nevertheless, as Mi only sees its local data Gi in the

map phase, it cannot determine whether G′ might be locally

frequent on other machines. To address this issue, we propose

a probabilistic inference method as follows.

First, given that (i) Gi is a random sample set of G and

(ii) a fi(G
′)/ni fraction of the graphs in Gi are super-graphs

of G′, Mi estimates that the frequency of G′ in G is roughly

n · fi(G′)/ni. Given this estimation, Mi infers that the local

frequency of G′ on any other machine Mj follows a binomial

distribution:

Pr {fj(G′) = k} =

(
nj

k

)
pk (1− p)

nj−k
,

where p = fi(G
′)/ni. Accordingly, the event that G′ is locally

frequent on Mj should occur with the following probability:

Pr {fj(G′) ≥ �θ · nj�} =

nj∑
k=�θ·nj�

(
nj

k

)
pk (1− p)

nj−k
.

By the union bound, Mi gets the following upper-bound on the

probability that G′ is locally frequent on at least one machine

besides Mi:

Pr {∃j �= i, fj(G
′) ≥ �θ · nj�}

≤
∑
j �=i

Pr {fj(G′) ≥ �θ · nj�}

=
∑
j �=i

nj∑
k=�θ·nj�

(
nj

k

)
pk (1− p)

nj−k
. (3)

Note that this upper-bound is easy to compute given the

cumulative distribution function of the binomial distribution.

Based on the above upper-bound, Mi can then decide

whether the local frequency of G′ should be output. In

particular, if the upper-bound falls below a threshold ρ which

is a system parameter (e.g., < 5%), then Mi infers that G′

is unlikely to be locally frequent on any other machines, and
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Fig. 3. Subgraph lattice.

hence, it would not output any key-value pair pertinent to G′.
As such, Mi can avoid reporting a large number of key-value

pairs that are useless for the pruning procedure in the reduce

phase. In Section VII we discuss a methodology for setting

the value of ρ in practice.

Computing graph frequencies. To compute the set of locally

frequent subgraphs, one of several techniques [16], [18], [23],

[29], [32], [37], [40] that address subgraph mining in a

sequential setting can be used. All such techniques follow a

branch-and-bound approach. All subgraphs are organized in a

lattice, where each node denotes a subgraph. We add a dummy
root node above the single-edge subgraphs (corresponding to

an empty subgraph). Each node in the lattice extends the graph

of its parent node(s) by adding a single edge, i.e., a child node

is a super-graph of all its parent nodes. The lattice is traversed

top-down, and the support of each visited node is computed.

If a visited graph is frequent, the corresponding graph and its

frequency are output, and the traversal continues with the child

nodes. Otherwise, all its child nodes and their descendants are

pruned.

Example 2: Figure 3 shows the lattice formed by the graphs

g1, · · · , g10 in Figure 1. Each node in the lattice denotes a

subgraph. Let θ = 0.5. In the beginning of the mining process,

we visit the single-edge subgraphs, i.e., g1 and g2. Then, we

compute their supports, as s(g1) = 1 and s(g2) = 1/3. Since

s(g2) < θ, we stop visiting all descendants of g2 in the lattice.

As s(g1) > θ, we output g1, as well as its frequency, and

continue the traversal on the branch of g1 by visiting g3 and

g4. Next, we compute s(g3) = s(g4) = 1/3, and the branches

of g3 and g4 are pruned. The traversal stops since there are

no more nodes to visit. �
For illustration purposes, we use white nodes to denote

frequent subgraphs, grey nodes to denote visited nodes which

are infrequent, and black nodes to denote unvisited subgraphs.

Existing algorithms return only white nodes (i.e., frequent

subgraphs). However, to improve the efficiency of the refine-

ment step, we choose to also return some grey nodes, if their

probability to be globally frequent is above threshold ρ. Note

that, even though existing techniques do not output grey nodes,

they still have to compute their frequencies, as required by the

termination condition of the traversal algorithm. Therefore,

our decision to output grey subgraphs as well comes at no

additional computational cost in the filter step.

Efficient computation of upper-bound probabilities. Each

machine Mi may produce a large number of subgraphs, so
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computing the probability in Eq. (3) separately for each

subgraph would be costly. Due to the fact that Eq. (3) is

monotonic in the range [1, �θ · nj�], given a user-defined

probability upper-bound ρ, we can employ binary search to

determine an appropriate value for frequency fi that is equal

or close to the frequency of a graph G whose upper-bound

probability is ρ. Let α = �θ · nj�. The binary search first

considers the range [1, α] and computes the probability for

frequency fi = �α/2�. If the probability is larger than ρ, we

change the range to [1, �α/2�], and compute the probability at

�α/4�; otherwise, the range of [�α/2� + 1, α] is considered,

and we compute the probability at �(�α/2�+ 1+ �α�)/2� to

determine the next range. The search will stop if the obtained

probability value converges close enough to ρ. Let fp denote

the frequency value obtained as above. For a given graph

G, if fi(G) is smaller than fp, the probability that G is

globally infrequent is high, hence we prune G from further

computation.

Implementation Issues. In the map phase, each key-value pair

that is sent out by a machine Mi has a graph G as the key,

and the frequency of G as well as the machine id i of Mi as

the value. In the key, G is represented in a graph canonical

form, which will be compressed as discussed in Section VI.

The canonical form of each graph G allows us to aggregate

the graphs in the shuffle phase so as to obtain the upper-bound

of f(G) in the reduce phase. As to the value, the frequency of

G in each machine will be calculated as a sum in the reduce

phase, while the machine ids will be retained as one part of the

new value. Note that, the machine id in the value enables us

to identify the graphs that are sent out by all machines, i.e., a

subset of globally frequent subgraphs. These graphs as well as

their frequencies are written to DFS as part of the final result.

Furthermore, when the key-value pairs are read by machine

Mi in the refinement round, if Mi already appears in the list

of machine ids then the frequency of the graph in the key

does not need any refinement on behalf of Mi, so redundant

computation is avoided.

V. REFINEMENT ROUND

At the start of the refinement round, each machine Mi

receives the sorted sequence S of candidate frequent graphs

from the DFS. Machine Mi constructs Si by removing from

S all key-value pairs that contain the machine id of Mi (if a

value contains the id of Mi, it means that there is no refinement

required in the current partition Gi of the data). Each candidate

graph G in Si is locally infrequent in Mi, i.e., fi(G) < �θ·ni�,

and its frequency needs to be determined.

Given a candidate graph G, we denote as Ai(G) the

set of super-graphs of G in Gi. To compute the frequency

fi(G) =
∣∣Ai(G)

∣∣, a naive approach is to perform a subgraph

isomorphism test between G and each graph in Gi. However,

due to the computational complexity of subgraph isomorphism

testing, such an approach will not scale well. Recall that,

inclusion relationships exist among candidate graphs, captured

by a lattice structure. A child node G in the lattice is a

super-graph of a parent node G′, hence Ai(G) ⊆ Ai(G′).
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Fig. 4. Top-Down vs. Bottom-Up Strategy.

Such dependencies help save redundant computation. We

devise two strategies for frequency computation, Top-Down
and Bottom-Up, named after the direction in which the strategy

is traversing the lattice.

A. The Top-Down Approach

In the Top-Down approach, we scan Si once in ascending

order of graph size (i.e., from top to bottom of the lattice),

and compute Ai(G) for each candidate graph G as soon as

we visit node G. Specifically, if there is no candidate graph G′

in Si such that G′ is a subgraph of G (i.e., G has no parents),

we perform isomorphism testing against every graph in Gi to

compute Ai(G). Otherwise, we first compute an upper-bound
of Ai(G) by intersecting Ai(G′) for all G′ ⊆ G and G′ ∈ Si.

We denote the upper-bound of Ai(G) as ub(G), i.e.,

ub(G) =
⋂

G′⊆G∧G′∈Si

Ai(G′).

Note that, for any graph G′ ∈ Si which is a subgraph of G,∣∣Ai(G)
∣∣ ≤ ∣∣ub(G)

∣∣ ≤ ∣∣Ai(G′)
∣∣ < �θ · ni� � ni,

if θ is sufficiently small. Besides, since we process the candi-

date graphs in Si in ascending order of graph size, we have

all Ai(G′) before visiting G. Therefore, to compute Ai(G),
we perform isomorphism testing only against the graphs in

ub(G), instead of the entire Gi.

The computational overhead can be reduced further if we

consider only the set of maximum subgraphs of G. We say that

a graph G′ in Si is a maximum subgraph of G if there does

not exist another graph G+ in Si such that G+ is a subgraph

of G and also a super-graph of G′. To explain that, consider

that there exists a graph G+ ∈ Si such that G+ is a subgraph

of G′, then we have Ai(G′) ⊆ Ai(G+). Therefore, Ai(G+)
is not useful to reduce the size of ub(G) if we already visited

G′. In the lattice, the parent nodes of G are the maximum

subgraphs of G, which are easy to determine.

Example 3: Continuing Example 2, Figure 4(a) shows the

graph processing order of the Top-Down strategy with dashed

arrows. We begin by processing g5, which does not have any

parents, so Ai(g5) is computed by performing isomorphism

testing against every graph in Gi. The traversal then continues

as shown, with g6, . . . , g10. In the case of nodes that have

parents, it is possible to reuse some of the earlier computation.

For instance, when visiting g10, we compute ub(g10) =
Ai(g7) ∩ Ai(g8), and examine only the graphs in ub(g10) to

obtain Ai(g10). �
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B. The Bottom-Up Approach

The drawback of the Top-Down approach is that it still per-

forms some redundant computations. Since the super-graphs

of G are also the super-graphs of G’s subgraphs, the super-

graphs of G will be examined for each of G’s subgraphs in

the Top-Down approach. To avoid the redundancy, we devise

the Bottom-Up approach, which consists of two scans of Si.

The first scan processes the candidate graphs in Si in

ascending order of graph size. Given a candidate graph G,

if G does not have subgraphs in Si, we compute Ai(G) by

examining every graph in Gi. That is, we obtain a tight upper-

bound as ub(G) = Ai(G). Otherwise, if G has subgraphs

G′ in Si, the upper-bound of Ai(G) is then computed by

intersecting the upper-bounds of all Ai(G′), i.e.,

ub(G) =
⋂

G′⊆G∧G′∈Si

ub(G′).

However, the isomorphism testing against graphs in ub(G)
is not performed right away, instead it is deferred until later

on in the algorithm. According to the analysis in Section V-

A, ub(G′) is obtained before processing G, and
∣∣ub(G)

∣∣ <
�θ · ni�. In addition, we only need to consider the maximum

subgraph of G to compute ub(G).
The second scan processes the candidate graphs in Si in

descending order of graph size. Given a candidate graph G,

if G has no super-graphs in Si, we examine every graph in

ub(G), which is computed in the first scan, to obtain Ai(G).
Otherwise, a lower bound of Ai(G) is computed by merging

Ai(G′) for all G’s super-graphs G′ ∈ Si. We denote the lower

bound of Ai(G) as lb(G), i.e.,

lb(G) =
⋃

G⊆G′∧G′∈Si

Ai(G′).

Since we scan the graphs in descending order of graph size, the

frequency of G′ has been computed before G. Note that, the

graphs in lb(G) are super-graphs of G, therefore, to compute

the frequency of G, we only need to examine the graphs in a

subset of ub(G), i.e.,

ub(G) \ lb(G).

To avoid re-computing the frequency of G in the second

scan in cases where Ai(G) has been computed in the first

scan, we mark G in the first scan. Before processing a graph in

the second scan, we first check its mark to determine whether

we need to compute its frequency or not.

Example 4: Figure 4(b) illustrates the Bottom-Up strategy,

which first visits g5, and then visits all the other nodes fol-

lowing the dashed arrows. The upper bounds are constructed

in this traversal, but no isomorphism tests are performed

(except for nodes without parents). When g10 is reached,

it is determined that ub(g10) = ub(g7) ∩ ub(g8), and the

actual subgraph isomorphism testing is performed for graphs

in ub(g10). Then, the traversal returns following the dotted

arrows, towards the first node g5. During the second traversal,

when re-visiting some node, only graphs in the difference

between the upper bound and lower bound of the respective

node must be included for isomorphism testing. For instance,

when re-visiting g8, we only examine the graphs in ub(g8) \
Ai(g10). �

Recall that for each graph G, ub(G) is already sufficiently

small if θ is small. Removing the graph in the lower bound

from the upper bound further shrinks the total number of

graphs for subgraph isomorphism test, especially when Si is

large. Therefore, a significant amount of computation can be

saved with this strategy.

VI. REDUCING COMMUNICATION OVERHEAD

Frequent subgraph mining with MapReduce produces a

large set of key-value pairs which must be transferred via

network communication. This may incur significant overhead,

since keys are canonical labelings of graphs, which are sizable.

We propose a lightweight compression technique that is able to

represent the canonical labeling of a graph G = (V,E, L, l)
using only O(|E| logw |L|) bits, whereas the computational

complexity of encoding/decoding is only O(|E|2 logw |L|),
where w is the size of a machine word.

A. Compression of Canonical Labeling

The canonical labeling of a graph corresponds to a unique

permutation of its edges or vertices. For example, CAM
(Canonical Adjacency Matrix) [18] computes a permutation of

vertices such that the code produced from the adjacency matrix

for that permutation is maximal, whereas the DFS code [40]

finds a permutation of edges such that the ordering obtained

is a maximal code. We adopt the CAM approach, but our

technique can be extended to other canonical labeling methods.

For real-world graph datasets, trees are very common, and

most of frequent subgraphs are trees [29], [32]. Therefore, our

approach first focuses on spanning trees, and then extends to

the case of non-tree edges.

Encoding Spanning Trees. Given graph G = (V,E, L, l), de-

note its spanning tree by T = (V,E′, L, l), where E′ ⊆ E. Let

the permutation of vertices be V = (v0, v1, · · · , vd−1), d =
|V |, where v0 is the root of T and each other vertex vi is inci-

dent to one and only one vertex vj for j < i (i.e., its parent).

To store T in an adjacency list, for each vertex vi, we record its

label l(vi) as well as the edge 〈ve(i), l(vi, ve(i))〉 that connects

vi to its parent e(i). We use a vector to store the column

of vertex labels, denoted as Lv = (l(v0), l(v1), · · · , l(vd−1)).
Similarly, we denote Iv = (e(1), e(2), · · · , e(d − 1)) as the

set of parent nodes for vertices vi (i = 1, · · · , d − 1),

and Le = (l(v1, ve(1)), l(v2, ve(2)), · · · , l(vd−1, ve(d−1))) as

the corresponding vertex-parent edges (note that e(0) is not

defined).

Compressing tree T boils down to compressing the vectors

Lv , Iv , and Le. Note that, the elements in those vectors are

often from a small domain. For instance, the elements in Lv

and Le are chosen from the set L of distinct labels in the

dataset, and the elements of Iv are positive numbers smaller

than the number of vertices in T . Furthermore, each vector

is also small in size, where |Lv| = d and |Le| = |Iv| =
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d − 1. Based on these observations, we devise a lightweight

compressing technique that can represent each vector as an

integer. Let Lmax
e be the maximum element in Le. Using the

numeration base b = Lmax
e +1, we represent Le in an integer

L̂e =
d−1∑
i=0

l(vi, ve(i))× bi. (4)

Imax
v , Lmax

v , Îv and L̂v are similarly defined. A labeling of

T is uniquely determined by the values:

|V |, Imax
v , Lmax

v , Lmax
e , Îv, L̂v, L̂e.

To decompress L̂e, we use the base conversion algorithm
[22] to reconstruct Le. Maintaining a dynamic vector L, we

divide L̂e by b with a remainder r and append r to the end of

L. The process repeats until L̂e is zero. If |L| < |Le| = d−1,

we append d − 1 − |L| zeros to L. Lv and Iv are decoded

similarly.

Extension to non-tree edges. Consider graph G = (V,E, L, l)
and one of its spanning trees T = (V,E′, L, l). A non-tree

edge is denoted as a triple 〈i, j, l(vi, vj)〉, where (vi, vj) ∈
E \E′ and l(vi, vj) is the label on the edge. We order vi and

vj in the triple such that i > j. Hence, the set of non-tree

edges of G can be denoted as

T̃ = {〈i, j, l(vi, vj)〉 | (vi, vj) ∈ E \ E′ ∧ i > j}.
To compress T̃ , we extend the vectors of T to accommodate

the non-tree edges. Specifically, we append all vertex labels

of each element in T̃ to Iv . Similarly, we append each label

in T̃ to Le. Denote the newly obtained sets by Îv and L̂e,

respectively. We have that |Le| = |E| and |Ie| = 2|E|−|V |+1.

Eq. (4) still holds, by replacing Iv and Le with Îv and L̂e,

respectively.

Therefore, the graph G can be represented as

C(G) =
{
|V |, |E|, Imax

v , Lmax
v , Lmax

e , Îv, L̂v, L̂e

}
. (5)

In case that the size of Îv , L̂v , or L̂e is larger than the size

of a machine word, we can use an array of machine words to

store each value, where the size of each array is �logw Îv�,

�logw L̂v�, and �logw L̂e�, respectively.

B. Theoretical Analysis

Correctness analysis. The correctness condition consists of

two parts: (i) the compression result of canonical labeling

must be unique, and (ii) the decompressing technique must

correctly reconstruct the canonical labeling of a graph. The

first part ensures that aggregating graphs in the filter phase is

correct, whereas the second part guarantees the correctness in

the refinement phase.

Lemma 1: Given the canonical labeling of a graph G, C(G)
in Eq. (5) is unique.

Proof: Given the canonical labeling of G, it can be

equivalently represented by three vectors Iv , Lv , and Le. Since

C(G) is the combination of the compression of Iv , Lv , and

Le, we are to prove that the compression of each vector is

unique. Consider the vector Iv: we compress Iv as three values

|V |, b = Imax
v + 1, and Îv . By contradiction, assume that

there exist two different vectors Iv = (v0, v1, · · · , vd−1) and

Iu = (u0, u1, · · · , ud−1) with the same compressed image,

that is, for some i ∈ [0, d−1], we have Iv[i] �= Iu[i]. According

to Eq. (4), Îv �= Îu, which contradicts the assumption that

Iv and Iu have the same compressed image. Therefore, the

canonical labeling of a graph G is unique.

Lemma 2: Given C(G) of a graph G, the decompression of

C(G) is the canonical labeling of G.

Proof: Given C(G) in Eq. (5) after reconstruction, the

sizes of Iv , Lv , and Le are |V |, 2|E| − |V | + 1, and |E|,
respectively. Let us prove the case of one vector, the same

proof can be applied to the other ones. Consider Iv: by

contradiction, assume that the constructed vector I ′v is different

from Iv . Since the base and size of I ′v and Iv are the same,

there exists an i ∈ [0, d−1] such that I ′v[i] �= Iv[i]. According

to Eq. (4), Î ′v �= Îv , which contradicts that I ′v is reconstructed

from Îv . Consequently, the decompression of C(G) is the

canonical labeling of G.

Complexity analysis. Assume that each element in Iv , Lv ,

and Le is stored in a machine word. Therefore, the total size

of these three vectors is

(2|E| − |V |+ 1 + |V |+ |E|)× w = (3|E|+ 1)w.

Now, consider the size of the compressed image: according to

Eq. (4), we have

Îv ≤ (Imax
v + 1)|V |,

L̂v ≤ (Lmax
v + 1)2|E|−|V |+1,

and L̂e ≤ (Lmax
e + 1)|E|.

Let b = max{Imax
v + 1, Lmax

v + 1, Lmax
e + 1}. The labels in

L can be mapped to a consecutive range [0, |L|), and assume

that O(|V |) = O(|L|) for moderate-sized graphs, hence we

have b = O(|L|). As such, the total size of the compressed

image is at most

(|V |+ 2|E| − |V |+ 1 + |E|)× �logw b�
= (3|E|+ 1)�logw b� = O(|E| logw |L|).

The compression ratio is at least w/�logw b�.

As to the computational complexity of compression, let us

first consider the computation of Le. Since the size of L̂e is

at most |E| logw |L|, and there are |E| elements in Le, the

complexity of computing L̂e is O(|E|2 logw |L|). A similar

analysis applies to Iv and Lv , whose upper-bound is also

(|E|2 logw |L|). That is, the complexity of compression is

O(|E|2 logw |L|). Similarly, the complexity of decompression

is also O(|E|2 logw |L|).
VII. EXPERIMENTAL EVALUATION

We evaluate experimentally the proposed algorithm MRFSM
(MapReduce Frequent Subgraph Mining) against two baselines

on several real-world large graph datasets. In Section VII-A
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TABLE II

TABLE OF DATASETS

dataset number of graphs disk size |E| |V |
Pubchem [7] 46,703,496 41.8 GB 52.32 50.37

Akos [1] 15,720,753 6.6 GB 24.00 22.52
ChemDB [3] 7,100,106 6.7 GB 53.23 50.77
Ambinter [2] 6,551,088 3.4 GB 29.40 27.07
Enamine [4] 1,378,907 0.7 GB 27.86 25.78

NCI [6] 265,242 0.2 GB 41.76 40.47

we describe the experimental setup, followed by an analysis of

how to tune the value of probability threshold ρ in Section VII-

B. Section VII-C presents the head-to-head comparison with

competitor techniques.

A. Experimental Setup

We deploy a MRFSM prototype in Amazon EC21 using up

to 121 large instances. Each instance has 2 CPUs and 7.5GB

RAM and runs Hadoop (version 0.20.203). One instance is set

up as the master node and the others as worker nodes. We use

the default configuration of Hadoop, i.e., dfs.replication = 3
and fs.block.size = 64MB.

Implementation. We use a public C++ implementation of

GASTON [32] to mine the locally frequent subgraphs in

the filter round (we emphasize that our framework can be

used in conjunction with any other frequent subgraph mining

algorithm, not only GASTON). We implement MRFSM using

Hadoop Streaming API2, which places no restrictions on the

programming language.

As competitors, we consider the Iterative Frequent Sub-
graph Mining (IFSM) [15] algorithm, with source code made

available by the authors. We also adapt the partitioning-

based method from [31] (PGM) to run on MapReduce. Note

that, since MapReduce is a share-nothing architecture, the

sequential data partition method in PGM is performed on a

single machine, and the result is fed to the map phase of the

filter round.

Datasets. We use seven real-world datasets listed in Table II.

We use as default dataset Pubchem, the largest dataset which

consists of more than 46 million graphs. The average number

of edges and vertices are 52.32 and 50.37, respectively. Note

that, none of these datasets (except NCI) can be handled by a

single machine with up to 12GB RAM. For each dataset, given

the set L of all its labels, we assign each label l ∈ L a value

i ∈ [0, |L|), such that (i) each label l is injectively mapped to

a value in the range [0, |L|), and (ii) the more frequent label

gets the smaller value.

Methodology. We perform several types of measurements:

first, we record the total running time (wall clock) of each

algorithm, i.e., the time elapsed from starting the MapReduce

program until the program returns the result. Second, we

report the running time of the filter and refinement rounds

independently. Third, we report the communication cost of

1http://aws.amazon.com/ec2
2http://hadoop.apache.org/docs/stable/streaming.html

TABLE III

EXPERIMENTAL PARAMETER VALUES

parameter values

θ 0.025, 0.05, 0.1, 0.2, 0.4
m 80, 90, 100, 110, 120
ρ 0, 0.00625, 0.0125, 0.05, 0.1, 0.2, 0.4, 0.8, 1

transferring data in MapReduce, as well as the number of

candidate graphs generated in the filter round. We run each

experiment three times, and report the average reading.

The parameter values used are shown in Table III, with

default values in bold.

B. Tuning Probability Upper-Bound ρ

Recall from Section IV-B that the probability ρ has an

important role in pruning the search space. We show next how

to tune the value of ρ in practice. Figure 5 shows performance

results when varying ρ from 0 to 1. When ρ = 0, each

worker outputs all the subgraphs that are visited in the filter

round, whereas when ρ = 1, MRFSM only outputs the locally

frequent subgraphs.

Figure 5(a) shows the total running time of MRFSM. When

ρ grows from 0 to 0.05, the total running time decreases,

as the total number of subgraphs that are generated by each

worker decreases, and the overhead of the filter round is lower

(Figure 5(c)). On the other hand, when ρ increases further

towards 1, the total running time increases, because the number

of candidates increases (Figure 5(b)), and so does the overhead

in the refinement round (as shown in Figure 5(d)). A clear

trade-off can be observed between the costs of the filter and

refinement rounds: for smaller ρ, the number of subgraphs

that are generated in each worker is larger, but the number

of candidates sent to the refinement round is smaller. A good

setting for the probability threshold is ρ = 0.05, when the

overhead is minimized. In the rest of the experiments, we set

ρ = 0.05.

C. Comparison with competitor techniques

We compare MRFSM against PGM and IFSM. First, we vary

support threshold θ from 0.025 to 0.4. Figures 6(a)(b) show

that IFSM does not terminate within reasonable time (one day)

when θ ≤ 0.05. Furthermore, PGM does not terminate when

θ = 0.025, owing to the significant computational overhead

in the refinement round (Figure 6(d)). Even though the filter

time of MRFSM is slightly higher than that of PGM, due to

producing locally infrequent subgraphs, this cost is offset by

the significant improvement in the refinement round. MRFSM
significantly outperforms the other algorithms in terms of total

running time. Due to its poor performance, we no longer

consider IFSM in the rest of the section.

Next, we evaluate the impact of number of available work-

ers, and we vary m from 80 to 120. Figure 7(a) demonstrates

that MRFSM clearly outperforms PGM in terms of total

running time for all settings. Furthermore, communication cost

increases only slightly as m grows.

We also evaluate the performance of the graph compression

technique proposed in Section VI. We denote the MRFSM
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approach that uses compression as MRFSM-C, and the one

without compression as MRFSM-NC. Figure 8(a) shows that

the total running time is improved by compression. Fig-

ure 8(b) shows the size of data communicated among workers.

MRFSM-C has much smaller cost in communication, which

demonstrates the effectiveness of our compression technique.

As expected, MRFSM-NC has slightly higher communication

cost than PGM, since in the filter round, MRFSM-NC also out-

puts the locally infrequent subgraphs on each machine, while

PGM only outputs the locally frequent subgraphs. Figure 8(c)

shows the breakdown of the filter running time into commu-

nication time and CPU time. MRFSM-C has slightly higher

CPU cost than MRFSM-NC because of encoding/decoding,

but this is offset by the significant gain due to the reduction in

communication time. Figure 8(d) compares the running time

for the refinement round: MRFSM-C is again slightly worse

than MRFSM-NC, owing to the overhead of decompression.

Next, we evaluate the Top-Down and Bottom-Up traversal

strategies employed in the refinement round. Figure 9(a)

presents the running time of Top-Down and Bottom-Up with

support threshold θ varying from 0.025 to 0.4. Top-Down

is slower than Bottom-Up, since the number of subgraph
isomorphism tests is larger, as shown in Figure 9(b). However,

TABLE IV

TABLE OF RUNNING TIME (θ = 0.1)

dataset MRFSM PGM IFSM improved ratio

Pubchem 1436.02 4303.41 11818.49 3.00
Akos 284.37 1025.14 1946.84 3.60

ChemDB 376.42 2197.56 4674.77 5.84
Ambinter 235.19 926.17 1298.07 3.94
Enamine 227.34 734.69 993.24 3.23

NCI 142.81 293.27 413.54 2.05

Bottom-Up needs to maintain all candidates in memory while

Top-Down releases the memory once the candidates are no

longer useful. As shown in Figure 9(c), Bottom-Up is more

memory-efficient than Top-Down.

Finally, we present the total running time results on all

considered real-world datasets in Table IV. MRFSM outper-

forms competitors by more than two times on all datasets

(improved ratio compared to closest competitor is shown in

the last column). In some cases, the improvement is close to

six-fold.

VIII. RELATED WORK

The problem of frequent subgraph mining has been studied

for more than a decade. However, how to overcome the rapid

853

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:49:28 UTC from IEEE Xplore.  Restrictions apply. 



���	����� ������	�������

0
3000
6000
9000

12000
15000

2.5% 5% 10% 20% 40%
θ

total running time (sec)

 0
 5

 10
 15
 20
 25
 30

2.5% 5% 10% 20% 40%
θ

communication cost (GB)

0

4000

8000

12000

16000

2.5% 5% 10% 20% 40%
θ

running time (sec)
Communication

CPU

NCNC
NC

NC

NC

CCC

C

C

0
200

600

1000

1400

2.5% 5% 10% 20% 40%
θ

running time (sec)

(a) Total running time (b) Communication cost (c) Filter round (d) Refinement round
Fig. 8. Impact of compression

��������� ��������

0

400

800

1200

1600

2.5% 5% 10% 20% 40%
θ

running time (sec)

 0
 2
 4
 6
 8

 10
 12
 14

2.5% 5% 10% 20% 40%
θ

maximum local tests (× 108 )

 0
 1
 2
 3
 4
 5
 6
 7

2.5% 5% 10% 20% 40%
θ

maximum memory usage (GB)

(a) Running time (b) Number of isomorphism tests (c) Memory usage
Fig. 9. Strategy comparison in refinement round

growth of graph data remains open. In the following, we first

discuss the existing work on frequent subgraph mining in

transaction setting, and then discuss the parallel techniques

in data mining, especially the techniques in MapReduce.

In an early work [18], Inokuchi et al. propose an Apri-
ori Graph Mining (AGM) algorithm, which generates graph

candidates by adding a vertex at a time, and computes the

frequency of each candidate by scanning the database. As

an improvement over AGM, Kuramochi et al. [23] proposed

the FSG technique which utilizes edge-growth mining and

computes the frequency of candidates based on the frequent

subgraphs that have been mined already. All the aforemen-

tioned approaches employ breadth-first search, i.e., they first

compute all k-size frequent subgraphs, based on which the

(k+1)-size frequent subgraphs are computed next. In contrast,

several other approaches [9], [16], [29], [32], [40] are based on

depth-first search. Among these, Yan et al. [40] develop gSpan
which uses a novel canonical graph representation to facilitate

the pruning of the search space. Later on, Huan et al. [16]

employ another graph representation to reduce the overhead

in subgraph isomorphism testing. Nijssen et al. [32] proposed

GASTON which categorizes the graphs into paths, trees, and

cyclic graphs, and develops techniques for each category to

speed up the running time. A follow-up work by Maunz et al.

[29] gives more insight into the categorization of graphs for

accelerating the mining process.

All the solutions discussed so far are in-memory algorithms

that load the entire dataset into main memory. Such techniques

cannot deal with datasets that are larger than the main memory

size. To address this problem, Wang et al. [37] proposed

ADI-Mine, an approach to facilitate frequent subgraph mining

from a disk-based graph database. Different from ADI-Mine,

Nguyen et al. [31] propose a data partition approach, which

was earlier introduced for frequent itemset mining [28], [34].

In this approach, the entire dataset is partitioned into several

portions in the first scan, and each portion is independently

processed to obtain a set of candidates whose frequency is

computed in a second scan of the dataset.

Due to the computation and I/O intensive characteristic

of data mining problems, more and more efforts are geared

towards solving it with the aid of parallel techniques. Cheung

et al. [11] developed an approach for mining association rules

in a distributed system. In that approach, several iterations are

performed, and each iteration requires a broadcast of locally

frequent itemsets to all machines. In a multi-core system, Li

et al. [26] proposed a parallelizable FP-Growth [14] method,

which partitions the database based on the frequent items.

More recently, Li et al. [27] propose to parallelize FP-Growth

in MapReduce with the aim of finding the k most frequent

itemsets. In the area of parallel frequent sequence mining,

Miliaraki el at. [30] describe MG-FSM which is built on

MapReduce and follows the ideas of projected database.

In the setting of parallel frequent subgraph mining, several

works [33], [38] are proposed in the context of a single large

graph. For the transaction setting, SUBDUE [12] describes a

shared-memory parallel approach by partitioning tasks, and a

data partitioning approach that computes the locally frequent

subgraphs and broadcasts them to all machines. Frequencies

are then computed in each machine, and finally a single master

node aggregates the results from each machine. The data

partitioning method of SUBDUE thus interleaves parallel and

sequential computing. Buehrer el at. [10] proposed parallel

frequent subgraph mining in a multi-core system, which par-

titions the tasks among multiple shared-memory processors.

Recently, Hill el at. [15] used MapReduce for mining frequent

subgraphs, which iteratively grows the searched pattern size in

each round of the MapReduce job. Further details on parallel

data mining can be found in the excellent survey from [41].
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MapReduce [13], [35] has established itself as the candidate

of choice in big data problems. To address the challenges

that arise in large-scale graph mining, several techniques and

systems have been proposed. PEGASUS [21] is a system

based on MapReduce for graph pattern mining and graph

analysis tasks in a large graph, e.g., computing the diameter

[20] and counting triangles [36]. To count or enumerate the

subgraphs in a large graph with MapReduce, Zhao el at. [42]

proposed a color coding based approach, while Afrati el at.

[8] devised a multi-way join method by decomposing the

given graph. Xiang el at. [39] employ MapReduce to mine the

maximum cliques from a large graph using a coloring based

partitioning method. However, these techniques and systems

cannot solve the frequent subgraph mining problem in the

transaction setting, which is the focus of our work.

None of the existing work has a satisfactory solution

to frequent subgraph mining in the transaction setting with

MapReduce. The previous approach from [31] also uses data

partitioning, but it is not able to efficiently process a large-

scale dataset, as shown in our experiments. In addition,

prior approaches are all evaluated on small-scale or synthetic

datasets. In contrast, our technique can handle tens of millions

of real-world graphs in a moderate-sized cloud environment.

IX. CONCLUSIONS

We proposed a two-step filter-and-refinement MapReduce

framework for frequent subgraph mining in the transaction

graph setting. Our method scales well for large datasets, and

significantly outperforms competitor techniques. The gain in

performance is achieved through careful selection of frequent

subgraph candidates, effective strategies for avoiding redun-

dant computation in the refinement step, and a lightweight

compression scheme that reduces significant communication

cost with low computational overhead of encoding/decoding.

In future work, we plan to improve further the technique for

candidate selection, in order to improve accuracy of frequency

estimation. We also plan to investigate how to extend some of

our results to the single-large-graph mining scenario.
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