
From Anchors to Answers: A Novel Node Tokenizer for
Integrating Graph Structure into Large Language Models

Yanbiao Ji
∗

Shanghai Jiao Tong

University

Shanghai, China

jiyanbiao@sjtu.edu.cn

Chang Liu
∗†

Shanghai Jiao Tong

University

Shanghai, China

isonomialiu@sjtu.edu.cn

Xin Chen

The Chinese University of

Hong Kong

Hong Kong, China

xchen@se.cuhk.edu.hk

Dan Luo

Lehigh University

Bethlehem, PA, USA

danluo.ir@gmail.com

Mei Li

Shanghai Jiao Tong

University

Shanghai, China

mei-li@sjtu.edu.cn

Yue Ding
‡

Shanghai Jiao Tong

University

Shanghai, China

dingyue@sjtu.edu.cn

Wenqing Lin
‡

Tencent

Shenzhen, China

edwlin@tencent.com

Hongtao Lu

Shanghai Jiao Tong

University

Shanghai, China

htlu@sjtu.edu.cn

Abstract
Enabling large language models (LLMs) to effectively process and

reason with graph-structured data remains a significant challenge

despite their remarkable success in natural language tasks. Current

approaches either convert graph structures into verbose textual

descriptions, consuming substantial computational resources, or

employ complex graph neural networks as tokenizers, which intro-

duce significant training overhead. To bridge this gap, we present

NT-LLM, a novel framework with an anchor-based positional en-

coding scheme for graph representation. Our approach strategi-

cally selects reference nodes as anchors and encodes each node’s

position relative to these anchors, capturing essential topological

information without the computational burden of existing methods.

Notably, we identify and address a fundamental issue: the inherent

misalignment between discrete hop-based distances in graphs and

continuous distances in embedding spaces. By implementing a rank-

preserving objective for positional encoding pretraining, NT-LLM

achieves superior performance across diverse graph tasks ranging

from basic structural analysis to complex reasoning scenarios. Our

comprehensive evaluation demonstrates that this lightweight yet

powerful approach effectively enhances LLMs’ ability to under-

stand and reason with graph-structured information, offering an

efficient solution for graph-based applications of language models.

CCS Concepts
• Information systems→ Data mining.

∗
Both authors contributed equally to this research.

†
This work was done while Chang Liu was an intern at Tencent.

‡
Corresponding authors: Yue Ding and Wenqing Lin.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761167

Keywords
Large Language Models, Positional Encoding, Knowledge Graphs

ACM Reference Format:
Yanbiao Ji, Chang Liu, Xin Chen, Dan Luo, Mei Li, Yue Ding, Wenqing Lin,

and Hongtao Lu. 2025. From Anchors to Answers: A Novel Node Tokenizer

for Integrating Graph Structure into Large Language Models. In Proceedings
of the 34th ACM International Conference on Information and Knowledge
Management (CIKM ’25), November 10–14, 2025, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3746252.3761167

1 Introduction
In recent years, Large LanguageModels (LLMs), such as LLaMA [59]

and GPT [45], have revolutionized artificial intelligence. They have

demonstrated powerful capabilities in solving various natural lan-

guage processing (NLP) tasks, including question answering [36,

53], text generation [2, 50], and document understanding [27, 68].

While LLMs have primarily been applied to text data, an increas-

ing number of applications now involve text data intertwined with

structured information represented as graphs. For instance, in social

networks, nodes represent entities, while edges capture the relation-

ships between them. Both nodes and edges can also be associated

with textual descriptions that detail their attributes. Since LLMs are

primarily designed to model text in a sequential format, applying

them to graph-related tasks presents new challenges, particularly

in encoding the structural information of graphs [15, 35].

While many studies [28, 40, 65] have attempted to combine lan-

guage modeling and graph representation learning with medium-

sized transformer models such as BERT [12] and RoBERTa [41],

efficient graph reasoning with LLMs of billions of parameters re-

mains challenging. To leverage the strength of LLMs for graph struc-

ture understanding, existing efforts can be categorized into two

groups [25, 52]: (1)Graph Textual Conversion, which translates a
graph’s structure into a descriptive textual representation [9, 26, 56].

These studies typically convert the local context of a target node

into textual descriptions that incorporate relevant structural infor-

mation, and then utilize large language models to predict properties

such as node labels and the presence of links. The underlying as-

sumption is that the powerful capabilities of LLMs can generalize

to interpret graph-structured knowledge through textual input.

1124

https://doi.org/10.1145/3746252.3761167
https://doi.org/10.1145/3746252.3761167
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761167&domain=pdf&date_stamp=2025-11-10


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yanbiao Ji et al.

However, such descriptions typically require a large number of

tokens to describe the graph structure, greatly increasing the cost

of LLM inference. (2) Graph Node Tokenizer, which generates

node embeddings for each node and then projects these embeddings

into LLM token space [38, 57, 58]. With the utilization of powerful

Graph Neural Networks (GNNs) as graph node tokenizers, these

methods effectively reduce the inference cost by representing the

graph structure with compact node tokens. However, the graph rep-

resentation learning process often brings heavy training overhead.

Achieving scalability comparable to LLMs requires an expressive

GNN (e.g., with elaborate graph convolution paradigms) of similar

scale, which introduces additional computational overhead.

To enable effective and efficient LLM reasoning on graphs, a

graph encoding paradigm that preserves rich graph structural infor-

mation without introducing heavy training or inference overhead

is needed. This naturally aligns with the motivation of graph po-

sitional encoding, which introduces extra embeddings containing

structural information to disambiguate nodes and enhance graph

representation learning during the training of GNNs and graph

transformers [7, 14, 49]. In this paper, we introduce an anchor-based

graph positional encoding scheme for graph node tokenization, and

investigate its integration with LLMs across various graph-related

tasks. The core of our method is the strategic selection of key nodes,

referred to as anchors, which serve as reference points for encoding

the graph topology. Each node is then represented based on its rel-

ative distance to these anchors, effectively capturing the structural

information of the graph. Furthermore, we identify the issue of

misalignment between the non-Euclidean graph space (hop-based

discrete distance) and the Euclidean embedding space (continuous

Euclidean distance). A rank-preserving pretraining objective is pro-

posed to project the positional embedding into Euclidean space. We

then apply task-specific tuning procedures using prompt tuning

and LoRA techniques to facilitate better structural understanding

of LLMs for downstream tasks. Extensive empirical studies demon-

strate that NT-LLM substantially improves LLM performance across

a diverse range of graph-related tasks, from basic graph analysis to

complex reasoning. Our main contributions are as follows:

• We introduce a position-anchored graph encoding approach for

LLMs that efficiently preserves crucial structural information

while reducing the computational complexity associated with

commonly used graph encoding methods.

• We identify and address the issue of misalignment between the

non-Euclidean graph space and the Euclidean embedding space,

which hinders the effectiveness of graph positional embedding

in graph reasoning with LLMs.

• We conduct an extensive empirical evaluation on multiple graph

benchmarks, covering a wide range of task complexities and

graph types. Our results provide insights into the performance

and generalizability of NT-LLM, highlighting its potential for

adoption in various graph learning scenarios.

2 Related Work
2.1 Graph Positional Encoding
Graph Neural Networks (GNNs) have significantly advanced graph

representation learning by enabling the extraction of meaningful

embeddings from graph-structured data through message-passing

mechanisms [4, 5, 30, 44, 61]. However, standard GNN architec-

tures often struggle to differentiate among nodes with similar local

structures but different positions within the global graph topology.

Graph positional encoding addresses this limitation by enhancing

node representations with positional information, allowing the

capture of important structural features.

Several approaches have been developed to encode positional

information in graphs. Laplacian eigenmaps [6, 7] utilize the eigen-

vectors of the graph Laplacian matrix for this purpose. In contrast,

random walk encodings [8, 48, 69] capture structural information

by simulating randomwalks on the graph. This method encodes the

co-occurrence probabilities of nodes during these walks, thereby

embedding nodes with similar neighborhoods closer in the em-

bedding space. Rx‘ecently, researchers have introduced Distance

Encoding [13, 33, 49], which incorporates structural information

by encoding the shortest path distances between nodes. Further-

more, Random Feature methods [1, 14] have been developed to

approximate positional encodings using learnable or predefined

random feature maps. To provide a comprehensive overview of

these approaches, Table 1 presents a detailed comparison of various

graph positional encoding methods.

2.2 LLMs in Graph-Related Tasks
The rapid advancement in LLMs have led to their successful appli-

cation across various domains, leveraging their powerful sequence

modeling capabilities [37, 39, 62]. In recent years, there has been a

growing interest in applying LLMs to graph-related tasks, aiming

to harness their ability to capture long-range dependencies and

perform complex reasoning.

Initial efforts focused on directly feeding textual descriptions of

graphs into LLMs to tackle tasks such as node classification and

link prediction [18, 24]. While these methods demonstrated the

potential of LLMs in understanding graph data, they faced signifi-

cant scalability challenges due to the complexity of constructing

comprehensive prompts and the loss of crucial structural informa-

tion during the graph-to-text conversion process. To address these

limitations, subsequent research has explored the integration of

Graph Neural Networks (GNNs) with LLMs to better leverage the

strengths of both paradigms [20, 23, 57]. One common approach in-

volves using GNNs to generate structure-aware embeddings, which

are then fed into LLMs for downstream tasks [57, 58]. More ad-

vanced techniques have delved into model fusion training [70],

model alignment [34, 63], and the development of LLM agents

specifically designed to handle graph data [10, 43].

3 Preliminary
Textual Graphs. A textual graph is a graph in which nodes and

edges are associated with textual attributes. Formally, it is defined

as G = (V, E, {T𝑣}𝑣∈V , {T𝑒 }𝑒∈E ), whereV and E represent the

sets of nodes and edges, respectively. Here, T𝑣 and T𝑒 denote the
textual attributes corresponding to each node and edge, which are

usually represented by natural language descriptions.
1

Text Encoding via Language Models. Language Models (LMs)

have proven to be highly effective at encoding textual attributes

1
In this work, we assume that the distance between two adjacent nodes is fixed at 1.

The study of weighted graphs, where edge distances may vary, is left for future work.

1125



From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 1: Comparative analysis of graph positional encoding techniques, including our proposed method.

Laplacian Eigenmap [7] DeepWalk [48] PGNN [66] HPLC [29] RFP [14] Ours

Encoding Scheme eigenvectors random walk distance distance, eigenvectors random feature distance

Local Structure ✓ ✓ ✓ ✓ ✓ ✓
Global Position × × ✓ ✓ × ✓
Euclidean Space ✓ ✓ × ✓ ✓ ✓
Time Complexity 𝑂 ( |V |3 ) 𝑂 ( | E | ) 𝑂 ( |V |2𝑙𝑜𝑔2 ( |V | ) ) 𝑂 ( | E |𝑙𝑜𝑔 ( |V | ) + |V |𝑙𝑜𝑔2 ( |V | ) ) - 𝑂 ( |V |2 + |V | | E | )

in graphs, producing embeddings that capture rich semantic infor-

mation. For a given textual attribute 𝑇𝑖 associated with a node or

edge 𝑖 , an LM encodes this attribute into an embedding vector as

follows:

x𝑖 = LM(𝑇𝑖 ) ∈ R𝑘 . (1)

Prompt Tuning for LLMs. LLMs are trained on vast corpora of

textual data, demonstrating emergent capabilities that facilitate ad-

vanced semantic understanding and exceptional task generalization.

Formally, an LLM parameterized by 𝜃 takes as input a sequence

of tokens X = {x1, x2, . . . , x𝑛} along with a task prompt P, and
generates an output sequence Y = {y1, y2, . . . , y𝑟 }. The probability
distribution of the output sequence, conditioned on the concate-

nated input sequence and prompt [P;X], is expressed as:

𝑝𝜃 (Y| [P;X]) =
𝑟∏
𝑖=1

𝑝𝜃 (y𝑖 |y<𝑖 , [P;X]), (2)

where y<𝑖 represents the prefix of sequence y up to position 𝑖 − 1,
and 𝑝𝜃 (y𝑖 |y<𝑖 , [P;X]) denotes the probability of generating token

y𝑖 given the preceding tokens y<𝑖 and the input [P;X].
Prompt tuning [32] is an efficient technique for adapting LLMs

to specific tasks without modifying the model’s parameters. This

technique keeps the pretrained LLM frozen, and optimizes a small

set of continuous prompt embeddings {e𝑖 }𝑛𝑖=1, where 𝑛 is the num-

ber of prompt tokens. These prompts are generally initialized either

randomly or using the embeddings of specific tokens, and are sub-

sequently optimized throughout the training process. Formally, the

prompt embeddings can be represented as:

E = [e1, e2, ..., e𝑛]𝑇 , (3)

where the dimension of the embedding space is 𝑑 , and E ∈ R𝑛×𝑑 .
The prompt embeddings can be generated by a small trainable

mapping network Φ:
E = Φ(X), (4)

where X represents the input embeddings to be transformed. This

allows for more flexible and expressive prompt representations.

The generation process with prompt tuning can be represented as

follows:

𝑝𝜃,Φ (Y| [P;X]) =
𝑟∏
𝑖=1

𝑝𝜃,Φ (y𝑖 |y<𝑖 , [P;X]), (5)

where 𝜃 represents the frozen parameters of the pretrained LLM, Φ
is the learnable prompt mapping network, P is the prompt, X is the

input sequence, and Y = {y1, y2, ..., y𝑟 } is the output sequence.

4 Methodology
WeproposeNT-LLM,which can seamlessly integrate graph-structure

knowledge with LLMs through two key components: Graph Node
Tokenizer and Task-Specific LLM Tuning. The node tokenizer

leverages carefully selected anchor nodes to encode the spatial posi-

tion of each node, and positional embedding pretraining to preserve

geometric relationships between nodes. The task-specific LLM tun-

ing integrates our node position embedding with prompt tuning

and low-rank adaptation, which allows LLMs to effectively leverage

both textual and graph-based information. Figure 1 illustrates the

overall framework of NT-LLM.

4.1 Graph Node Tokenizer
In large language models, it is straightforward to inject information

about the relative or absolute position of tokens in a sequence

via their index. However, this approach is not feasible for graphs

due to two key differences. First, graphs do not have an inherent
linear ordering of nodes, unlike sequences, where tokens follow

a clear order. Nodes in a graph are interconnected in a complex,

multidimensional structure, where relationships are defined by

edges, and there is no natural start or end. Second, the neighborhood
of each node can vary significantly in size and shape, which makes

the concept of a relative or absolute “position” less meaningful. To

address this challenge, we propose a novel graph node tokenizer,

which consists of three key steps: anchor node identification, node

encoding, and Euclidean projection.

4.1.1 Anchor Node Identification. Prior works [11, 66] have demon-

strated that using anchor nodes can well capture the position of a

given node with respect to all other nodes in a graph. In particu-

lar, the position of a node can be described in terms of its relative

distance (e.g., shortest path distance) to these anchor nodes. For effi-

cient identification of anchor nodes, we implement a greedy anchor

selection algorithm with a coverage ratio threshold. The details of

this greedy selection procedure are shown in Algorithm 1. Given a

coverage ratio 𝐶𝑅 and coverage radius 𝑐 , we start with an empty

set A of anchor nodes and an empty set 𝑁𝑐𝑜𝑣𝑒𝑟 of covered nodes

(Line 1). Here, we define that a node 𝑢 is covered by a node 𝑣 only

if 𝑢 is in the 𝑐-hop subgraph of node 𝑣 ; otherwise, 𝑢 is considered

uncovered by 𝑣 . Then, we iteratively select a new anchor node that

covers the maximum set of uncovered nodes in its 𝑐-hop subgraph

𝑁𝑐 (𝑣) (Line 3) and add these covered nodes to 𝑁𝑐𝑜𝑣𝑒𝑟 (Line 8) until

the size of 𝑁𝑐𝑜𝑣𝑒𝑟 is no less than 𝐶𝑅 ∗ |V| (Line 2).
The identified anchor nodes enable us to provide a unique node

description for other nodes in terms of their relative distance, cap-

turing both global and local structures within the graph.

4.1.2 Node Encoding. Given the identified anchor nodes A =

{𝑎1, 𝑎2, . . . , 𝑎𝐾 }, we encode the position of each node 𝑣 with re-

spect to these anchors:

ˆd𝑣 = (𝑑1, 𝑑2, . . . , 𝑑𝐾 ), (6)

𝑑𝑖 = dist(𝑣, 𝑎𝑖 ), ∀𝑖 ∈ {1, . . . , 𝐾}, (7)

1126



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yanbiao Ji et al.

Anchor
Identification

Node Euclidean Graph、
Encoding Projection Tokenizer O Target

Node

Anchor
Node

今
Task Instructions

Classify this node into
given categories.

Task Loss
Node Tokens

Language
Response

个

Node Textual
Descriptions

Large Language Model LoRA

Ranking

Figure 1: Overview of our proposed NT-LLM approach. It consists of two steps: (1) Graph Tokenizer: We select key nodes as
anchors with a greedy algorithm and compute relative distances between nodes and these anchors to encode the graph structure.
The relative distances are then projected into a continuous Euclidean space while preserving the partial ordering of node
distances. (2) Task Tuning: We integrate the pretrained embeddings with a large language model using LoRA for task-specific
fine-tuning of the LLM, enhancing the performance of downstream graph understanding tasks.

Algorithm 1 Greedy Algorithm for Anchor Node Selection

Require: Graph 𝐺 (V, E), target coverage ratio 𝐶𝑅, coverage ra-
dius 𝑐

Ensure: Set of anchor nodes A
1: Initialize A ← ∅, 𝑁𝑐𝑜𝑣𝑒𝑟 ← ∅
2: while |𝑁𝑐𝑜𝑣𝑒𝑟 | < 𝐶𝑅 ∗ |V| do
3: 𝑎𝑛𝑐ℎ𝑜𝑟 ← argmax𝑣∈V\A |𝑁𝑐 (𝑣) \ 𝑁𝑐𝑜𝑣𝑒𝑟 |
4: if |𝑁𝑐 (𝑎𝑛𝑐ℎ𝑜𝑟 ) \ 𝑁𝑐𝑜𝑣𝑒𝑟 | = 0 then
5: break
6: end if
7: A ← A ∪ {𝑎𝑛𝑐ℎ𝑜𝑟 }
8: 𝑁𝑐𝑜𝑣𝑒𝑟 ← 𝑁𝑐𝑜𝑣𝑒𝑟 ∪ 𝑁𝑐 (𝑎𝑛𝑐ℎ𝑜𝑟 )
9: end while
10: return A

where dist(𝑣, 𝑎𝑖 ) denotes the number of hops in the shortest path

between node 𝑣 and anchor node 𝑎𝑖 .

Utilizing relative distance, we can approximate the shortest dis-

tance between any two nodes 𝑢 and 𝑣 in the graph defined as:

ˆ𝑑 (𝑢, 𝑣) := min

𝑘∈{1,...,𝐾 }

(
ˆd𝑢 [𝑘] + ˆd𝑣 [𝑘]

)
, (8)

where
ˆd𝑢 [𝑘] means the 𝑘-th element of

ˆd𝑢 . This approximation

estimates the distance by identifying the anchor node that provides

the minimal combined distance between 𝑢 and 𝑣 .

Note that our approximated shortest path distance may not be

the actual shortest path distance. However,
ˆ𝑑 (𝑢, 𝑣) actually serves

as an upper bound for the true shortest path distance between 𝑢

and 𝑣 . More formally, the error between the estimated distance and

real distance is bounded by the parameters 𝑐 and 𝐶𝑅:

Lemma 4.1. Given any two nodes 𝑢, 𝑣 from a graph, the error of
the estimated shortest path distance can be bounded by 2𝑐 with a
probability no smaller than 1 − (1 −𝐶𝑅)2, where 𝑐 is the coverage
radius and 𝐶𝑅 is the coverage ratio.

PROOF. Given node pair 𝑢, 𝑣 from graph and a set of anchor

nodes A = {𝑎1, 𝑎2, . . . , 𝑎𝐾 }, assume 𝑢 is covered by an anchor

node, denoted as 𝑎∗, then the shortest path distance between them

𝑑 (𝑢, 𝑎∗) ≤ 𝑐 . Without loss of generality, we assume 𝑑 (𝑢, 𝑎∗) <

𝑑 (𝑎∗, 𝑣). Note that the following error bound still holds if 𝑑 (𝑢, 𝑎∗) >
𝑑 (𝑎∗, 𝑣). The error of the estimated shortest path distance between

𝑢, 𝑣 is bounded by

𝑒𝑟𝑟 (𝑢, 𝑣) = ˆ𝑑 (𝑢, 𝑣) − 𝑑 (𝑢, 𝑣)
=𝑚𝑖𝑛𝑎∈A

(
𝑑 (𝑢, 𝑎) + 𝑑 (𝑎, 𝑣)

)
− 𝑑 (𝑢, 𝑣)

≤ 𝑑 (𝑢, 𝑎∗) + 𝑑 (𝑎∗, 𝑣) − 𝑑 (𝑢, 𝑣)
≤ 𝑑 (𝑢, 𝑎∗) + 𝑑 (𝑎∗, 𝑣) − |𝑑 (𝑢, 𝑎∗) − 𝑑 (𝑎∗, 𝑣) |
= 2𝑑 (𝑢, 𝑎∗) ≤ 2𝑐

The error bound holds when either 𝑢 or 𝑣 are covered by anchor

nodes.When neither𝑢 nor 𝑣 is covered, this error is unbounded. The

probability for this case is (1−𝐶𝑅)2. Therefore, the probability that
the error of our estimated distance is bounded is 1 − (1 −𝐶𝑅)2. □

4.1.3 Euclidean Projection. While anchor-based encoding enables

the representation of spatial positions for nodes in a graph, it is

not directly applicable for positional embeddings in LLMs. This is

because shortest path distances in graph space do not correspond

to distances in Euclidean space, potentially distorting actual spatial

relationships. Next, we first elaborate on this argument and then

present our solution.

Mismatch between Shortest Path Distance and Euclidean
Distance. In LLMs, positional embeddings reflect the linear order of

tokens, where proximity in the sequence corresponds to closeness in

the embedding space, adhering to Euclidean-like assumptions. This

enables the model to capture local relationships: tokens near each

other in the input sequence are also close in the learned embedding

space, preserving context and meaning. However, as demonstrated

in Figure 2, when nodes 2 and 4 are set as anchor nodes, the shortest

path distances between nodes 2 and 3, as well as between nodes 1

1127



From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

 

 

Non-Eucilidean Space

 

 

 
 

2

4

3

1

 

 

 

Eucilidean Space

  
1 3

2 4

   

Figure 2: A toy example illustrating the discrepancy between
relative distance encoding in non-Euclidean graph space and
the required Euclidean space for LLMpositional embeddings.

and 2, are both 1 in the graph’s non-Euclidean space. In contrast, the

corresponding Euclidean distances would be 1 and

√
2, respectively.

This discrepancy in relative distances between node pairs leads to

a mismatch between shortest path and Euclidean distances.

To address this issue, we propose a pretraining approach that

maps the distance encoding from non-Euclidean to Euclidean space,

aiming to preserve geometric relationships between nodes. The ne-

cessity of this mapping is further justified through ablation studies

in Section 5.6. The pretraining process involves a learnable func-

tion 𝜙 : R𝐾 → R𝑁 that projects the anchor-based encoding into

Euclidean space:

e𝑣 = 𝜙 ( ˆd𝑣) ∈ R𝑁 (9)

where e𝑣 represents the transformed node embedding for node 𝑣 .

To preserve geometric relationships among nodes in the embed-

ding space, we propose a rank-preserving training objective based

on maximum likelihood estimation. The objective is to maximize

the posterior probability 𝑝 (Φ| >), where Φ denotes the parameters

of the mapping function 𝜙 , and > represents the desired order of

distances. Assuming independence for the ordering of each pair of

distances, we formulate the likelihood function as:

𝑝 (> |Φ) =
∏

(𝑢,𝑣),(𝑖, 𝑗 ) ∈E
𝑝

(
ˆ𝑑𝜙 (𝑢, 𝑣) > ˆ𝑑𝜙 (𝑖, 𝑗) |Φ

)I( ˆ𝑑 (𝑢,𝑣)> ˆ𝑑 (𝑖, 𝑗 ) )

·
(
1 − 𝑝

(
ˆ𝑑𝜙 (𝑢, 𝑣) > ˆ𝑑𝜙 (𝑖, 𝑗) |Φ

))I( ˆ𝑑 (𝑢,𝑣)≤ ˆ𝑑 (𝑖, 𝑗 ) )
(10)

where
ˆ𝑑 (𝑢, 𝑣) denotes the estimated distance between nodes 𝑢 and

𝑣 , and ˆ𝑑𝜙 (𝑢, 𝑣) represents the Euclidean distance between their

corresponding mapped embeddings e𝑢 and e𝑣 . We can model the

probability of one distance being greater than another using the

logistic function 𝜎 :

𝑝

(
ˆ𝑑𝜙 (𝑢, 𝑣) > ˆ𝑑𝜙 (𝑖, 𝑗) |Φ

)
:= 𝜎 (𝑥𝑢,𝑣,𝑖, 𝑗 (Φ)), (11)

where 𝑥𝑢,𝑣,𝑖, 𝑗 (Φ) denotes the difference between the Euclidean

distances of the two pairs of mapped embeddings.

By maximizing the log-posterior, which is equivalent to mini-

mizing the negative log-likelihood function, we derive the rank-

preserving training objective:

min

Φ
L = −

∑︁
(𝑢,𝑣),(𝑖, 𝑗 ) ∈E

I( ˆ𝑑 (𝑢, 𝑣) > ˆ𝑑 (𝑖, 𝑗)) ln𝜎 (𝑥𝑢,𝑣,𝑖, 𝑗 (Φ))

+ I( ˆ𝑑 (𝑢, 𝑣) ≤ ˆ𝑑 (𝑖, 𝑗)) ln(1 − 𝜎 (𝑥𝑢,𝑣,𝑖, 𝑗 (Φ))) (12)

This objective function encourages the ranking of distances be-

tween nodes in the embedding space to align with the ranking of

their corresponding shortest path distances in the graph.

To facilitate practical implementation, we reformulate the objec-

tive as a binary cross-entropy (BCE) loss:

min

Φ
L =

∑︁
(𝑢,𝑣),(𝑖, 𝑗 ) ∈E

BCE

(
𝜎
(
∥e𝑢 − e𝑣 ∥2 − ∥e𝑖 − e𝑗 ∥2

)
, 𝑦
)
, (13)

where 𝑦 captures the relative ordering of distances:

𝑦 = I( ˆ𝑑 (𝑢, 𝑣) > ˆ𝑑 (𝑖, 𝑗)) =
{
1, if

ˆ𝑑 (𝑢, 𝑣) > ˆ𝑑 (𝑖, 𝑗),
0, otherwise.

(14)

This pretraining approach ensures that the positional embed-

dings derived from graph structures are compatible with the Eu-

clidean assumptions of LLM architectures while preserving the

essential spatial relationships between nodes.

4.1.4 Time Complexity Analysis. The time complexity of the greedy

algorithm for anchor node selection can be analyzed in two parts:

Initialization. Each node performs a BFS to construct its c-hop

neighborhood, requiring𝑂 ( |V| · |E |) time, where |V| is the number

of nodes and |E | is the number of edges in the graph. The c-hop

neighborhoods are stored for each node.

Anchor Selection. In each iteration, the algorithm selects an an-

chor and updates the coverage for remaining nodes. The worst-case

time complexity for this part is 𝑂 ( |V|2). This is because:

1. Selecting an anchor requires examining all uncovered nodes

in each candidate’s c-hop neighborhood (𝑂 ( |V|) in the worst case).

2. After selecting an anchor, the algorithm must update the un-

covered node counts for all other nodes’ c-hop neighborhoods that

overlap with the newly covered area (𝑂 ( |V|) nodes to update, each
potentially affecting 𝑂 ( |V|) other neighborhoods).

The total time complexity is thus 𝑂 ( |V| · |E | + |V|2.

4.2 Task-Specific LLM Tuning
We now focus on adapting LLMs to leverage graph-based knowl-

edge for specific downstream tasks. Our approach integrates prompt

tuning with Low-Rank Adaptation (LoRA) for efficient and effective

task-specific fine-tuning.

4.2.1 Prompt Tuning. We employ prompt tuning to incorporate

pretrained graph-based knowledge into the LLM. This technique

introduces a small, trainable adapter layer that transforms our

pretrained anchor-based node embeddings to soft prompts. These

soft prompts serve as a learned prefix to the input, guiding the

model’s attention and output generation.

The generation process, including our prompt tuning adapter,

can be formally expressed as:

𝑝𝜃,Φ (𝑌 |𝐺,𝑞) =
𝑟∏
𝑖=1

𝑝 (𝑦𝑖 |𝑦<𝑖 , [e𝐺 ; e𝑇 ; e𝑞]), (15)

where 𝜃 denotes the frozen LLM parameters, Φ represents the train-

able parameters of the prompt tuning adapters, e𝐺 is the pretrained

positional encoding derived from the graph structure, e𝑇 is the

textual embeddings, and e𝑞 represents the question designed for

corresponding graph tasks. The prompt tuning adapter is a shallow

neural network that maps the input embeddings to a sequence of

1128



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yanbiao Ji et al.

ArXiv CS LG.

Classify this paper into 
ArXiv CS categories.

cite

Title:Toward...
Abstract: Work

flow...
cite

Title:The Vector...
Abstract:We

descr... Drug 1

Drug 2

Drug 3 Drug 4

Drug 5

interact

interact
interact

interact

3, 5, 18, 21...

List top 20 drug ids that may interact
with the given drug.

Carbon
Atom

Nitrogen
Atom

Oxygen
Atom

Carbon
Atom

Carbon
Atom

bond

bond

bond
bond

Yes.

Does this molecule inhibit HIV virus
replication or not? 

Citizen

Women
and men

Have same
rights

Women

Help the
country

Be in
combat

is a

causes

causes

capable 
of 

desire

Counter.

Argument 1: ... Argument 2: ... 
Question: Do argument 1 and argument 2

support or counter each other?

OGBN-arxiv OGBL-ddi OGBG-molhiv ExplaGraph

Title:An Enha...
Abstract:We

descr...
cite

Figure 3: Illustration of dataset characteristics and LLM-based processing workflow for diverse graph-related tasks employed
in our experimental setup.

continuous prompt tokens. These tokens are prepended to the input

sequence before being processed by the LLM.

4.2.2 Low-Rank Adaptation (LoRA). To further enhance the LLMs’

adaptability to graph-structure data, we implement Low-RankAdap-

tation (LoRA) [21] in conjunction with prompt tuning. LoRA mod-

ifies the weight update mechanism of the LLM by introducing

low-rank decomposition, allowing for efficient fine-tuning of the

model. For each weight matrix𝑊 ∈ R𝑑𝑖𝑚1×𝑑𝑖𝑚2
in the LLM, we

introduce a low-rank update:

W′ = W + BA, (16)

where B ∈ R𝑑𝑖𝑚1×𝑟
and A ∈ R𝑟×𝑑𝑖𝑚2

are low-rank matrices with

rank 𝑟 ≪ min(𝑑𝑖𝑚1, 𝑑𝑖𝑚2). This decomposition significantly re-

duces the number of trainable parameters, as 𝑟 is typically much

smaller than 𝑑𝑖𝑚1 and 𝑑𝑖𝑚2.

During the training process, only A and B are updated while the

original weightsW remain frozen. The update rule for the LoRA

parameters can be expressed as:

A𝑡+1 = A𝑡 − 𝜂∇AL(𝜃,A𝑡 ,B𝑡 ), (17)

B𝑡+1 = B𝑡 − 𝜂∇BL(𝜃,A𝑡 ,B𝑡 ), (18)

where 𝜂 is the learning rate, L is the task-specific loss function,

and 𝑡 denotes the training iteration.

The combination of prompt tuning and LoRA in our approach

enables themodel to effectively incorporate graph-structural knowl-

edge while adapting to various downstream tasks.

5 Experiments
We conduct extensive experiments to demonstrate the effectiveness

of our NT-LLM by investigating the following research questions:

• RQ1: Can NT-LLM outperform state-of-the-art methods in vari-

ous graph-related tasks?

• RQ2: What does node position encoding learn? Does it capture

the spatial information as intended?

• RQ3: How do different anchor selection strategies influence the

performance of NT-LLM?

• RQ4: What influence do different design choices have on NT-

LLM?

• RQ5: How does our tokenizer compare in efficiency to conven-

tional message-passing GNNs and graph transformers?

5.1 Experimental Settings
5.1.1 Datasets. We evaluate our approach on diverse graph-based

tasks using benchmark datasets from Cora [55], the Open Graph

Benchmark (OGB) [22], and ExplaGraphs [54]. Our experiments

cover node classification with Cora and OGBN-arxiv, edge predic-

tion using OGBL-ddi, and graph property prediction employing

OGBG-molhiv
2
. Additionally, we assess knowledge graph question

answering tasks using the ExplaGraphs dataset. These datasets en-

compass a wide range of graph structures and task complexities,

allowing for a comprehensive evaluation of our method. Table 2

presents key statistics for each dataset, while Figure 3 illustrates

their characteristics in detail.
3

Table 2: Dataset statistics and evaluation metrics. For OGBG-
molhiv and ExplaGraphs, #Nodes and #Edges counts repre-
sent averages across all graphs in the dataset.

Dataset #Nodes #Edges #Graphs Metric

Cora 2,708 10,556 1 Accuracy

OGBN-arxiv 169,343 1,166,243 1 Accuracy

OGBL-ddi 4,267 1,334,889 1 Hits@20

OGBG-molhiv 25.5 27.5 41,127 ROC-AUC

ExplaGraphs 5.17 4.25 2,766 Accuracy

5.1.2 Baselines. We evaluate our proposed method against various

baselines, including both traditional graph learning approaches and

LLM-based methods:

• GNN-based methods: We incorporate widely-adopted GNN ar-

chitectures, including Graph Convolutional Networks (GCN) [31],

Graph Attention Networks (GAT) [60], and GraphSAGE [19].

Besides, we also evaluate two graph transformer models: Graph-

Formers [65] and Heterformer [28].

• LLM-onlymethods: We consider approaches that process graph

information directly as textual sequences using LLMs. This cat-

egory includes implementations utilizing zero-shot inference,

prompt tuning [32], and Low-Rank Adaptation (LoRA) [21].

2
For OGBG-molhiv, we use the SMILES strings representing molecules as textual

attributes, which are not directly provided by OGB.

3
Cora, being a similar citation network to OGBN-arxiv, was omitted from Figure 3 to

avoid redundancy.

1129



From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 3: Main results on benchmark datasets. The best performance is highlighted in bold and the second best is underlined.
Δprompt and ΔLoRA represent the improvements over LLM prompt tuning and LoRA baselines, respectively. * indicates the
statistically significant improvements (i.e., two-sided t-test with p<0.05) over the compared baseline.

Method Cora OGBN-arxiv OGBL-ddi OGBG-molhiv ExplaGraphs
(Accuracy↑) (Accuracy↑) (Hits@20↑) (ROC-AUC↑) (Accuracy↑)

GCN [31] 0.8147 0.7360 0.3707 0.7606 -

GAT [60] 0.8352 0.7366 0.4133 0.7520 -

GraphSAGE [19] 0.8265 0.7295 0.5390 0.7558 -

GraphFormers [65] 0.8910 0.7431 0.5538 0.7414 -

Heterformer [28] 0.8761 0.7390 0.5482 0.7505 -

zero-shot 0.6490 0.5406 0.3384 0.6321 0.6679

prompt tuning [32] 0.7903 0.6971 0.3592 0.6554 0.8224

LoRA [21] 0.8194 0.7323 0.3918 0.7529 0.9296

GraphGPT [57] 0.9085 0.7637 0.5011 0.7851 0.9052

GraphTranslator [67] 0.9351 0.7748 0.5425 0.7764 0.9273

G-Retriever [20] 0.9148 0.7521 0.4573 0.6920 0.9231

G-Retriever LoRA 0.9350 0.7580 0.5296 0.7635 0.9240

GRAG [23] 0.9296 0.7492 0.4617 0.6698 0.9242

GRAG LoRA 0.9473 0.7554 0.5386 0.7309 0.9422

NT-LLM 0.9478 0.7525 0.5904 0.7531 0.9332

Δprompt ↑ 19.93%∗ ↑ 7.95%∗ ↑ 74.47%∗ ↑ 14.91%∗ ↑ 13.47%∗
NT-LLM LoRA 0.9531 0.7752 0.6375 0.8045 0.9603

ΔLoRA ↑ 16.32%∗ ↑ 3.02%∗ ↑ 62.71%∗ ↑ 6.85%∗ ↑ 3.30%∗

• GNN-LLM hybrid methods: We compare our approach with

state-of-the-art methods that integrate GNNs and LLMs. Specif-

ically, we include GraphGPT [57] and GraphTranslator [67],

which focus on text-attributed graph representation learning

with language models. Additionally, we compare our method

with G-Retriever [20] and GRAG [23], which are Graph Retrieval-

Augmented Generation (RAG) methods that combine GNNs and

LLMs for graph-based text generation tasks.

5.2 Implementation Details
We implement all models and experiments using PyTorch [47],

PyTorch Geometric [16], and the HuggingFace Transformers [64]

libraries. All experiments are conducted on two NVIDIA RTX 6000

Ada GPUs, each with 48GB memory.

5.2.1 Text and LLM Components. For encoding textual attributes,

we employ SentenceBERT [51]. The LLM component of all experi-

ments is based on the pretrained LLaMA3-8B [59]. We use LLaMA3-

8B in zero-shot (no fine-tuning), as well as in prompt-tuning and

LoRA-based fine-tuning settings. During LLM fine-tuning with

LoRA, we set the low-rank dimension to 8 and the scaling factor

to 16. Optimization uses AdamW [42] with a learning rate of 1e-4

and weight decay of 0.05. Fine-tuning runs for a maximum of 10

epochs with an early stopping patience of 3. The batch size is set

to 32 for OGBN-arxiv and OGBL-ddi, and to 2 for OGBG-molhiv

and ExplaGraphs, according to dataset size.

5.2.2 GNN-based Methods. Our baseline and hybrid GNN models

use a 4-layer architecture with hidden dimensions of 256, ReLU

activation, and a dropout rate of 0.5. Graph transformer baselines

utilize nested GAT architecture combined with transformer layers,

where each node uses 5 uniformly sampled neighbors as context.

Training runs using the AdamW optimizer for 500 epochs with

an early stopping patience of 10, learning rate of 1e-3 and weight

decay of 5e-4.

5.2.3 NT-LLM Implementation. In the node tokenizing stage, we

set the anchor identification parameters as 𝑐 = 1 and 𝐶𝑅 = 0.7,

and map node encodings via a 3-layer MLP. In the LLM fine-tuning

stage, we following the settings in 5.2.1.

5.2.4 GNN-LLM Hybrid Baselines. For GNN-LLM hybrid methods,

we combine a 4-layer GAT with LLaMA3-8B, following the archi-

tecture and hyperparameter settings as described in their papers.

5.3 Main Results (RQ1)
Table 3 compares the performance of our proposed NT-LLMmethod

against baselines on five benchmark datasets on the corresponding

task, respectively.
4
We have the following key findings:

• NT-LLM consistently outperforms all baseline methods
across various tasks and datasets. This observation justifies

the superiority of NT-LLM and demonstrates its effectiveness

and broad applicability in graph learning.

• NT-LLM effectively addresses the challenge of enabling
LLMs to understand graph structures. In other words, NT-

LLM leverages the strengths of LLMs in understanding textual

attributes while benefiting from our proposed node position en-

coding to capture the graph topology. First, NT-LLM outperforms

pure LLM and GNN baselines on all datasets. This observation

demonstrates that understanding textual attributes and topology

are equally important for graph learning tasks. Second, when

fine-tuning NT-LLM with LoRA (fine-tuned NT-LLM), its perfor-

mance surpasses LLM-GNN hybrid approaches. This suggests

that NT-LLM is more effective at enabling LLMs to understand

4
GNNs are unable to perform complex graph reasoning tasks in the ExplaGraphs

dataset, thus the corresponding cells are marked with -.

1130



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yanbiao Ji et al.

60 40 20 0 20 40 60
Feature 1

60

40

20

0

20

40

60

Fe
at

ur
e 

2

(a) Before Pretraining

30 20 10 0 10 20 30 40
Feature 1

40

20

0

20

40

Fe
at

ur
e 

2

(b) After Pretraining

Figure 4: Embeddings visualized before and after the transfor-
mation in pretraining on Cora dataset. The colors represent
the ground truth labels of nodes.

graph structures compared to intermediate solutions, i.e., LLM-

GNN hybrid approaches.

• The superiority of NT-LLM in graph understanding comes
from our proposed node position encoding. In particular,

the OGBL-ddi dataset lacks textual attributes. As we can see,

LLMmethods perform worse than GNN baseline methods, which

highlights their limitations in capturing topological information

from graph data. Unlike LLM methods, our proposed NT-LLM,

despite not using GNNs, outperforms all baselines with over

60% improvement compared to LLM methods, demonstrating its

ability to effectively encode graph structure.

In conclusion, NT-LLM shows superior performance and adapt-

ability across various graph-related tasks and datasets. The improve-

ments over state-of-the-art baselines, even in the absence of textual

attributes, highlight the effectiveness of our proposed method in

capturing both textual and structural information.

5.4 Understanding Node Position Encoding
(RQ2)

To understand what node position encoding learns, in this section,

we provide visualization for the learned node position embedding

on the Cora dataset to gain further insights. We select this dataset

because, in Cora, nodes from the same class tend to be naturally

closer in the graph structure. This property allows us to directly

evaluate the quality of the node position embeddings by observing

how well they align with the class labels.

Figure 4 illustrates the embeddings before and after the transfor-

mation in positional embedding pretraining, shown against class la-

bels. Prior to the transformation, nodes belonging to the same class

can be separated distantly in the embedding space. However, after

applying the transformation, these nodes are effectively projected

into the same region, highlighting the efficacy of our pretraining ap-

proach in capturing the underlying semantic relationships among

nodes. For instance, the green dots, which are dispersed before the

transformation, become densely clustered afterward.

5.5 Anchor Selection Strategies Impact (RQ3)
Since anchor nodes offer a comprehensive view of the graph struc-

ture, different strategies for identifying anchor nodes may impact

NT-LLM’s ability to comprehend the graph. In this section, we con-

duct an extensive evaluation of various anchor selection strategies,

on three datasets, i.e., Cora, OGBN-arxiv and OGBL-ddi, using a

fixed seed and the NT-LLM architecture. Subsequently, the posi-

tional embeddings are pretrained following the same procedure

outlined in Section 4.1.3.

Table 4: Comparison of anchor selection strategies across
three datasets. The highest performance for each dataset is
shown in bold.

Strategy Cora OGBN-arxiv OGBL-ddi

Degree 0.9172 0.7312 0.5731

Random 0.8891 0.6783 0.5019

Closeness [3] 0.8931 0.6392 0.4852

Eigenvector [6] 0.8424 0.6105 0.4736

PageRank [46] 0.8703 0.6641 0.5127

Betweenness [17] 0.8539 0.6428 0.4967

HPLC [29] 0.9174 0.7411 0.5613

Ours 0.9478 0.7525 0.5904

Table 4 presents the experimental results. Our method achieves

the best performance among all evaluated strategies, surpassing

traditional centrality-based approaches (such as Degree and PageR-

ank [46]), random selection, and the landmark-based HPLC [29].

To provide a clearer insight into the advantage of our anchor se-

lection strategy, we compare the anchor nodes selected by different

strategies on Cora dataset in Figure 5. The anchor nodes selected by

our method are more evenly distributed across the graph structure.

In contrast, methods such as Degree, HPLC, Closeness, PageRank,

and Eigenvector focus on selecting “important” nodes but fail to pro-

vide broad coverage, particularly of nodes located at considerable

distances from the graph’s central area.

Degree HPLC

Ours

Closeness

PageRank Eigenvector

Figure 5: Distribution of anchor nodes (marked in red) se-
lected by different strategies on the Cora dataset. Ourmethod
achieves a more even distribution, effectively covering the
peripheral regions of the graph.

5.6 Ablation Studies (RQ4)
In this section, we conduct extensive ablation studies to investigate

the effectiveness of each component in NT-LLM, and justify our

model design choices.

1131



From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 5: Performance comparison of NT-LLM variants across
four datasets. Best results for each dataset are in bold.

Variant Cora arxiv ddi molhiv ExplaGraphs

NT-LLM 0.9478 0.7525 0.5904 0.7531 0.9332
w/o PE 0.8070 0.6971 0.3592 0.6554 0.8224

w/o Pre 0.8195 0.6538 0.3791 0.6419 0.7671

w/o PT 0.7864 0.5904 0.3460 0.5834 0.7024

5.6.1 Impact of Model Components. NT-LLM has specific design

features, including the node position encoding, its corresponding

pretraining task, and two different strategies for LLMs to leverage

node position encoding, i.e., prompt tuning and low-rank adaptation.

We evaluate the performance of each variant of our model on five

datasets as follows:

• w/o PE: The NT-LLM without positional encoding, using raw

node features as input to the LLM.

• w/o Pre: The NT-LLM without the distance transformation pre-

training module, using concrete anchor-based distances as node

position embeddings.

• w/o PT: The NT-LLMwithout the prompt tuningmodule, directly

inputting all embeddings into the LLM.

Table 5 presents the results of the ablation study, which evaluates

the impact of removing individual components from the proposed

method. The observed performance drop across all datasets con-

firms the importance and complementary nature of each component

within the method. In particular, we observe that node position

encoding pretraining is critical for NT-LLM. The variant without

pretraining (w/o Pre) experiences a significant performance drop

when the pretraining module is removed, supporting our argument

in Section 4.1.3. This is due to the mismatch between shortest path

and Euclidean distances, which distorts actual spatial relationships.

Therefore, positional embedding pretraining is an indispensable

component of NT-LLM.

5.6.2 Impact of Hyperparameters. We investigate the impact of

two key hyperparameters in NT-LLM: the coverage radius 𝑐 and

the coverage ratio 𝐶𝑅. Figure 6 presents the relationships between

these hyperparameters, model accuracy and the number of anchor

nodes. The results demonstrate that smaller values of 𝑐 and larger

values of 𝐶𝑅 generally lead to a better performance. This trend

aligns with the error bound established in Lemma 4.1. Notably, we

observed that the number of anchor nodes increases exponentially

as 𝑐 decreases and 𝐶𝑅 increases. This relationship underscores the

importance of carefully selecting these hyperparameters to balance

computational complexity and model performance.

5.7 Tokenizer Efficiency (RQ5)
The only trainable component in our proposed graph tokenizer is a

simple MLP, making it intuitively much more efficient than conven-

tional message-passing GNNs or graph transformers. To validate

this, we compare the efficiency of various graph tokenizers, includ-

ing our own, across multiple datasets. The results are summarized

in Table 6. The consistently lower number of trainable parameters

and training time demonstrate the efficiency of our tokenizer.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

0.925

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

(a) Cora Dataset

c=1
c=2
c=3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

0.730

0.735

0.740

0.745

0.750

0.755

0.760

Ac
cu

ra
cy

(b) OGBN-arxiv Dataset

c=1
c=2
c=3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

0

100

200

300

400

500

600

An
ch

or
 N

um
be

r

c=1
c=2
c=3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

0

5000

10000

15000

20000

25000

30000

35000

An
ch

or
 N

um
be

r

c=1
c=2
c=3

Figure 6: Effects of coverage radius (𝑐) and coverage ratio
(𝐶𝑅) on model accuracy and the number of anchor nodes for
the Cora and OGBN-arxiv datasets. The top row shows the
impact on model accuracy, while the bottom row illustrates
the changes in the number of anchor nodes as 𝑐 and𝐶𝑅 vary.

Table 6: Comparison of different tokenizationmethods based
on the number of trainable parameters and training time.

Dataset Tokenizer Trainable Parameters Training Time

Cora

GAT 1.4M 2min

GraphFormer 3.6M 10min

NT-LLM 0.3M <1min

OGBN-arxiv

GAT 21.7M 4h

GraphFormers 49.2M 6h

NT-LLM 0.7M 10min

OGBL-ddi

GAT 2.6M 3min

GraphFormers 6.1M 13min

NT-LLM 0.5M 1min

6 Conlusion
In the paper, we propose NT-LLM, an anchor-based graph posi-

tional encoding approach that enables efficient graph tokenization

for LLMs. Our method preserves crucial structural information

through anchor nodes selection without requiring extensive tex-

tual descriptions or complex GNNs. Evaluations across diverse

benchmarks demonstrate significant improvements across diverse

tasks from node classification to complex reasoning, confirming

the effectiveness and efficiency of our proposed NT-LLM method.

Acknowledgments
This paper is supported by NSFC (No. 62176155), Shanghai Munici-

pal Science and Technology Major Project, China, under grant No.

2021SHZDZX0102.

1132



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yanbiao Ji et al.

GenAI Usage Disclosure
This work utilizes Copilot to accelerate coding processes through

intelligent code suggestions, auto-completion, and boilerplate gen-

eration, while Large Language Models (LLMs) are employed ex-

clusively for spelling and grammar checks in paper writing. All

AI-generated content has undergone thorough human review.

References
[1] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2021.

The Surprising Power of Graph Neural Networks with Random Node Initializa-

tion. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence

Organization.

[2] Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. 2023. LLM Based Gen-

eration of Item-Description for Recommendation System. In Proceedings of the
17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore,
September 18-22, 2023. ACM.

[3] Alex Bavelas. 1948. A mathematical model for group structures. Human organi-
zation 7, 3 (1948), 16–30.

[4] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele

Corso, and Pietro Lió. 2021. Directional Graph Networks. In Proceedings of
the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR.

[5] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele

Corso, and Pietro Lió. 2021. Directional GraphNetworks. In Proceedings of the 38th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 748–758.

[6] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering (NIPS’01). MIT Press.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation. Neural Computation (2003).

[8] Sudhanshu Chanpuriya and Cameron Musco. 2020. InfiniteWalk: Deep Network

Embeddings as Laplacian Embeddings with a Nonlinearity. Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2020).

[9] Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang.

2024. LLaGA: Large Language and Graph Assistant. In Proceedings of the 41st
International Conference on Machine Learning. PMLR.

[10] Sitao Cheng, Ziyuan Zhuang, and et al. 2024. Call Me When Necessary: LLMs

can Efficiently and Faithfully Reason over Structured Environments. In Find-
ings of the Association for Computational Linguistics ACL 2024. Association for

Computational Linguistics.

[11] Jeroen den Boef, Joran Cornelisse, and Paul Groth. 2021. GraphPOPE: Retain-

ing Structural Graph Information Using Position-aware Node Embeddings. In

DL4KG@ISWC.
[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,

Minnesota.

[13] Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. 2024. Recurrent

Distance Filtering for Graph Representation Learning. In Proceedings of the 41st
International Conference on Machine Learning (Proceedings of Machine Learning
Research). PMLR, 11002–11015.

[14] Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Ga Chechik,

and Haggai Maron. 2023. Graph positional encoding via random feature propa-

gation. In Proceedings of the 40th International Conference on Machine Learning
(ICML’23).

[15] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 2024. Talk like a Graph:

Encoding Graphs for Large Language Models. In The Twelfth International Con-
ference on Learning Representations.

[16] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. ArXiv abs/1903.02428 (2019).

[17] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.

Social Networks 1 (1978), 215–239.
[18] Jiayan Guo, Lun Du, and Hengyu Liu. 2023. GPT4Graph: Can Large Language

Models Understand Graph Structured Data ? An Empirical Evaluation and Bench-

marking. CoRR abs/2305.15066 (2023).

[19] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS’17).

[20] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann

LeCun, Xavier Bresson, and Bryan Hooi. 2024. G-Retriever: Retrieval-

Augmented Generation for Textual Graph Understanding and Question An-

swering. arXiv:2402.07630 [cs.LG] https://arxiv.org/abs/2402.07630

[21] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large

Language Models. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG] https://arxiv.org/

abs/2005.00687

[23] Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. 2024.

GRAG: Graph Retrieval-Augmented Generation. arXiv abs/2405.16506 (2024).

[24] Yuntong Hu, Zheng Zhang, and Liang Zhao. 2023. Beyond Text: A Deep Dive

into Large Language Models’ Ability on Understanding Graph Data. In NeurIPS
2023 Workshop: New Frontiers in Graph Learning.

[25] Chao Huang, Xubin Ren, Jiabin Tang, Dawei Yin, and Nitesh Chawla. 2024.

Large Language Models for Graphs: Progresses and Directions. In Companion
Proceedings of the ACM on Web Conference 2024. 1284–1287.

[26] XuanwenHuang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei Chai,

and Qi Zhu. 2024. Can GNN be Good Adapter for LLMs?. In Proceedings of the
ACM Web Conference 2024 (WWW ’24). Association for Computing Machinery.

[27] Tomoki Ito and Shun Nakagawa. 2024. Tender Document Analyzer with the

Combination of Supervised Learning and LLM-based Improver. In Companion
Proceedings of the ACM onWeb Conference 2024, WWW 2024, Singapore, Singapore,
May 13-17, 2024. ACM.

[28] Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2023. Heterformer: Transformer-

based Deep Node Representation Learning on Heterogeneous Text-Rich Net-

works. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (Long Beach, CA, USA) (KDD ’23). Association for Computing

Machinery, New York, NY, USA, 1020–1031. https://doi.org/10.1145/3580305.

3599376

[29] Minsang Kim and Seung Baek. 2024. Hierarchical Position Embedding of Graphs

with Landmarks and Clustering for Link Prediction. In Proceedings of the ACM
Web Conference 2024 (WWW ’24).

[30] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[31] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[32] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale

for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Marie-Francine Moens,

Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for

Computational Linguistics.

[33] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-

ing: design provably more powerful neural networks for graph representation

learning. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS ’20).

[34] Yichuan Li, Kaize Ding, and Kyumin Lee. 2023. GRENADE: Graph-Centric

Language Model for Self-Supervised Representation Learning on Text-Attributed

Graphs. In Findings of the Association for Computational Linguistics: EMNLP 2023.
Association for Computational Linguistics, Singapore.

[35] Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Wai

Kin (Victor) Chan, and Jia Li. 2024. GLBench: A Comprehensive Benchmark for

Graph with Large Language Models. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, Amir Globersons,

Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,

and Cheng Zhang (Eds.).

[36] Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning

Liu, and Jianyong Wang. 2024. FlexKBQA: A Flexible LLM-Powered Frame-

work for Few-Shot Knowledge Base Question Answering. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada. AAAI Press.

[37] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-

Seng Chua. 2024. Data-efficient Fine-tuning for LLM-based Recommendation.

In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Washington DC, USA) (SIGIR ’24).

[38] Guangyi Liu, Yongqi Zhang, Yong Li, and Quanming Yao. 2025. Dual Reasoning: A

GNN-LLM Collaborative Framework for Knowledge Graph Question Answering.

arXiv:2406.01145 [cs.CL] https://arxiv.org/abs/2406.01145

[39] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved Baselines

with Visual Instruction Tuning. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 26286–26296. https://doi.org/10.1109/CVPR52733.

1133

https://arxiv.org/abs/2402.07630
https://arxiv.org/abs/2402.07630
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1145/3580305.3599376
https://doi.org/10.1145/3580305.3599376
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://doi.org/10.1109/CVPR52733.2024.02484
https://doi.org/10.1109/CVPR52733.2024.02484


From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

2024.02484

[40] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang,

Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi. 2025. Graph

Foundation Models: Concepts, Opportunities and Challenges. IEEE Transactions
on Pattern Analysis and Machine Intelligence 47, 6 (2025), 5023–5044. https:

//doi.org/10.1109/TPAMI.2025.3548729

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A

Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

[42] Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations.
[43] Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan. 2024. Reasoning on Graphs:

Faithful and Interpretable Large Language Model Reasoning. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024.

[44] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. 2020. Path

integral based convolution and pooling for graph neural networks (NIPS ’20).
[45] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.

org/abs/2303.08774

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank Citation Ranking : Bringing Order to the Web. In The Web Conference.
[47] Adam Paszke and et al Gross. 2019. PyTorch: an imperative style, high-performance

deep learning library.
[48] Bryan Perozzi, Rami Al-Rfou, and Steven S. Skiena. 2014. DeepWalk: online learn-

ing of social representations. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (2014).

[49] Miao Qiao, Hong Cheng, and Jeffrey Xu Yu. 2011. Querying shortest path distance

with bounded errors in large graphs. In Proceedings of the 23rd International
Conference on Scientific and Statistical Database Management (SSDBM’11).

[50] Hua Xuan Qin, Shan Jin, Ze Gao, Mingming Fan, and Pan Hui. 2024. Char-

acterMeet: Supporting Creative Writers’ Entire Story Character Construction

Processes Through Conversation with LLM-Powered Chatbot Avatars. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems, CHI 2024,
Honolulu, HI, USA, May 11-16, 2024. ACM.

[51] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

[52] Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, and Chao Huang. 2024. A

Survey of Large Language Models for Graphs. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Barcelona, Spain)

(KDD ’24). Association for Computing Machinery, New York, NY, USA, 6616–6626.

https://doi.org/10.1145/3637528.3671460

[53] Joshua Robinson and David Wingate. 2023. Leveraging Large Language Models

for Multiple Choice Question Answering. In The Eleventh International Conference
on Learning Representations.

[54] Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit Bansal. 2021. Expla-

Graphs: An Explanation Graph Generation Task for Structured Commonsense

Reasoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

[55] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-

lagher, and Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI
Magazine 29, 3 (2008), 93–106.

[56] Yanchao Tan, Zihao Zhou, Hang Lv,Weiming Liu, and Carl Yang. 2024. WalkLM: a

uniform language model fine-tuning framework for attributed graph embedding.

In Proceedings of the 37th International Conference on Neural Information Processing
Systems (NIPS ’23).

[57] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin,

and Chao Huang. 2024. Graphgpt: Graph instruction tuning for large language

models. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 491–500.

[58] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang.

2024. Higpt: Heterogeneous graph language model. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2842–2853.

[59] Hugo Touvron, Louis Martin, and et al. 2024. The Llama 3 Herd of Models.

arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[60] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

[61] Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. 2022. Power-

ful Graph Convolutional Networks with Adaptive Propagation Mechanism for

Homophily and Heterophily. In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI
Press.

[62] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khy-

athi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, and

Hannaneh Hajishirzi. 2023. How Far Can Camels Go? Exploring the State of

Instruction Tuning on Open Resources. In Advances in Neural Information Pro-
cessing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and

S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 74764–74786.

[63] Zhihao Wen and Yuan Fang. 2023. Augmenting Low-Resource Text Classification

with Graph-Grounded Pre-training and Prompting. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’23). Association for Computing Machinery.

[64] Thomas Wolf, Lysandre Debut, and et al. 2019. HuggingFace’s Transformers:

State-of-the-art Natural Language Processing. CoRR abs/1910.03771 (2019). http:

//arxiv.org/abs/1910.03771

[65] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,

Amit Singh, Guangzhong Sun, and Xing Xie. 2021. GraphFormers: GNN-nested

transformers for representation learning on textual graph. In Proceedings of the
35th International Conference on Neural Information Processing Systems (NIPS ’21).
Curran Associates Inc., Red Hook, NY, USA, Article 2206, 13 pages.

[66] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural

Networks. In International Conference on Machine Learning.
[67] Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu,

Hong Liu, Cheng Yang, and Chuan Shi. 2024. GraphTranslator: Aligning Graph

Model to Large Language Model for Open-ended Tasks. In The Web Conference
2024.

[68] Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi, Linyong Nan, Lyuhao Chen,

Yixin Liu, Xiangru Tang, Rui Zhang, and Arman Cohan. 2024. DocMath-Eval:

Evaluating Math Reasoning Capabilities of LLMs in Understanding Financial

Documents. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024. Association for Computational Linguistics.

[69] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable

graph embedding for asymmetric proximity. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI’17).

[70] Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. 2024. Efficient Tuning

and Inference for Large Language Models on Textual Graphs. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24.

1134

https://doi.org/10.1109/CVPR52733.2024.02484
https://doi.org/10.1109/TPAMI.2025.3548729
https://doi.org/10.1109/TPAMI.2025.3548729
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3637528.3671460
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Positional Encoding
	2.2 LLMs in Graph-Related Tasks

	3 Preliminary
	4 Methodology
	4.1 Graph Node Tokenizer
	4.2 Task-Specific LLM Tuning

	5 Experiments
	5.1 Experimental Settings
	5.2 Implementation Details
	5.3 Main Results (RQ1)
	5.4 Understanding Node Position Encoding (RQ2)
	5.5 Anchor Selection Strategies Impact (RQ3)
	5.6 Ablation Studies (RQ4)
	5.7 Tokenizer Efficiency (RQ5)

	6 Conlusion
	Acknowledgments
	References



