
LSII: An Indexing Structure for Exact Real-Time
Search on Microblogs

Lingkun Wu1,2, Wenqing Lin1, Xiaokui Xiao1, Yabo Xu3

1Nanyang Technological University, Singapore

2A*STAR, Singapore
3Sun Yet-Sen University, China

{wulingkun, wlin1, xkxiao}@ntu.edu.sg

xuyabo@mail.sysu.edu.cn

Abstract—Indexing microblogs for real-time search is challeng-
ing given the efficiency issue caused by the tremendous speed at
which new microblogs are created by users. Existing approaches
address this efficiency issue at the cost of query accuracy, as
they either (i) exclude a significant portion of microblogs from
the index to reduce update cost or (ii) rank microblogs mostly
by their timestamps (without sufficient consideration of their
relevance to the queries) to enable append-only index insertion.
As a consequence, the search results returned by the existing
approaches do not satisfy the users who demand timely and
high-quality search results.

To remedy this deficiency, we propose the Log-Structured
Inverted Indices (LSII), a structure for exact real-time search
on microblogs. The core of LSII is a sequence of inverted indices
with exponentially increasing sizes, such that new microblogs
are (i) first inserted into the smallest index and (ii) later moved
into the larger indices in a batch manner. The batch insertion
mechanism leads to a small amortize update cost for each new
microblog, without significantly degrading query performance.
We present a comprehensive study on LSII, exploring various
design options to strike a good balance between query and
update performance. In addition, we propose extensions of LSII
to support personalized search and to exploit multi-threading for
performance improvement. Extensive experiments demonstrate
the efficiency of LSII with experiments on real data.

I. INTRODUCTION

Microblogging is an increasingly popular form of online
communication where users broadcast short textual messages
to the public or selected peers. Major microblogging sites,
such as Twitter, have tremendous numbers of users that create
hundreds of millions of microblogs per day [1]. Such a high
rate of microblog generation poses significant challenge to
real time search on microblogs, as conventional indices for
keyword queries (e.g., inverted indices) are not designed to ac-
commodate high-frequency updates. To address this challenge,
two more advanced indexing structures, TI [2] and EarlyBird
[1], have been proposed to reduce update overhead at the cost
of query accuracy.

In particular, TI adopts a partial indexing approach that
distinguishes frequent keyword queries from the infrequent
ones. For any new microblog, if it is relevant to at least
one frequent query, it is inserted into an inverted index
immediately; otherwise, it is inserted to an append-only log,
the content of which is periodically flushed into the inverted
index. In addition, any keyword query is processed using the

Contact authors: Yabo Xu and Xiaokui Xiao

inverted index without looking into the log, i.e., the results for
an infrequent query may be incomplete if a microblog relevant
to the query is recorded in the log but not the inverted index.

The above partial indexing approach of TI improves update
efficiency as it reduces the number of microblogs that need to
be processed in a real-time manner. However, it also causes
two severe deficiencies as follows. First, as illustrated in
existing study [3] on search logs, infrequent queries could
account for up to 70% of the queries issued by the users.
Hence, treating infrequent queries as second-class citizens
could lead to negative search experience for a large number
of users. Second, recent work [4] shows that the distribution
of real-time queries on microblogs could change substantially
within minutes, and hence, an infrequent query could become
frequent even before a microblog relevant to the query is
moved from the append-only pool of TI to the inverted index.
In other words, TI may return incomplete results even for a
query that is frequent.

In contrast to TI (which does not guarantee completeness
of query results), EarlyBird [1] ensures that all new microblog
can be searchable. Specifically, EarlyBird employs an append-
only inverted index where each posting list stores microblogs
in ascending order of their timestamps. Given a keyword
query, EarlyBird scans each relevant posting list in descending
order of the timestamps of the microblogs, after which it
returns the top-𝑘 microblogs that match the query, with newer
microblogs being ranked higher than older ones. The append-
only nature of EarlyBird allows new microblogs can be effi-
ciently inserted. Nevertheless, as EarlyBird ranks query results
based only by time, it overlooks several important factors that
could significantly affect the ranking of results, such as the
popularity of a microblog’s author and the popularity of the
microblog itself (i.e., the number of times that the microblog
is replied or forwarded by other users). As a consequence,
EarlyBird could miss important results for a query if the results
are not ranked high enough in terms of time. This issue may
be partially alleviated if we first retrieve a relatively large set
of microblogs based on time, and then re-rank the microblogs
in the set using a more comprehensive approach. However,
this method still does not guarantee the completeness of query
results.

Contributions and Organization. To address the deficiency
of the existing methods, we propose the Log-Structured In-

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013482

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

…

…

LSII structure

…
…

stream of
microblogs

0I 1I 2I mI

size: 2 I 0| |

size: 2 I 1| |
Inverted

Index

Fig. 1. The LSII Structure

verted Indices (LSII), an indexing method that returns exact
results for real-time search on microblogs. LSII is similar
in spirit to the Log-Structured Merge-Tree [5]: It contains a
sequence of inverted indices 𝐼0, 𝐼1, . . . , 𝐼𝑚 with exponentially
increasing sizes, as illustrated in Figure 1. When a new
microblog arrives, it is first inserted into the smallest inverted
index 𝐼0 – this incurs little overhead given the tiny size of
𝐼0. When the number of microblogs indexed by 𝐼0 exceeds
a certain threshold, we merge the entries of 𝐼0 into 𝐼1, and
we empty 𝐼0; in turn, the entries in 𝐼1 are flushed into 𝐼2
when 𝐼1 gets to a certain size, and so on. This considerably
reduces the amortized update cost per microblog, since (i) each
microblog can be only involved in a small number of index
mergers, and (ii) the index mergers can be performed in a
much more efficient manner than inserting all microblogs into
an inverted index one by one. In addition, LSII also provides
accurate and timely answers to keyword queries. Each inverted
index maintained by LSII records not only the timestamp of
each microblog but also other relevant information that may
affect the ranking of query results. During query processing,
all inverted indices are scanned simultaneously using the
Threshold Algorithm [6] to efficiently compute an answer set
that takes into account both the microblog timestamps and
other relevant factors.

We present a comprehensive study on the formulation and
extensions of LSII. In particular, in Section IV, we explore var-
ious design options of LSII to strike a good balance between
query and update performance. In Section V, we propose an
extension of LSII for personalized search, i.e., real-time search
on the microblogs posted by a selected set of users. Such
queries are of practical importance as users of microblogging
services are usually interested only in the microblogs posted
by their friends or celebrities. In Section VII, we devise
a multi-threading approach that enables LSII to parallelize
query and update processing, so as to reduce system response
time. Finally, in Section IX, we present extensive experimental
results that demonstrate the superiority of LSII over several
alternative solutions.

II. PROBLEM FORMULATION

Assume that we have a microblogging server that receives
a finite stream of tuples in increasing order of timestamps,
such that each tuple represents either a microblog or a query.
Each microblog is defined as a multi-set of words (referred

to as terms) from an alphabet Ω. A microblog 𝑑 can be the
descendant of another microblog 𝑑′ with a smaller timestamp,
i.e., 𝑑 replies or forwards 𝑑′.

A query 𝑞 is defined as a set of terms along with a positive
number 𝑘𝑞 . It asks for 𝑘𝑞 microblogs that are not only relevant
to the query terms but also fresh, i.e., the timestamps of the
retrieved microblogs should be smaller than and close to the
timestamp of 𝑞. We emphasize on freshness (in addition to
relevancy), as users of microblogging service are generally
more interested in the latest available microblogs, e.g., the
microblogs talking about breaking news [1], [4]. Accordingly,
we propose to rank each microblog 𝑑 with a score function in
the following form:

𝑓(𝑑, 𝑞) = 𝑤1 ⋅ 𝑠𝑖𝑔(𝑑) + 𝑤2 ⋅ 𝑠𝑖𝑚(𝑑, 𝑞)

+ 𝑤3 ⋅ 𝑓𝑟𝑒𝑠ℎ (𝑡𝑠𝑑, 𝑡𝑠𝑞) (1)

such that

1) 𝑤1 + 𝑤2 + 𝑤3 = 1 and 𝑤1, 𝑤2, 𝑤3 > 0,
2) 𝑠𝑖𝑔(𝑑) quantifies the significance of 𝑑, e.g., 𝑑 is con-

sidered significant if it is posted by a famous user or is
replied or forwarded a large number of times,

3) 𝑠𝑖𝑚(𝑑, 𝑞) measures the relevance of 𝑑 to 𝑞,
4) 𝑓𝑟𝑒𝑠ℎ(𝑡𝑠𝑑, 𝑡𝑠𝑞) gauges the freshness of 𝑑 with respect

to 𝑞 based on 𝑑’s timestamp 𝑡𝑠𝑑 and 𝑞’s timestamp 𝑡𝑠𝑞.

In other words, 𝑓(𝑑, 𝑞) is a linear function of 𝑑’s scores in
terms of its significance, freshness, and relevance to 𝑞. This
formulation of 𝑓(𝑑, 𝑞) generalizes several score functions used
in previous work [7], [8].

Our solution is not specific to the definitions of 𝑠𝑖𝑔(𝑑) and
𝑓𝑟𝑒𝑠ℎ(𝑡𝑠𝑑, 𝑡𝑠𝑞), as long as 𝑓𝑟𝑒𝑠ℎ(𝑡𝑠𝑑, 𝑡𝑠𝑞) is a monotonically
decreasing function of 𝑡𝑠𝑞 − 𝑡𝑠𝑑. In our experiments, we
compute 𝑠𝑖𝑔(𝑑) using the algorithm adopted in TI [2] (see
Section VIII for details), and we follow previous work [9] to
set 𝑓𝑟𝑒𝑠ℎ(𝑑, 𝑞) = 𝑒𝑐⋅(𝑡𝑠𝑑−𝑡𝑠𝑞), where 𝑐 is a constant deciding
how fast the freshness of 𝑑 degrades with time.

On the other hand, we consider that 𝑠𝑖𝑚(𝑑, 𝑞) equals the
cosine similarity between 𝑑 and 𝑞, as suggested in previous
work [2]. Specifically, let 𝑡𝑖 (𝑖 ∈ [1, ∣Ω∣]) denote the 𝑖-th term
in the alphabet Ω, and let 𝑣𝑑 and 𝑣𝑞 be two vectors with length
∣Ω∣, such that ∥𝑣𝑑∥1 = ∥𝑣𝑞∥1 = 1 and the 𝑖-th element in 𝑣𝑑
(resp. 𝑣𝑞) quantifies the importance of 𝑡𝑖 in 𝑑 (resp. 𝑞). Then,

𝑠𝑖𝑚(𝑑, 𝑞) = 𝑣𝑑 ⋅ 𝑣𝑞. (2)

We refer to 𝑣𝑑 (resp. 𝑣𝑞) as the term vector of 𝑑 (resp. 𝑞), and
we use 𝑣𝑑[𝑡] (resp. 𝑣𝑞[𝑡]) to denote the element in 𝑣𝑑 (resp. 𝑣𝑞)
that corresponds to a term 𝑡. In our experiments, we compute
the term vectors based on the tf-idf model [10].

In addition, we require that only microblogs 𝑑 with
𝑠𝑖𝑚(𝑑, 𝑞) > 0 can be returned as query results, so as to avoid
giving completely irrelevant answers to users’ queries. This
implies that 𝑑 and 𝑞 should have at least one common term.

In summary, each query 𝑞 asks for the 𝑘𝑞 microblogs 𝑑 that
maximizes 𝑓(𝑑, 𝑞) among those microblogs with timestamps
smaller than 𝑡𝑠𝑞 and with 𝑠𝑖𝑚(𝑑, 𝑞) > 0. Our objective is to
minimize the total time required to process the stream of tuples

483

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TABLE OF NOTATIONS

Notation Description

𝑡 ∈ Ω a term 𝑡 in an alphabet Ω

𝑑 a microblog consisting of terms in Ω

𝑞 a query consisting of terms in Ω and a positive
number 𝑘𝑞

𝑘𝑞 the number of microblogs that 𝑞 asks for

𝑡𝑠𝑑, 𝑡𝑠𝑞 the timestamps of 𝑑 and 𝑞, respectively

𝑣𝑑, 𝑣𝑞 the term vectors of 𝑑 and 𝑞, respectively

𝑣𝑑[𝑡] the element in 𝑣𝑑 that corresponds to a term 𝑡

𝑣𝑞 [𝑡] the element in 𝑣𝑞 that corresponds to a term 𝑡

𝑓 (𝑑, 𝑞) the ranking function that computes the score of 𝑑 with
respect to 𝑞 (see Eqn. 1)

𝑠𝑖𝑔(𝑑) the significance score of 𝑑

𝑠𝑖𝑚(𝑑, 𝑞) the cosine similarity between 𝑑 and 𝑞 (see Eqn. 2)

𝑓𝑟𝑒𝑠ℎ(𝑡𝑠𝑑, 𝑡𝑠𝑞) the freshness score of 𝑑 with respect to 𝑞

𝐼𝑖 (𝑖 ∈ [0,𝑚]) the inverted indices in LSII

𝜏𝑖 (𝑖 ∈ [0,𝑚]) the maximum number of microblogs indexed by LSII

received by the server. We assume that the server has sufficient
memory to accommodate all indices built on the microblogs,
as is the case for modern search engines [1]. For ease of
exposition, we also assume that the timestamp, term vector,
significance score of each microblog are fixed, and we will
discuss how this assumption can be removed in Section VI.
Table I lists the notations that we will frequently use.

Remark. The above problem formulation assumes that tuple
stream is finite, while in practice the number of microblogs
received by the server increases monotonically with time.
However, as users are generally not interested in stale mi-
croblogs, the server only needs to retain the microblogs whose
timestamps are larger than a certain threshold. For example,
Twitter only indexes 6-9 days’ microblogs [11]. Our solution
for finite tuple streams can be easily adopted to handle this
case.

III. FIRST-CUT SOLUTIONS

Before presenting our solution, we first discuss the possibil-
ity of using conventional inverted indices for real-time search
on microblogs. Given a set 𝐷 of documents, an inverted index
on 𝐷 consists of a hash table and a set of posting lists. Each
posting list corresponds to a term 𝑡 in the alphabet Ω, and
it contains an entry for each document in which 𝑡 appears.
The hash table, on the other hand, maps each term to its
corresponding posting list. Given the posting lists and the
hash table, if we are to retrieve the 𝑘𝑞 documents with highest
cosine similarly to a query 𝑞, we can first use the hash table
to locate the set 𝑆 of posting lists corresponding to terms in 𝑞,
and then we scan the entries in those posting lists to identify
the relevant documents. The efficiency of the scanning process
depends on the order of entries in each posting list, as will be
explained shortly. For convenience, we say that posting lists
in 𝑆 are relevant to 𝑞.

A. Append-Only Approach

To adopt an inverted index for microblog search, the
simplest approach (as adopted in EarlyBird [1]) is to treat
each microblog 𝑑 as a document, and sort the entries in
each posting list in ascending order of the corresponding
microblogs’ timestamps. This approach is highly efficient in
terms of microblog insertions, as new microblogs can be easily
appended to the ends of posting lists without affecting the
ordering of entries. In terms of query efficiency, however, the
aforementioned approach is rather unfavorable. To explain this,
recall that our ranking function 𝑓(𝑑, 𝑞) evaluates a microblog
𝑑 based on three factors: its significance 𝑠𝑖𝑔(𝑑), relevance
𝑠𝑖𝑚(𝑑, 𝑞), and freshness 𝑓𝑟𝑒𝑠ℎ(𝑑, 𝑞). If the entries in a
posting list are sorted in ascending order of timestamps, the
corresponding microblogs would be in ascending order of
freshness, regardless of their significance or relevance. In other
words, the entry order does not provide any hint on the overall
score of each microblog. As a consequence, when answering
a query 𝑞, we have to examine all entries in all posting lists
relevant to 𝑞, since the omission of any entry may render
the query results incomplete. This leads to significant query
overhead.

B. Triple-Posting-List Approach

To improve query efficiency, a natural idea is to extend
the inverted index to incorporate information about the sig-
nificance and relevance of microblogs. In particular, we can
maintain three posting lists for each term 𝑡, such that (i) the
first and second lists sort microblogs in descending order of
their timestamps and significance scores, respectively, and (ii)
the third list arranges the microblogs 𝑑 in descending order of
𝑣𝑑[𝑡], i.e, the weight of 𝑡 in the term vector of 𝑑. Such entry
ordering makes it possible to compute query answers without
traversing all entries in the relevant posting lists. For example,
if we have visited the first 𝑥 entries in a posting list that records
significance scores, and the 𝑥-th entry has a significance score
𝑦, then we know for sure that the significance scores of the
unvisited entries in the posting list are upper-bounded by 𝑦.
By combining the score upperbounds from all relevant posting
lists, we can derive (based on Equation 1) an upperbound of
𝑓(𝑑, 𝑞) for any unseen microblog 𝑑. If this upperbound is
smaller than the scores of the top-(𝑘𝑞) microblogs that we
have examined, then we can stop traversing the posting lists
without missing query results.

More specifically, we process each query 𝑞 with the Thresh-
old Algorithm (TA) [12], a standard technique for top-𝑘
queries. Given 𝑞, TA first identifies the three posting lists
corresponding to each term in 𝑞. This results in 3 ⋅ ∣𝑞∣ posting
lists, where ∣𝑞∣ denotes the number of terms in 𝑞. After that,
TA traverses the posting lists in an iterative manner. In the 𝑖-
th iteration, TA examines the 𝑖-th microblog 𝑑 in each of the
3 ⋅ ∣𝑞∣ posting lists, and computes 𝑑’s overall score 𝑓(𝑑, 𝑞). A
microblog would be retained in a candidate pool if its overall
score ranks among the top-(𝑘𝑞) microblogs found in the first
𝑖− 1 iterations.

484

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

In addition, the 𝑖-th iteration of TA also derives an up-
perbound 𝑠𝑖𝑔⊤𝑖 , 𝑠𝑖𝑚⊤

𝑖 , and 𝑓𝑟𝑒𝑠ℎ⊤𝑖 for the significance,
relevance, and freshness scores of any unseen microblog. In
particular,

𝑠𝑖𝑔⊤𝑖 = max
𝑑∈𝐷𝑖

{𝑠𝑖𝑔(𝑑)} , (3)

where 𝐷𝑖 contains the 𝑖-th microblog in each of the ∣𝑞∣ posting
lists sorted by significance scores. Similarly,

𝑓𝑟𝑒𝑠ℎ⊤𝑖 = max
𝑑∈𝐷′

𝑖

{𝑓𝑟𝑒𝑠ℎ(𝑡𝑠𝑞 − 𝑡𝑠𝑑)} , (4)

where 𝐷′
𝑖 contains the 𝑖-th microblog in each of the ∣𝑞∣ posting

lists sorted by timestamps. Furthermore,

𝑠𝑖𝑚⊤
𝑖 =

∑

𝑡∈𝑞

𝑣𝑑𝑖[𝑡] ⋅ 𝑣𝑞[𝑡], (5)

where 𝑣𝑑𝑖 denotes the term vector of the 𝑖-th microblog in
the posting list storing term weights corresponding to 𝑡. Given
𝑠𝑖𝑔⊤𝑖 , 𝑠𝑖𝑚⊤

𝑖 , and 𝑓𝑟𝑒𝑠ℎ⊤𝑖 , TA computes the upperbound of the
overall score of any unseen microblog based on Equation 1. If
the upperbound is no better than the scores of the microblogs
in the candidate pool, then TA terminates and returns the
content of the candidate pool as the final results.

In summary, by maintaining sorted posting lists for mi-
croblogs’ significance, relevance, and timestamps, we can
achieve efficiency in processing real-time search. For con-
venience, we refer to this indexing approach as the Triple-
Posting-List (TPL) approach. Although TPL is efficient in
terms of query processing, it causes much update overhead,
as we need to retain the sorted order of posting lists under
frequent microblog insertions. One may attempt to address
this issue by organizing each posting list into a main-memory
B-tree (so as to reduce update cost), but it would significantly
degrade query performance. To explain this, recall that the TA
algorithm computes query results using linear scans on the
posting list entries. When the entries are stored in a B-tree,
the linear scan would be done at the leaf level of the tree.
As the leaf-nodes of the B-trees are often not located in a
contiguous memory space, the linear scan is likely to incur
a large number cache line misses, leading to increased query
processing time.

The deficiencies of TPL and the append-only approach
demonstrate that conventional inverted indices fail to strike a
balance between query and update efficiency for microblog
search. This motivates our LSII structure which combines
the advantages of TPL and the append-only method without
suffering from their drawbacks, as will be elaborated in
Section IV.

IV. LOG-STRUCTURED INVERTED INDICES

This section presents the Log-Structured Inverted Indices
(LSII) for real-time search on microblogs. Section IV-A first
explains the basic idea of LSII, and then, Sections IV-B and
IV-C discuss the implementation details and design consider-
ations.

A. Basic Idea

LSII consists of a sequence of inverted indices
𝐼0, 𝐼1, . . . , 𝐼𝑚, each of which indexes a disjoint subset
of microblogs, as illustrated in Figure 1. The structure of 𝐼0 is
identical to the append-only approach in Section III-A, i.e., 𝐼0
contains one posting list for each term 𝑡, and the entries in the
list are sorted in ascending order of timestamps. Meanwhile,
𝐼𝑖 (𝑖 ∈ [1,𝑚]) has the same structure with TPL, i.e., 𝐼𝑖
maintains three posting lists for each term 𝑡, such that the
first, second, and third lists sort microblogs 𝑑 in descending
order of 𝑠𝑖𝑔(𝑑), 𝑣𝑑[𝑡], and 𝑡𝑠𝑑, respectively. We impose a
threshold 𝜏𝑖 (𝑖 ∈ [0,𝑚]) on the number of microblogs that 𝐼𝑖
is allowed to index, and we set 𝜏𝑖 = 2𝜏𝑖−1 (𝑖 ∈ [1,𝑚]), i.e.,
the maximum size of 𝐼𝑖 is 2 times the maximum size of 𝐼𝑖−1.

Whenever a new microblog arrives, it is first inserted into
𝐼0. This entails little overhead given the append-only nature of
𝐼0. If 𝐼0 already reaches its maximum size before the insertion,
we first merge the posting lists in 𝐼0 with the posting lists in
𝐼1. After that, 𝐼0 becomes empty, and we will proceed to insert
the new microblog. In general, if the number of microblogs
indexed by 𝐼𝑖 (𝑖 ∈ [0,𝑚 − 1]) reaches 𝜏𝑖, we combine the
posting lists in 𝐼𝑖 with those in 𝐼𝑖+1. When 𝐼𝑚 becomes
full, we create a new inverted index 𝐼𝑚+1 with size threshold
𝜏𝑚+1 = 2𝜏𝑚, and we move all posting lists in 𝐼𝑚 to 𝐼𝑚+1.
Initially, when no microblog has arrived, we set 𝑚 = 0, in
which case LSII contains only one index 𝐼0.

The aforementioned update strategy of LSII has several
important implications. First, the timestamp of any microblog
in 𝐼𝑖 (𝑖 ∈ [1,𝑚]) is larger than the timestamp of any
microblog in 𝐼𝑖−1. As a consequence, the microblogs in 𝐼𝑖
have smaller freshness scores than those in 𝐼𝑖−1, which makes
the microblogs in 𝐼𝑖 less likely to be query results.

Second, as all microblog insertions are handled by 𝐼0, the
structure of the other indices 𝐼1, . . . , 𝐼𝑚 are usually unchanged
(except when index mergers are performed). Therefore, we
can implement the posting lists in 𝐼1, . . . , 𝐼𝑚 as sorted arrays,
which ensures that linear scans of the posting lists would be
efficient – this is crucial for the performance of our query
algorithm (i.e., the TA approach). In addition, the sorted arrays
also enable efficient index merger: merging any two indices in
𝐼1, . . . , 𝐼𝑚 would only incur linear cost, since we can combine
two sorted arrays in linear time.

Third, the number of inverted indices in LSII (i.e., 𝑚+ 1)
is 𝑂(log 𝑛), where 𝑛 is the number of microblogs that has
arrived. To understand this, recall that 𝑚 = 0 initially, and
LSII would increase𝑚 (i.e., create a new index) only when 𝐼𝑚
reaches its maximum size 𝜏𝑚. Therefore, if LSII contains an
index 𝐼𝑚, then 𝐼𝑚−1 must have become full at least once. This
indicates that 𝑛 ≥ 𝜏𝑚−1 = 2𝑚−1𝜏0, which leads to 𝑚+ 1 =
𝑂(log 𝑛).

Fourth, each microblog 𝑑 can be involved in less than 𝑂(𝑚)
index mergers. To explain this, consider that 𝑑 is currently
indexed by 𝐼𝑖. Observe that 𝐼𝑖 can be merged with 𝐼𝑖−1 at most
twice before it becomes full (since 𝜏𝑖 = 2𝜏𝑖−1), after which
it would be merged with 𝐼𝑖+1. Hence, 𝑑 can be involved in a

485

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm LSII-Query (𝑞, 𝐼0, . . ., 𝐼𝑚)

1. let 𝐶 be a candidate pool of size 𝑘𝑞; set 𝐶 = ∅
2. scan 𝐼0 to identify the 𝑘𝑞 microblogs in 𝐼0 that with the largest

overall score, and put them into 𝐶
3. let 𝑑⊥ be the microblog in 𝐶 with the smallest overall score
4. let 𝑗 = 1
5. initialize 𝑚 upperbounds 𝑢𝑏1 = 𝑢𝑏2 = . . . = 𝑢𝑏𝑚 = +∞
6. while max𝑖{𝑢𝑏𝑖} > 𝑓(𝑑⊥, 𝑞)
7. for any 𝑖 ∈ [1,𝑚] such that 𝑢𝑏𝑖 > 𝑓(𝑑⊥, 𝑞)
8. for the 𝑗-th microblog 𝑑 in any posting list in 𝐼𝑖 that is

relevant to a term in 𝑞 and contains at least 𝑗 entries
9. if 𝑓(𝑑, 𝑞) > 𝑓(𝑑⊥, 𝑞)
10. remove 𝑑⊥ from 𝐶 and insert 𝑑 into 𝐶
11. let 𝑑⊥ be the microblog in 𝐶 with the smallest

overall score
12. set 𝑢𝑏𝑖 to the upperbound of the overall score of

any unseen microblog in 𝐼𝑖 (based on Eqn. 1, 3-5)
13. 𝑗 = 𝑗 + 1
14. return 𝐶

Fig. 2. The LSII-Query Algorithm

constant number of index merger before it is moved to 𝐼𝑖+1.
Therefore, the total number of index mergers that involves
𝑑 is 𝑂(𝑚). Given that the cost of each merger is linear to
the number of microblogs in the merged indices, it can be
verified that the amortized update cost for each microblog is
𝑂(𝑚) = 𝑂(log 𝑛).

The above analysis shows that LSII can efficiently handle
updates. Meanwhile, the query cost of LSII is also small.
Given a real-time query 𝑞, LSII first scans through 𝐼0 to
identify the 𝑘𝑞 microblogs in 𝐼0 with the highest overall score,
and puts those microblogs into the candidate pool. After that,
LSII locates the posting lists in 𝐼1, 𝐼2, . . . , 𝐼𝑚 that are relevant
to the terms in 𝑞, and then LSII invokes the TA algorithm on
the posting lists. In particular, the 𝑖-th iteration of TA examines
the 𝑖-th microblog in each of the posting lists, computes their
overall scores, and updates the candidate pool accordingly.
For each 𝐼𝑖 (𝑖 ∈ [1,𝑚]), TA also computes an upperbound
of the overall score of any unseen microblog in 𝐼𝑖, based on
Equations 1, 3, 4, and 5. If the upperbound for 𝐼𝑖 is no more
than the scores of the top-(𝑘𝑞) microblogs that TA has seen,
then TA stops traversing the posting lists in 𝐼𝑖 (the traversal on
the other inverted indices may continue). When the traversal
on all indices are terminated, TA returns the microblogs in
the candidate pools as the final results. Figure 2 shows the
pseudo-code of the query algorithm of LSII.

Compared with the TPL approach (which answers query
with a single inverted index), LSII needs to traverse a larger
number of inverted indices for query processing. Nevertheless,
the query cost of LSII can still be smaller than that of
TPL, due to two reasons. First, as we have mentioned, the
microblogs in the larger indices in LSII (e.g., 𝐼𝑚) have small
freshness scores (which in turn lead to small overall scores),
and hence, the TA algorithm tends to terminate the traversal
on those indices quite early. In other words, those indices do
not entail much query overhead. Second, as the posting lists

in 𝐼1, . . . , 𝐼𝑚 are implemented as arrays, TA would perform
much better with 𝐼1, . . . , 𝐼𝑚 than with TPL, whose posting
lists cannot support efficient linear scan without incurring
significant update overhead.

To sum up, LSII achieves a good balance between query
and update efficiency, and hence, remedies the drawbacks of
the append-only approach and TPL. In what follows, we will
discuss the implementation details of LSII, and explores the
possibility of alternative designs.

B. Implementations

For each inverted index 𝐼𝑖 (𝑖 ∈ [0,𝑚]), LSII maintains a
hash table that maps the ID of a microblog 𝑑 indexed by 𝐼𝑖 to
a triplet ⟨𝑠𝑖𝑔(𝑑), 𝑣𝑑, 𝑡𝑠𝑑⟩. This facilitates the computation of a
microblog’s overall score given its ID. Accordingly, each entry
𝑒 in a posting list in 𝐼𝑖 records only the ID of the microblog
corresponding to 𝑒, so as to reduce space consumption.

To ensure that new microblogs can be efficiently inserted
into 𝐼0, we implement each posting list in 𝐼0 as a dynamic
array 𝐴 where each entry 𝑒 records the ID of the microblog
corresponding to 𝑒. Initially, 𝐴 is allocated a small memory
space of constant size. Whenever a new microblog is inserted
to the posting list, its ID will be put into the first available
entry in 𝐴. If 𝐴 becomes full after the insertion, we allocate a
new memory space that doubles the current size of 𝐴, and we
move all elements in 𝐴 to the new memory space. Meanwhile,
the posting lists in 𝐼1, . . . , 𝐼𝑚 are implemented as static arrays,
as explained in Section IV-A.

Whenever we need to merge two posting lists (during an
index merger), we first use the hash table to obtain the
microblogs corresponding to the entries in the posting lists.
If the two posting lists are sorted (e.g., neither of the posting
lists is from 𝐼0), the merger is performed with two linear scans
on the microblogs. On the other hand, if one of the posting
lists is not sorted in the desired order (i.e., it is from 𝐼0), then
we first sort the entries in the posting lists, and then merge
them with the entries from the other list.

C. Design Considerations

As explained in Section IV-A, the posting lists in 𝐼0 are
sorted by time only, which ensures efficient microblog inser-
tion but requires us to scan all entries in all relevant posting
lists when answering queries. We argue that the complete scans
of relevant posting lists in 𝐼0 would not have a detrimental
effect on query performance, as the number of microblogs
indexed by 𝐼0 is small. But this leads to an interesting question:
Would it be more beneficial if we adopt the TPL approach in
𝐼0 to maintain three sorted posting lists about the significance,
term weights, and freshness of microblogs? At the first glance,
this would lead to more efficient query processing (as we can
apply the TA algorithm on 𝐼0 to answer queries), and the cost
of maintaining sorted posting list (in face of frequent update)
would not be substantial due to the small size of 𝐼0.

As we observe in our experiments, however, adopting
the TPL approach in 𝐼0 only increases update cost without
improving query performance. To explain this, observe that

486

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

the microblogs indexed by 𝐼0 are the newest among the
microblogs indexed by LSII. As a consequence, their freshness
scores are high, due to which they tend to have large overall
scores and are likely to be query answers. Therefore, even if
we apply the TPL approach in 𝐼0 and employ the TA algorithm
for query processing, we may still need to visit a large portion
of the microblogs in 𝐼0 before the traversal on 𝐼0 can be
terminated. This renders the query cost comparable to the case
when the posting lists in 𝐼0 are sorted by time. Hence, we do
not adopt the TPL approach in 𝐼0.

The above analysis also sheds light on how we should set
the size threshold 𝜏0 for 𝐼0. As the microblogs with large
timestamps are likely to be query results, we may as well put
them all into 𝐼0 to reduce update cost without degrading query
performance. This indicates that 𝜏0 should not be too small,
so as to accommodate all reasonably new microblogs. On the
other hand, if 𝜏0 is excessively large, then 𝐼0 may contain a
large number of microblogs that are relatively new but not
significant or highly relevant to users’ queries, in which case
𝐼0 would causes considerable query overhead. In Section VII,
we will discuss how we can dynamically tune 𝜏0 based on
run-time statistics.

Finally, one may concern about the space consumption of
𝐼1, . . . , 𝐼𝑚 as each of them maintains three posting lists for
each term. We argue that such space overhead is reasonable
given that accurate query results can only be derived by taking
into account the significance, relevance, and freshness scores
of microblogs. In addition, the space cost of 𝐼1, . . . , 𝐼𝑚 may
be reduced by compressing each posting list [13], [14] (as
𝐼1, . . . , 𝐼𝑚 are relatively static). A thorough treatment of this
issue is beyond the scope of this paper.

V. EXTENSION FOR PERSONALIZED SEARCH

In microblogging services, users are often interested only
in the microblogs posted by a subset of other users, e.g., their
friends and celebrities. For example, on average, a Twitter user
only follows less than 40 other users (i.e., he/she is interested
in less than 40 other users’ microblogs). As such, it is useful
to provide users personalized real-time search that processes
queries based on the microblogs posted by a selected set of
other users. More formally, given a query 𝑞 and a set 𝑈 of
users, we aim to retrieve the 𝑘𝑞 microblogs posted by the
users in 𝑈 that maximizes 𝑓(𝑞, 𝑑). To process such a query on
LSII, a naive approach is to invoke the algorithm in Figure 2
with one modification: a microblog 𝑑 can be put into the
candidate result pool, only if 𝑑 is posted by a user in 𝑈 .
This approach, albeit simple, is highly inefficient due to the
large number of irrelevant microblogs visited during query
processing. Motivated by this, we propose a User-Specific
Links (USL) approach, which augments the posting lists in
LSII with auxiliary information, such that we can traverse
posting lists in a manner that avoids visiting any entries from
irrelevant users.

In particular, USL augments LSII by (i) associating each
posting list 𝐿 with a hash table and (ii) adding a pointer
to each entry in 𝐿. The hash table maps each user 𝑢 to the

K

in descending order of timestamps

e1
from
u1
()

e2
from
u2
()

e3
from
u1
()

e4
from
u2
()

e5
from
u3
()

e6
from
u2
()

e7
from
u3
()

e8
from
u1
()

Fig. 3. A posting list with user-specific links

first entry in 𝐿 that corresponds to a microblog posted by 𝑢.
Meanwhile, the pointer added in each entry 𝑒 points to the
next entry 𝑒′ in 𝐿, such that 𝑒 and 𝑒′ correspond to the same
user. For example, if the entries in 𝐿 is sorted in descending
order of timestamps, then the hash table maps 𝑢 to the newest
entry from 𝑢 that is indexed by 𝐿. In addition, if 𝑢 has three
entries 𝑒1, 𝑒2, 𝑒3 in 𝐿, such that 𝑒1 (resp. 𝑒3) has the largest
(resp. smallest) timestamp, then 𝑒1 has a pointer to 𝑒2, and
𝑒2 contains a pointer to 𝑒3. Figure 3 shows an example. With
such pointers, each posting list is conceptually divided into a
number of sublists, such that each sublist links the microblogs
from the same user in a sorted order. As such, we can perform
personalized search efficiently by traversing only the sublists
that correspond to the selected users.

More specifically, given a query 𝑞 on the microblogs of a set
𝑈 of users, we first retrieve the posting lists in 𝐼0, . . . , 𝐼𝑚 that
correspond to the terms in 𝑞, and then we traverse the posting
lists using the TA algorithm in Figure 3, with one modification:
when the algorithm visits a posting list 𝐿 in the 𝑖-th iteration,
it would examine the 𝑖-th entry in 𝐿 that corresponds to some
user in 𝑈 , without looking at irrelevant entries. For example,
given the posting list in Figure 3, if we are to search on the
microblogs posted by 𝑢2 and 𝑢3, then algorithm would only
visit entries 𝑒2, 𝑒4, 𝑒5, 𝑒6, 𝑒7 (as the other entries correspond
to 𝑢1 instead of 𝑢2 or 𝑢3).

The above traversal approach is implemented as follows.
Assume without loss of generality that the posting list 𝐿 is
sorted in descending order of timestamps. We first examine
the hash table 𝐻 associated with 𝐿, and use 𝐻 to map each
user 𝑢 ∈ 𝑈 to the first entry 𝑒𝑢 in 𝐿 corresponding to 𝑢. Then,
we insert all those entries into a priority queue 𝑄 that sorts the
entries in descending order of timestamps. After that, in each
iteration, TA would (i) remove the top entry 𝑒 in 𝑄, (ii) visit
the microblog corresponding to 𝑒, and then (iii) insert into 𝑄
the entry in 𝐿 that is pointed to by 𝑒. For instance, assume
that 𝐿 is as illustrated in Figure 3, and 𝑈 = {𝑢2, 𝑢3}. We
would first put into 𝑄 two entries 𝑒2 and 𝑒5, as 𝑒2 (resp. 𝑒5)
is the first entry in 𝐿 from 𝑢2 (resp. 𝑢3). After that, the first
iteration of TA would extract 𝑒2 from 𝑄 (as 𝑒2’s timestamp is
larger than 𝑒5’s), visit the microblog corresponding to 𝑒2, and
then insert 𝑒4 into 𝑄 (as 𝑒2 points to 𝑒4). Next, the second
iteration of TA would remove 𝑒4 from 𝑄 and insert 𝑒6 instead,
so on and so forth.

Our traversal method takes 𝑂(log ∣𝑈 ∣) time to retrieve an
entry from a posting list 𝐿 in each iteration of TA. This
mild cost is justified when 𝐿 contains a large number of
entries irrelevant to the users in 𝑈 (as those entries would
be omitted by the algorithm). However, when the number of

487

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

entries in 𝐿 is small or when 𝑈 contains most of the users
who have microblogs in 𝐿, then our method may be inferior
to a sequential traversal of 𝐿. As a rule of thumb, we apply
our method on 𝐿 only when the number of entries in 𝐿 is at
least ten times the number of users in 𝑈 .

It remains to clarify how we can construct the hash table 𝐻
associated with each sorted posting list 𝐿 and the user-specific
link in each list entry. Assume without loss of generality that
𝐿 is sorted. We start with an empty 𝐻 , and scan 𝐿 from the
end to the beginning. For each entry 𝑒 that we encounter, if 𝑒
is from a user 𝑢 that is not in 𝐻 , then we insert 𝑢 into 𝐻 and
map 𝑢 to 𝑒. On the other hand, if 𝑢 is already in 𝐻 , then we
retrieve the entry 𝑒′ that 𝐻 maps 𝑢 to, and we let 𝑒 point to 𝑒′.
After that, we let 𝐻 map 𝑢 to 𝑒 instead. A similar algorithm
can also be used to construct user-specific links when merging
two sorted posting lists.

VI. HANDLING SCORE UPDATES

Our solution in the previous sections assumes that each
microblog’s timestamp, term vector, and significance score
are fixed upon arrival. This assumption is partially true:
In practice, the timestamps and term vectors of microblogs
are generally static, but the significance score 𝑠𝑖𝑔(𝑑) of a
microblog 𝑑 may change over time. For example, when 𝑠𝑖𝑔(𝑑)
is computed based on previous work [2] (as is the case in
our experiments), 𝑠𝑖𝑔(𝑑) is determined by some static factors
as well as the popularity score of 𝑑, which monotonically
increases when there are new microblogs referring to 𝑑. In
other words, the arrival of a new microblog may cause changes
in some older microblogs’ significance scores. Such score
updates may pose a challenge to LSII, depending on the
microblog 𝑑 whose significance score is to be modified.

In particular, if 𝑑 is a relatively new microblog indexed
by 𝐼0, then we only need to update the hash table associated
with 𝐼0, to change the significance score of the hash table
entry that corresponds to 𝑑. The posting lists in 𝐼0 need
not be changed, as they are sorted by timestamps and are
independent of the microblogs’ significance scores. On the
other hand, if 𝑑 is indexed by 𝐼1, . . . , 𝐼𝑚 (where one third of
the postings are sorted by significance scores), then updating
the associated hash tables alone would not be sufficient, as
we need to maintain the sorted order of the posting lists. A
naive solution is to directly re-arrange the posting list entries
after the score update, but it would cause substantial overhead
since the posting lists in 𝐼1, . . . , 𝐼𝑚 are implemented as sorted
arrays.

To address this issue, we extend LSII by adding a buffer 𝐵
to each posting list 𝐿 in 𝐼1, . . . , 𝐼𝑚 that is sorted by signifi-
cance scores of microblogs. Each entry in 𝐵 is a pair ⟨𝑖𝑑, 𝑠⟩,
where 𝑖𝑑 is the identifier of a microblog whose significance
score needs to be changed, and 𝑠 is the new significance score
of the microblog. For efficiency, we index the buffer entries
with a main-memory B-tree on their significance scores. For
any microblog 𝑑 in the posting list 𝐿, if we need to update
its significance score from 𝑠𝑜𝑙𝑑 to 𝑠𝑛𝑒𝑤, then we insert an
entry ⟨𝑑, 𝑠𝑛𝑒𝑤⟩ into 𝐵, and we remove ⟨𝑑, 𝑠𝑜𝑙𝑑⟩ from 𝐵 (if

it exists). In other words, we use the buffer to record any
update in significance scores, without changing the structure
of posting list 𝐿 itself.

Query processing with buffers. With the buffers added, each
query is processed with a slightly modified TA algorithm that
takes into account the entries in the buffers. For example, let
us consider a personalized query 𝑞 on the microblogs posted
by a set 𝑈 of users. The algorithm first retrieves each posting
list 𝐿 that is relevant to 𝑞, and then checks whether 𝐿’s buffer
is empty. If 𝐿 has an empty buffer, then it would be traversed
in the same way as in the algorithm in Section V, i.e., we will
follow the user-specific links in 𝐿 to examine only the entries
in 𝐿 relevant to the users in 𝑈 .

On the other hand, if 𝐿’s buffer 𝐵 is not empty, then before
the first iteration of TA, we create a priority queue 𝑄 that
sorts entries in descending order of significance scores, and
we insert into 𝑄 the entry in 𝐵 with the largest significance
score. In addition, for each user 𝑢 ∈ 𝑈 , we retrieve the first
entry in 𝐿 that corresponds to 𝑢, and we put the entry into
𝑄, too. After that, in each iteration of TA, we remove the top
entry 𝑒 in 𝑄, and we examine the microblog corresponding to
𝑒. If 𝑑 has been visited in the previous iterations of TA or if 𝑑
is not posted by any user in 𝑈 , then we ignore 𝑑. Otherwise,
we compute the overall score of 𝑑 (based on the information in
the hash table that maps 𝑑 to ⟨𝑠𝑖𝑔(𝑑), 𝑣𝑑, 𝑡𝑠𝑒⟩), and we update
the candidate pool accordingly. Next, if 𝑒 is an entry in 𝐿,
then we would retrieve the entry 𝑒′ that 𝑒’s user-specific link
points to, and we insert 𝑒′ into 𝑄. If 𝑒 is from 𝐵, however,
we will insert into 𝑄 the next unvisited entry 𝑒∗ in 𝐵, i.e.,
𝑒∗ has smaller (resp. larger) significance score than 𝑒 (resp.
any other unvisited entry in 𝐵). In other words, we visit the
entries in 𝐵 and the relevant entries in 𝐿 in descending order
of their significance scores.

To explain why the above traversal algorithm is correct, let
us consider a microblog 𝑑 whose significance score is 𝑠𝑜𝑙𝑑
when 𝐿 is constructed. Assume that 𝑑 corresponds to an entry
𝑒𝐿 in 𝐿, and that 𝑠𝑖𝑔(𝑑) is later increased to 𝑠𝑛𝑒𝑤, which
is recorded in an entry 𝑒𝐵 in the buffer 𝐵. Depending on
whether 𝑠𝑛𝑒𝑤 > 𝑠𝑜𝑙𝑑 or 𝑠𝑛𝑒𝑤 < 𝑠𝑜𝑙𝑑, our algorithm may visit
𝑒𝐵 or 𝑒𝐿 before the other one. But regardless of whether 𝑒𝐵
or 𝑒𝐿 is visited first, our algorithm calculates the overall score
of 𝑑 according to the hash table that records ⟨𝑠𝑖𝑔(𝑑), 𝑣𝑑, 𝑡𝑠𝑒⟩,
which is always updated whenever 𝑠𝑖𝑔(𝑑) changes. Therefore,
the overall score of 𝑑 would be accurate, which ensures the
correctness of the query results. Note that, although we have
focused our discussion on personalized search, our algorithm
can be easily modified for non-personalized queries.

Index merger with buffers. Besides the query algorithm,
the index merging method in LSII also needs to be slightly
modified to incorporate updates in the buffers. Without loss of
generality, assume that we are to merge two posting lists 𝐿1

and 𝐿2, whose associated buffers are 𝐵1 and 𝐵2, respectively.
We treat 𝐵1 and 𝐵2 as two sorted lists, given that each of
them is indexed by a B-tree. Accordingly, the merger of the
posting lists can be treated as a merger of four sorted list 𝐿1,

488

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

𝐿2, 𝐵1, and 𝐵2, which can be done in linear time with some
bookkeeping efforts to avoid inserting outdated entries into the
merged results.

One natural question is: How would the buffers of the
posting lists affect query and update performance? Apparently,
if each buffer contains a large number of entries, then the query
and update efficiency of LSII would be severely degraded.
Fortunately, this issue is alleviated by the facts that (i) most
microblogs are not referred to by other microgblogs, and (ii)
even if a microblog 𝑑 is referred to by others, the references
are usually made shortly after 𝑑 is posted. For example, recent
research [15] shows that only 29% of the microblogs on
Twitter were referred to by other microblogs; in addition,
92.4% of the references were made within one hour after the
original microblogs are posted. That is, only a small fraction
of microblogs will receive updates in their significance scores,
and most of the updates will concern the microblogs in 𝐼0
(as they have the largest timestamps), for which the updates
can be processed efficiently without being put into a buffer.
Therefore, the number of entries in the buffers of 𝐼1, . . . , 𝐼𝑚
are unlikely to be large, which ensures query efficiency.

VII. CONCURRENCY MANAGEMENT

In the previous sections, we have shown that LSII ensures a
small amortized update cost for each microblog. Nevertheless,
the worst-case update cost for a microblog can still be high,
since the insertion of a microblog may cause mergers of
the inverted indices in LSII. Therefore, if we process both
microblog insertions and queries with a single thread, then
the queries that immediately follow a microblog insertion may
need to wait for an extended period of time, which results
in negative user experience. This section addresses the issue
by presenting a multi-threaded approach that concurrently
processes microblog insertions and queries to reduce system
response time. In what follows, we assume that our system has
three types of threads: a reader thread that processes queries,
a writer thread that handles microblog insertions, and multiple
merger threads that deal with index mergers. Our solution can
be easily extended for the case of multiple reader threads.

When 𝐼0 is NOT full. Let us first consider the simple case
when 𝐼0 is not full. In this case, a microblog insertion would
not trigger any index merger, and hence, we only need to focus
on the interaction between the reader and writer threads. To
coordinate these two threads, we maintain a variable 𝑡𝑠𝑚𝑎𝑥,
which records the timestamp of the last microblog that has
been inserted into LSII. (This approach is also adopted in
EarlyBird [1].) With this variable, the writer thread inserts
a microblog 𝑑 into LSII in a straightforward manner: it first
appends 𝑑 to the relevant posting lists in 𝐼0 (recall that the
posting lists in 𝐼0 are sorted in ascending order of time); after
that, it sets 𝑡𝑠𝑚𝑎𝑥 to the timestamp of 𝑑.

Meanwhile, the reader thread processes any (personalized
or non-personalized) query 𝑞 as follows. It first reads 𝑡𝑠𝑚𝑎𝑥,
and then performs the queries on LSII using the algorithms
presented in the previous sections, with one additional rule:

When it traverses a posting list in 𝐼0, if it encounters a
microblog whose timestamp equals 𝑡𝑠𝑚𝑎𝑥, then the traversal
will be terminated. As such, we ensure that the reader thread
would not read the microblog 𝑑 that is being written by the
writer thread1.

When 𝐼0 is full. Now consider that 𝐼0 is full, in which case
the insertion of a new microblog 𝑑 triggers a merger of 𝐼0 and
𝐼1. The basic idea of our solution for this case is to merge the
indices in a manner that does not block the reader and writer
threads. For this purpose, we create an index 𝐼 ′0 that has the
same structure with 𝐼0 (i.e., each posting list in 𝐼 ′0 is also
sorted in descending order of timestamps), and we also set
size threshold of 𝐼 ′0 to 𝜏0. We refer to 𝐼 ′0 as the shadow of 𝐼0.
Given a microblog 𝑑 to be inserted, the writer thread would put
𝑑 into 𝐼 ′0 (instead of 𝐼0), and then update 𝑡𝑠𝑚𝑎𝑥 accordingly.
In other words, we use 𝐼 ′0 as a buffer to accommodate new
microblogs that arrive during the merger of 𝐼0 and 𝐼1.

To facilitate queries, we only impose shared locks on 𝐼0 and
𝐼1 when the merger is being performed (as will be clarified
shortly). As such, the reader thread can still answer any query
𝑞, just that the query processing is under two additional
conditions: First, all entries in both 𝐼0 and 𝐼 ′0 need to be
examined, so that the new microblogs inserted during the
merger are considered; Second, any traversal on 𝐼 ′0 would
terminate upon visiting a microblog whose timestamp equals
𝑡𝑠𝑚𝑎𝑥, so as to avoid conflicts with the writer thread.

The merging of 𝐼0 and 𝐼1 is handled by a merger thread. It
first creates a new inverted index 𝐼 ′1 that has the same structure
with 𝐼1, i.e., 𝐼 ′1 is a shadow of 𝐼1. After that, it imposes shared
locks on 𝐼0 and 𝐼1, and merges the contents of 𝐼0 and 𝐼1 into
𝐼 ′1. Once the merging process completes, the merger thread
requests exclusive locks on 𝐼0, 𝐼 ′0, and 𝐼1. Upon acquiring the
locks, the merger thread sets 𝐼1 = 𝐼 ′1 and 𝐼0 = 𝐼 ′0, and frees
the space previously allocated to 𝐼0 and 𝐼1. In other words,
the merger uses the shadow index 𝐼 ′1 to buffer the results of
merging 𝐼0 and 𝐼1, so as to allow queries to be performed on
𝐼0 and 𝐼1 during the merging process.

The merger of any other 𝐼𝑖 and 𝐼𝑖+1 (𝑖 ∈ [1,𝑚 − 1])
are also performed by an individual merger thread, in an
almost identical manner. Specifically, the merger thread starts
by creating a shadow index 𝐼 ′𝑖+1. After that, it imposes shared
locks on 𝐼𝑖 and 𝐼𝑖+1, and it merges 𝐼𝑖 and 𝐼𝑖+1 into 𝐼 ′𝑖+1.
During the merging process, the reader thread is allowed to
perform queries using 𝐼𝑖 and 𝐼𝑖+1. Finally, when the merger
completes, the merger thread requests exclusive locks on 𝐼𝑖
and 𝐼𝑖+1, and then it sets 𝐼𝑖+1 = 𝐼 ′𝑖+1 and empties 𝐼𝑖.

When two mergers overlap. It remains to clarify how two
merger threads may interact with each other. Assume that,
when we are about to merge 𝐼𝑖 and 𝐼𝑖+1 (𝑖 ∈ [0,𝑚− 2]), the

1In effect, this will exclude 𝑑 from the query results for 𝑞, even if 𝑑’s
timestamp 𝑡𝑠𝑑 is smaller than 𝑞’s timestamp 𝑡𝑠𝑞 . This deviates from our
problem definition, which requires that all documents with timestamps smaller
than 𝑡𝑠𝑞 must be considered for 𝑞. Nevertheless, such a discrepancy is
acceptable in practice, as the difference between 𝑡𝑠𝑑 and 𝑡𝑠𝑞 is extremely
small (given that inserting 𝑑 into 𝐼0 takes negligible time), and hence, the
two threads can run in parallel without interfering with each other.

489

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

index 𝐼𝑖+1 happens to be full. In that case, we would need to
merge 𝐼𝑖+1 and 𝐼𝑖+2 first, i.e., we need to combine all posting
lists in 𝐼𝑖+1 into 𝐼𝑖+2. After that, we can empty 𝐼𝑖+1 and move
all of 𝐼𝑖’s posting lists into 𝐼𝑖+1. Finally, we can empty 𝐼𝑖.

To parallelize the above two mergers, we create two merger
threads 𝜃1 and 𝜃2. 𝜃2 handles the merger of 𝐼𝑖+1 and 𝐼𝑖+2,
and it proceeds as a normal merger thread. In other words,
𝜃2 would create a shadow index 𝐼 ′𝑖+2, and would merge the
information in 𝐼𝑖+1 and 𝐼𝑖+2 into 𝐼 ′𝑖+2.

At the same time, 𝜃1 creates a shadow index 𝐼 ′𝑖+1, and it
requests a shared lock on 𝐼𝑖. After that, it copies all 𝐼𝑖’s posting
lists into 𝐼 ′𝑖+1. During this process, the reader thread can still
answer any query that involves 𝐼𝑖. Once the moving of posting
lists completes, 𝜃1 checks whether 𝜃2 has finished the merger
of 𝐼𝑖+1 and 𝐼𝑖+2. If 𝜃2 has terminated, then 𝐼𝑖+1 should have
been emptied. In that case, 𝜃1 would impose exclusive locks
on 𝐼𝑖 and 𝐼𝑖+1, after which it would set 𝐼𝑖+1 = 𝐼 ′𝑖+1 and
empty 𝐼𝑖. This completes the merger of 𝐼𝑖 and 𝐼𝑖+1.

On the other hand, if 𝜃2 is still merging 𝐼𝑖+1 and 𝐼𝑖+2

when 𝜃1 finishes moving posting lists into 𝐼 ′𝑖+1, then 𝜃1 would
request an exclusive lock on 𝐼𝑖 only. Upon acquiring the lock,
𝜃1 empties 𝐼𝑖 and makes 𝐼 ′𝑖+1 visible to the reader thread.
That is, whenever the reader thread processes a query, it would
consider the entries in both 𝐼𝑖+1 and 𝐼 ′𝑖+1. After that, when 𝜃2
completes the merger of 𝐼𝑖+1 and 𝐼𝑖+2, it would set 𝐼𝑖+1 =
𝐼 ′𝑖+1, as the posting list previously in 𝐼𝑖+1 has been merged
into 𝐼𝑖+2.

Summary. In summary, our multi-threaded approach uses a
variable 𝑡𝑠𝑚𝑎𝑥 to ensure that the reader and writer threads do
not interfere with each other, and we employ shadow indices
to buffer any updates that occur during index mergers. This
enables LSII to concurrently perform microblog insertions and
queries, which improves system response time. There are only
two circumstances when the reader or writer threads need to
be blocked. First, as explained before, when a merger thread
finishes merging two indices 𝐼𝑖 and 𝐼𝑖+1 into 𝐼 ′𝑖+1, it would
impose exclusive locks on 𝐼𝑖 and 𝐼𝑖+1 to set 𝐼𝑖+1 = 𝐼 ′𝑖+1 and
to empty 𝐼𝑖, during which the reader thread cannot access 𝐼𝑖
and 𝐼𝑖+1. However, this would only block the reader thread
for a tiny period of time, as it takes negligible cost to set
𝐼𝑖+1 = 𝐼 ′𝑖+1 and empty 𝐼𝑖. Note that the writer thread would
not be affected in this case, since it never needs to visit an
index that is involved in a merger.

Second, if the shadow index 𝐼 ′0 becomes full when 𝐼0 is
being merged with 𝐼1, then the writer thread needs to be
suspended until 𝐼0 becomes empty (since 𝐼 ′0 cannot accom-
modate new microblogs any more). The reader thread would
also need to be blocked, so as to ensure that it would not miss
the microblogs that should have been inserted into LSII when
the query arrives. This issue can be alleviated by setting 𝜏0
(i.e., the size threshold of 𝐼 ′0 and 𝐼0) to a reasonably large
value, so that 𝐼 ′0 would not become full during the merger
of 𝐼0 and 𝐼1. In addition, we can also dynamically tune the
value of 𝜏0 at runtime. For example, we may start LSII with a
certain 𝜏0, and whenever we witness that the reader and writer

threads are blocked as 𝐼 ′0 becomes full, then we can double
the value of 𝜏0 and adjust the structure of LSII accordingly, so
as to accommodate more updates in 𝐼 ′0 during the next merger
of 𝐼0 and 𝐼1. On the other hand, if we observe that 𝐼 ′0 is never
more than half-full when 𝐼0 is being merged with 𝐼1, then we
can halve the value of 𝜏0. As such, we can set 𝜏0 to a value
adaptive to the frequency of microblog insertions.

VIII. RELATED WORK

Microblog search is a relatively new research topic that only
starts to attract research interests in recent years. Existing
work on microblog search mainly focuses on three issues:
(i) ranking microblogs with respect to queries [7], [8], [16],
[17], (ii) indexing microblogs for efficient search [1], [2], [18],
and (iii) analyzing the characteristics of microblog data and
queries [4], [15], [19], [20]. Our work addresses the second
issue, and is most related to previous work on the same topic,
i.e., TI [2] and EarlyBird [1] (which have been discussed
extensively in Section I), as well as the method by Yao et
al. [18]. In particular, Yao et al.’s method is designed for
retrieving provenance information from microblogs, such as
the origin of a thread of microblog discussion, the evolvement
of a microblog topic, etc. Although Yao et al. also consider
efficiency issues, their approach cannot be applied for our
problem as we focus on real-time microblog search instead
of provenance retrieval.

As mentioned in Section II, the ranking function used in
our paper is similar to the one adopted by TI [2]. Specifically,
TI’s ranking function is defined as follows:

𝑓 ′(𝑑, 𝑞) = (𝑤1 ⋅ 𝑠𝑖𝑔(𝑑) + 𝑤2 ⋅ 𝑠𝑖𝑚(𝑑, 𝑞)) /(𝑡𝑠𝑞 − 𝑡𝑠𝑑),
where 𝑠𝑖𝑚(𝑑, 𝑞) is as defined in Equation 2, and 𝑠𝑖𝑔(𝑑) is
computed as a weighted sum of two factors: (i) the popularity
of the user who posted 𝑑, as inferred from the social net-
work associated with the microblogging service, and (ii) the
popularity of the topic thread that 𝑑 belongs to, as inferred
from the microblogs that refer to 𝑑 and the microblogs that
𝑑 refers to. Compared to TI’s ranking function, our function
provides more flexibility in modeling how fast the freshness
of a microblog degrades with time.

Finally, our LSII structure borrows ideas from the Log-
Structured Merge-tree (LSM-tree) [5]. In particular, The LSM-
tree also contains a sequence of indices with exponentially
increasing sizes, and it is designed to support efficient one-
dimensional search under frequent tuple updates. Although
LSM-tree has been adopted for various other applications (e.g.,
[21], [22]), to the best of our knowledge, we are the first to
apply it for microblog search.

IX. EXPERIMENTS

A. Experimental Settings

We experimentally compare LSII with two methods: (i)
the append-only approach in Section III-A, which minimizes
update cost but incurs significant query overhead; (ii) the TPL
approach in Section III-B (with a B-tree implementation),
which improves over the append-only approach in terms of

490

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

Append-Only TPL LSII

5
10
20
40
80

160

210 213 216 219 222

τ0

processing time (sec)

total
query

update

Fig. 4. LSII’s performance vs. 𝜏0

100

101

102

103

10 20 30 40 50 60
kq

total processing time (sec)

Fig. 5. Processing time vs. 𝑘𝑞

100

101

102

103

10 20 30 40 50 60
kq

total query time (sec)

Fig. 6. Query time vs. 𝑘𝑞

100

101

102

103

104

1 2 4 8 40
nq (× 10000)

total processing time (sec)

Fig. 7. Processing time vs. 𝑛𝑞

TABLE II
DEFAULT VALUES OF EXPERIMENTAL PARAMETERS

Parameter Description

𝑤1 = 2/7,
𝑤2 = 𝑤3 = 5/14

the weights used in the ranking function 𝑓(𝑑, 𝑞)
(See Eqn. 1)

𝑛𝑞 = 20, 000 the number of queries

𝑘𝑞 = 10 the number of microblogs asked for by each query

∣𝑈 ∣ = 40 the size of the user set associated with each per-
sonalized search

query performance. We use a dataset that contains 10.4 million
microblogs posted by 260 thousand users on Twitter from
March 26, 2012 to April 8, 2012. Totally, there are 2.6 million
distinct terms in the dataset (excluding stop words), and the
average number of terms in each microblog is 9.

We sort the microblogs by the time that are posted, and we
divide the sorted sequence into two subsequences 𝑆1 and 𝑆2,
such that the 𝑆1 contains the first 10 million microblogs in the
sorted sequence, and 𝑆2 contains the rest. In each experiment,
we first insert the microblogs in 𝑆1 into each indexing struc-
ture, after which we measure the time required by the structure
to process a mixed query and update stream generated from
𝑆2. In other words, we evaluate the performance of an index
after a sufficient number of microblogs have been inserted,
i.e., after the index has become relatively stable.

The mixed query and update stream is generated by in-
serting queries into random positions in 𝑆2. For experiments
on non-personalized queries, each query inserted into 𝑆2 is
created in a manner similar to previous work [2]. In particular,
each query contains a number 𝑘 of terms that are randomly
selected from the 50, 000 terms in the dataset with the highest
tf-idf scores [10]. The value of 𝑘 is a random variable that
equals 1, 2, 3, 4, 5 with probabilities 50%, 25%, 15%, 7.5%,
and 2.5%, respectively.

For experiments on personalized queries, each query added
into 𝑆2 is generated based on a non-personalized queries
explained above. Specifically, given a non-personalized query
𝑞, we transform it into a personalized query, by associating 𝑞
with a set 𝑈 of users. 50% of the users in 𝑈 are randomly
selected, while the other 50% are randomly chosen from the
set of users who have posted some microblogs that contains
at least one term in 𝑞. (This ensures that the terms in 𝑞 are
not completely irrelevant to the users in 𝑈 .) The cardinality
of 𝑈 is varied in our experiments.

The number of queries inserted into 𝑆2 is controlled by a

parameter 𝑛𝑞 . We only consider the case when 𝑛𝑞 is smaller
than 0.4 million (i.e., the number of microblogs in 𝑆2), as
users of microblogging services usually post microblogs more
frequently than submitting queries. All of our experiments are
performed on a Windows machine with 48GB of RAM and
a Intel Xeon 6-core CPU running at 2.4GHz. Table II shows
the parameters of our experiments and their default values.

B. Experimental Results for Non-Personalized Queries

In the first set of experiments, we study the performance of
all methods in processing a mixed stream of non-personalized
queries and updates in a single-threaded environment. In par-
ticular, we first investigate the effect of 𝜏0 on the performance
of LSII. (Recall that 𝜏0 is the threshold on the number of
microblogs that can be indexed by the index 𝐼0 in LSII.)
Figure 4 shows the time required by LSII to process a mixed
stream, with 𝜏0 varying from 210 to 222. When 𝜏0 is small,
the processing overhead of LSII is mainly due to updates,
and it decreases with the increase of 𝜏0 until 𝜏0 = 219. After
that, LSII’s computation cost is mostly due to queries, and
it increases monotonically with 𝜏0. This is consistent with
our analysis in Section IV-C that (i) an excessively small 𝜏0
incurs substantial update overheads without reducing query
cost, and (ii) too large a 𝜏0 would result in significant query
costs, leading to degraded overall performance. Based on this
result, we set 𝜏0 = 219 in the rest of our experiments.

Figure 5 (resp. Figure 6) illustrates the total processing
time (resp. total query time) of all three indexing methods,
with 𝑘𝑞 (i.e., the number of microblogs that each query asks
for) varying from 10 to 60. The append-only approach entails
enormous overhead, since (i) it only maintains posting lists
where entries are sorted by their timestamps, and hence (ii)
it needs to scan the entries in all relevant posting lists during
query processing. TPL considerably improves the append-only
approach, as the three posting lists that it facilitates efficient
query processing using the TA algorithm. Nevertheless, as
discussed in Section III-B, the posting list entries in TPL are
usually located in non-contiguous memory space, which is not
ideal for the efficiency of sequential scan performed by TA.
This explains why TPL is consistently outperformed by LSII
by a large margin. In particular, LSII’s running time is only
one-fourth of TPL’s.

Figure 7 (resp. Figure 8) shows the total computation time
(resp. total query time) of all methods as a function of 𝑛𝑞 , the
number of queries in the mixed stream of queries and updates.

491

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

Append-Only TPL LSII

100

101

102

103

104

1 2 4 8 40
nq (× 10000)

total query time (sec)

Fig. 8. Query time vs. 𝑛𝑞

100

101

102

103

1/7 2/7 3/7 4/7 5/7 6/7
w1

total processing time (sec)

Fig. 9. Processing time vs. 𝑤1

100

101

102

103

1/7 2/7 3/7 4/7 5/7 6/7
w2

total processing time (sec)

Fig. 10. Processing time vs. 𝑤2

100

101

102

103

1/7 2/7 3/7 4/7 5/7 6/7
w3

total processing time (sec)

Fig. 11. Processing time vs. 𝑤3

Append-Only TPL LSII LSII-NoUSL

10-2
10-1
100
101
102
103
104

1 40 80 160 320

|U|

total query time (sec)

Fig. 12. Query time vs. ∣𝑈 ∣

100

101

102

103

10 20 30 40 50 60
kq

total query time (sec)

Fig. 13. Query time vs. 𝑘𝑞

100

101

102

103

104

1 2 4 8 40
nq (× 10000)

total query time (sec)

Fig. 14. Query time vs. 𝑛𝑞

100

101

102

103

104

1 2 4 8 40
nq (× 10000)

total processing time (sec)

Fig. 15. Processing time vs. 𝑛𝑞

(Recall that the number of updates are fixed to 0.4 million.)
Again, LSII incurs much smaller overhead than the other two
techniques in all cases, which demonstrates that LSII strikes
a better balance between query and update costs. The running
time of all methods increases with 𝑛𝑞 , since a larger number
of queries entail a higher computation cost.

In the next experiment, we vary 𝑤1 from 1/7 to 6/7, setting
𝑤2 = 𝑤3 = (1 − 𝑤1)/2. Figure 9 illustrates the processing
cost of each method as a function of 𝑤1. Observe that the
relative performance of each method remains the same as in
the previous experiments. This shows that the efficiency of
LSII is not sensitive to the value of 𝑤1. Figure 10 and 11
illustrate the results of two experiments where we vary 𝑤2 and
𝑤3, respectively. Evidently, neither 𝑤2 nor 𝑤3 has a significant
impact on the performance of LSII.

C. Experimental Results for Personalized Queries

In the second set of experiments, we focus on the processing
of personalized queries in a single-threaded environment.
Figure 12 illustrates the time required by each algorithm to
process the queries in the mixed query and update stream,
varying ∣𝑈 ∣, the number of selected users associated with
each query. (The update costs are omitted from the figure,
so as to facilitate a clear comparison of query overheads.) In
addition to TPL, LSII, and the append-only approach, we also
include LSII-NoUSL, a revised version of LSII that does not
incorporate user-specific links. Observe that LSII significantly
outperforms all other methods, which shows the effectiveness
of user-specific links in accelerating user-specific queries.
On the other hand, LSII-NoUSL performs no better than
the append-only approach – this indicates that, without user-
specific links, LSII needs to examine a large number of non-
relevant entries in its posting lists, which entails substantial
overheads. Interestingly, the running time of TPL is even

higher than that of the append-only approach. The reason is
that, for each term 𝑡 in the query, TPL needs to traverse three
posting lists, while the append-only approach only needs to
scan one posting list for each term. For user-specific queries,
TPL tends to examine a large portion of the posting lists before
it can terminate, and hence, it can be inferior to the append-
only approach in terms of query efficiency.

Figures 13 plots the query time of each method as a function
of 𝑘𝑞 . Again, LSII consistently incurs a smaller query cost
than any other method does. The running time of LSII, LSII-
NoUSL, and TPL increases with 𝑘𝑞 , since a larger 𝑘𝑞 requires
each of those methods to examine more posting list entries.
In contrast, the query time of the append-only approach does
not change with 𝑘𝑞 , since it scans all entries in the relevant
posting lists, regardless of the value of 𝑘𝑞 . Figure 14 repeats a
similar experiment by varying the number of queries 𝑛𝑞 , while
Figure 15 illustrates the total processing time of each method
as a function of 𝑛𝑞 . The relative performance of each method
remains the same.

D. Experimental Results for the Multi-threaded Approach

In the final set of experiments, we compare the single-
threaded and multi-threaded implementations of LSII in terms
of efficiency. For the multi-threaded implementation, we adopt
one reader thread, one writer thread, and multiple merger
threads. For convenience, we use LSII+ (LSII) to refer to the
multi-threaded (single-threaded) implementation. Figure 16
illustrates total time required by LSII and LSII+ in processing
a mixed stream of non-personalized queries and updates,
with 𝜏0 varying. Observe that the processing time of LSII+

is considerably smaller than that of LSII, when 𝜏0 is not
excessively large. On the other hand, when 𝜏0 is large, both
LSII+ and LSII could entail significant query overhead, and
hence, the performance gap between LSII+ and LSII becomes

492

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

LSII LSII+

5
10
20
40
80

160

210 213 216 219 222

τ0

total processing time (sec)

Fig. 16. Processing time vs. 𝜏0

5
10
20
40
80

160

210 213 216 219 222

τ0

processing time (sec)
total

query
update

Fig. 17. LSII+’s performance vs. 𝜏0

 4
 6
 8

 10
 12
 14
 16
 18

10 20 30 40 50 60
kq

total processing time (sec)

Fig. 18. Processing time vs. 𝑘𝑞

100

101

102

1 2 4 8 40
nq (× 10000)

total processing time (sec)

Fig. 19. Processing time vs. 𝑛𝑞

smaller. Figure 17 illustrates the query, update, and total costs
of LSII+ when 𝜏0 varies. Observe that the total overhead of
LSII+ roughly equals the larger one of its query and update
overheads, due to the effect of multi-threading.

Figure 18 plots the processing time of LSII+ and LSII as a
function of 𝑘𝑞 . Observe that LSII+ consistently outperforms
LSII. Finally, Figure 19 illustrates the running time of LSII+

and LSII, with a varying 𝑛𝑞 (i.e., the number of queries in the
mixed query and update stream). Notice that, as 𝑛𝑞 increases,
the performance of LSII+ and LSII becomes similar. This is
because, when 𝑛𝑞 is large, the update cost in LSII+ and LSII
becomes relatively insignificant, and the query cost becomes
the dominating factor. Since LSII+ has only one reader thread,
its query performance is not better than LSII, and hence, the
running time of the two methods is comparable.

X. CONCLUSION

In this paper, we study the problem of real-time search on
microblogs under frequent updates. While previous work on
this problem achieves efficiency at the cost of query accuracy,
we show that it is possible to retrieve exact query results
without incurring significant query and update overheads. The
core of our solution is the Log-Structured Inverted Indices
(LSII), which maintains a sequence of inverted indices with
exponentially increasing sizes, such that new microblogs are
(i) first inserted into the smallest index and (ii) later moved
into the larger indices in a batch manner. The batch insertion
mechanism leads to a small amortize update cost for each new
microblog, without significantly degrading query performance.
We present a comprehensive study on the design of LSII, and
we demonstrate its efficiency with extensive experiments.

There are several interesting directions for future work.
First, our paper has assumed all microblog insertions and
queries are handled by a single sever. We plan to investigate
how our solution can be extended to the case of multiple
servers. Second, it is interesting to explore how the posting
list of LSII can be compressed without severely degrading
query and update performance. Third, we would also like to
extend LSII for more advanced types of queries, e.g., retrieval
of provenance information from microblogs.

XI. ACKNOWLEDGEMENT

This work was supported by the Nanyang Technological
University under SUG Grant M58020016, by the Agency for
Science, Technology, and Research (Singapore) under SERC

Grant 102-158-0074 and Grant 112-172-0010, and by the Sun
Yet-Sen University under Natural Science Youths Funding
Grant 62000-4103033.

REFERENCES

[1] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,
“Earlybird: Real-time search at twitter,” in ICDE, 2012, pp. 1360–1369.

[2] C. Chen, F. Li, B. C. Ooi, and S. Wu, “TI: An efficient indexing
mechanism for real-time search on tweets,” in SIGMOD, 2011, pp. 649–
660.

[3] E. Adar, “User 4xxxxx9: Anonymizing query logs,” in Workshop on
Query Log Analysis at the 16th World Wide Web Conference, 2007.

[4] J. Lin and G. Mishne, “A study of “churn” in tweets and real-time search
queries,” in ICWSM, 2012.

[5] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385,
1996.

[6] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.

[7] R. Nagmoti, A. Teredesai, and M. D. Cock, “Ranking approaches for
microblog search,” in Web Intelligence, 2010, pp. 153–157.

[8] A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner,
C. Liao, and F. Diaz, “Towards recency ranking in web search,” in
WSDM, 2010, pp. 11–20.

[9] G. M. D. Corso, A. Gulli, and F. Romani, “Ranking a stream of news,”
in WWW, 2005, pp. 97–106.

[10] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[11] (2012) Twitter developer documentation. [Online]. Available:
https://dev.twitter.com/docs/using-search

[12] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of Computer and System Sciences, vol. 66, pp.
614–656, 2003.

[13] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in WWW, 2009, pp. 401–
410.

[14] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted
list caching in search engines,” in WWW, 2008, pp. 387–396.

[15] (2010) Replies and retweets on twitter. [Online]. Available:
http://www.sysomos.com/insidetwitter/engagement/

[16] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum, “An empirical
study on learning to rank of tweets,” in COLING, 2010, pp. 295–303.

[17] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: finding topic-
sensitive influential twitterers,” in WSDM, 2010, pp. 261–270.

[18] J. Yao, B. Cui, Z. Xue, and Q. Liu, “Provenance-based indexing support
in micro-blog platforms,” in ICDE, 2012, pp. 2183–2187.

[19] J. Teevan, D. Ramage, and M. R. Morris, “#twittersearch: a comparison
of microblog search and web search,” in WSDM, 2011, pp. 35–44.

[20] A. Java, X. Song, T. Finin, and B. L. Tseng, “Why we twitter: An
analysis of a microblogging community,” in WebKDD/SNA-KDD, 2007,
pp. 118–138.

[21] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kan-
neganti, “Incremental organization for data recording and warehousing,”
in VLDB, 1997, pp. 16–25.

[22] Y. Li, B. He, J. Yang, Q. Luo, and K. Yi, “Tree indexing on solid state
drives,” PVLDB, vol. 3, no. 1, pp. 1195–1206, 2010.

493

Authorized licensed use limited to: Tencent. Downloaded on February 22,2023 at 04:48:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

