Check for
Updates

From Anchors to Answers: A Novel Node Tokenizer for
Integrating Graph Structure into Large Language Models

Yanbiao Ji* Chang Liu**
Shanghai Jiao Tong Shanghai Jiao Tong
University University

Shanghai, China
jiyanbiao@sjtu.edu.cn

Shanghai, China
isonomialiu@sjtu.edu.cn

Mei Li Yue Ding¥
Shanghai Jiao Tong Shanghai Jiao Tong
University University
Shanghai, China Shanghai, China
mei-li@sjtu.edu.cn dingyue@sjtu.edu.cn

Abstract

Enabling large language models (LLMs) to effectively process and
reason with graph-structured data remains a significant challenge
despite their remarkable success in natural language tasks. Current
approaches either convert graph structures into verbose textual
descriptions, consuming substantial computational resources, or
employ complex graph neural networks as tokenizers, which intro-
duce significant training overhead. To bridge this gap, we present
NT-LLM, a novel framework with an anchor-based positional en-
coding scheme for graph representation. Our approach strategi-
cally selects reference nodes as anchors and encodes each node’s
position relative to these anchors, capturing essential topological
information without the computational burden of existing methods.
Notably, we identify and address a fundamental issue: the inherent
misalignment between discrete hop-based distances in graphs and
continuous distances in embedding spaces. By implementing a rank-
preserving objective for positional encoding pretraining, NT-LLM
achieves superior performance across diverse graph tasks ranging
from basic structural analysis to complex reasoning scenarios. Our
comprehensive evaluation demonstrates that this lightweight yet
powerful approach effectively enhances LLMs’ ability to under-
stand and reason with graph-structured information, offering an
efficient solution for graph-based applications of language models.

CCS Concepts

« Information systems — Data mining,.

“Both authors contributed equally to this research.
T This work was done while Chang Liu was an intern at Tencent.
iCmrresponding authors: Yue Ding and Wenging Lin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761167

1124

The Chinese University of

Xin Chen Dan Luo

Lehigh University

Hong Kong Bethlehem, PA, USA
Hong Kong, China danluo.ir@gmail.com
xchen@se.cuhk.edu.hk
Wengqing Lin¥ Hongtao Lu
Tencent Shanghai Jiao Tong
Shenzhen, China University
edwlin@tencent.com Shanghai, China
htlu@sjtu.edu.cn

Keywords
Large Language Models, Positional Encoding, Knowledge Graphs

ACM Reference Format:

Yanbiao Ji, Chang Liu, Xin Chen, Dan Luo, Mei Li, Yue Ding, Wenging Lin,
and Hongtao Lu. 2025. From Anchors to Answers: A Novel Node Tokenizer
for Integrating Graph Structure into Large Language Models. In Proceedings
of the 34th ACM International Conference on Information and Knowledge
Management (CIKM °25), November 10-14, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3746252.3761167

1 Introduction

Inrecent years, Large Language Models (LLMs), such as LLaMA [59]
and GPT [45], have revolutionized artificial intelligence. They have
demonstrated powerful capabilities in solving various natural lan-
guage processing (NLP) tasks, including question answering [36,
53], text generation [2, 50], and document understanding [27, 68].
While LLMs have primarily been applied to text data, an increas-
ing number of applications now involve text data intertwined with
structured information represented as graphs. For instance, in social
networks, nodes represent entities, while edges capture the relation-
ships between them. Both nodes and edges can also be associated
with textual descriptions that detail their attributes. Since LLMs are
primarily designed to model text in a sequential format, applying
them to graph-related tasks presents new challenges, particularly
in encoding the structural information of graphs [15, 35].

While many studies [28, 40, 65] have attempted to combine lan-
guage modeling and graph representation learning with medium-
sized transformer models such as BERT [12] and RoBERTa [41],
efficient graph reasoning with LLMs of billions of parameters re-
mains challenging. To leverage the strength of LLMs for graph struc-
ture understanding, existing efforts can be categorized into two
groups [25, 52]: (1) Graph Textual Conversion, which translates a
graph’s structure into a descriptive textual representation [9, 26, 56].
These studies typically convert the local context of a target node
into textual descriptions that incorporate relevant structural infor-
mation, and then utilize large language models to predict properties
such as node labels and the presence of links. The underlying as-
sumption is that the powerful capabilities of LLMs can generalize
to interpret graph-structured knowledge through textual input.

https://doi.org/10.1145/3746252.3761167
https://doi.org/10.1145/3746252.3761167
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761167&domain=pdf&date_stamp=2025-11-10

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

However, such descriptions typically require a large number of
tokens to describe the graph structure, greatly increasing the cost
of LLM inference. (2) Graph Node Tokenizer, which generates
node embeddings for each node and then projects these embeddings
into LLM token space [38, 57, 58]. With the utilization of powerful
Graph Neural Networks (GNNs) as graph node tokenizers, these
methods effectively reduce the inference cost by representing the
graph structure with compact node tokens. However, the graph rep-
resentation learning process often brings heavy training overhead.
Achieving scalability comparable to LLMs requires an expressive
GNN (e.g., with elaborate graph convolution paradigms) of similar
scale, which introduces additional computational overhead.

To enable effective and efficient LLM reasoning on graphs, a
graph encoding paradigm that preserves rich graph structural infor-
mation without introducing heavy training or inference overhead
is needed. This naturally aligns with the motivation of graph po-
sitional encoding, which introduces extra embeddings containing
structural information to disambiguate nodes and enhance graph
representation learning during the training of GNNs and graph
transformers [7, 14, 49]. In this paper, we introduce an anchor-based
graph positional encoding scheme for graph node tokenization, and
investigate its integration with LLMs across various graph-related
tasks. The core of our method is the strategic selection of key nodes,
referred to as anchors, which serve as reference points for encoding
the graph topology. Each node is then represented based on its rel-
ative distance to these anchors, effectively capturing the structural
information of the graph. Furthermore, we identify the issue of
misalignment between the non-Euclidean graph space (hop-based
discrete distance) and the Euclidean embedding space (continuous
Euclidean distance). A rank-preserving pretraining objective is pro-
posed to project the positional embedding into Euclidean space. We
then apply task-specific tuning procedures using prompt tuning
and LoRA techniques to facilitate better structural understanding
of LLMs for downstream tasks. Extensive empirical studies demon-
strate that NT-LLM substantially improves LLM performance across
a diverse range of graph-related tasks, from basic graph analysis to
complex reasoning. Our main contributions are as follows:

e We introduce a position-anchored graph encoding approach for

LLMs that efficiently preserves crucial structural information

while reducing the computational complexity associated with

commonly used graph encoding methods.

We identify and address the issue of misalignment between the

non-Euclidean graph space and the Euclidean embedding space,

which hinders the effectiveness of graph positional embedding
in graph reasoning with LLMs.

e We conduct an extensive empirical evaluation on multiple graph
benchmarks, covering a wide range of task complexities and
graph types. Our results provide insights into the performance
and generalizability of NT-LLM, highlighting its potential for
adoption in various graph learning scenarios.

2 Related Work

2.1 Graph Positional Encoding

Graph Neural Networks (GNNs) have significantly advanced graph
representation learning by enabling the extraction of meaningful
embeddings from graph-structured data through message-passing

1125

Yanbiao Ji et al.

mechanisms [4, 5, 30, 44, 61]. However, standard GNN architec-
tures often struggle to differentiate among nodes with similar local
structures but different positions within the global graph topology.
Graph positional encoding addresses this limitation by enhancing
node representations with positional information, allowing the
capture of important structural features.

Several approaches have been developed to encode positional
information in graphs. Laplacian eigenmaps [6, 7] utilize the eigen-
vectors of the graph Laplacian matrix for this purpose. In contrast,
random walk encodings [8, 48, 69] capture structural information
by simulating random walks on the graph. This method encodes the
co-occurrence probabilities of nodes during these walks, thereby
embedding nodes with similar neighborhoods closer in the em-
bedding space. Rx‘ecently, researchers have introduced Distance
Encoding [13, 33, 49], which incorporates structural information
by encoding the shortest path distances between nodes. Further-
more, Random Feature methods [1, 14] have been developed to
approximate positional encodings using learnable or predefined
random feature maps. To provide a comprehensive overview of
these approaches, Table 1 presents a detailed comparison of various
graph positional encoding methods.

2.2 LLMs in Graph-Related Tasks

The rapid advancement in LLMs have led to their successful appli-
cation across various domains, leveraging their powerful sequence
modeling capabilities [37, 39, 62]. In recent years, there has been a
growing interest in applying LLMs to graph-related tasks, aiming
to harness their ability to capture long-range dependencies and
perform complex reasoning.

Initial efforts focused on directly feeding textual descriptions of
graphs into LLMs to tackle tasks such as node classification and
link prediction [18, 24]. While these methods demonstrated the
potential of LLMs in understanding graph data, they faced signifi-
cant scalability challenges due to the complexity of constructing
comprehensive prompts and the loss of crucial structural informa-
tion during the graph-to-text conversion process. To address these
limitations, subsequent research has explored the integration of
Graph Neural Networks (GNNs) with LLMs to better leverage the
strengths of both paradigms [20, 23, 57]. One common approach in-
volves using GNNs to generate structure-aware embeddings, which
are then fed into LLMs for downstream tasks [57, 58]. More ad-
vanced techniques have delved into model fusion training [70],
model alignment [34, 63], and the development of LLM agents
specifically designed to handle graph data [10, 43].

3 Preliminary

Textual Graphs. A textual graph is a graph in which nodes and
edges are associated with textual attributes. Formally, it is defined
as G = (V, 5, {To}yev, {Tetecs), where V and & represent the
sets of nodes and edges, respectively. Here, Ty, and T, denote the
textual attributes corresponding to each node and edge, which are
usually represented by natural language descriptions.’

Text Encoding via Language Models. Language Models (LMs)
have proven to be highly effective at encoding textual attributes

n this work, we assume that the distance between two adjacent nodes is fixed at 1.
The study of weighted graphs, where edge distances may vary, is left for future work.

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Table 1: Comparative analysis of graph positional encoding techniques, including our proposed method.

Laplacian Eigenmap [7] DeepWalk [48] PGNN [66] HPLC [29] RFP [14] Ours
Encoding Scheme eigenvectors random walk distance distance, eigenvectors random feature distance
Local Structure v v v v v v
Global Position x X v v X v
Euclidean Space v v X v v v
Time Complexity o(vVP) o(|&l) O(|VPlog’(|V])) O(I&llog(|V]) +|VIlog?(IV])) - O(|VI?+|VI||&])

in graphs, producing embeddings that capture rich semantic infor-
mation. For a given textual attribute T; associated with a node or
edge i, an LM encodes this attribute into an embedding vector as
follows:

x; = LM(T;) € RF. (1)

Prompt Tuning for LLMs. LLMs are trained on vast corpora of
textual data, demonstrating emergent capabilities that facilitate ad-
vanced semantic understanding and exceptional task generalization.
Formally, an LLM parameterized by 6 takes as input a sequence
of tokens X = {x1,Xa,...,Xn} along with a task prompt P, and
generates an output sequence Y = {y1,y2,...,yr}. The probability
distribution of the output sequence, conditioned on the concate-
nated input sequence and prompt [P; X], is expressed as:

r
po(YI[P:X1) = [[po(yily<i. [P:XI), @
i=1
where y; represents the prefix of sequence y up to position i — 1,
and pg(yily<i, [P; X]) denotes the probability of generating token
yi given the preceding tokens y«; and the input [P; X].

Prompt tuning [32] is an efficient technique for adapting LLMs
to specific tasks without modifying the model’s parameters. This
technique keeps the pretrained LLM frozen, and optimizes a small
set of continuous prompt embeddings {e;}}, where n is the num-
ber of prompt tokens. These prompts are generally initialized either
randomly or using the embeddings of specific tokens, and are sub-
sequently optimized throughout the training process. Formally, the
prompt embeddings can be represented as:

®)

Rnxd.

E=[ee...en]’,

where the dimension of the embedding space is d, and E €
The prompt embeddings can be generated by a small trainable
mapping network ®:

E = ¢(X), (4)
where X represents the input embeddings to be transformed. This
allows for more flexible and expressive prompt representations.
The generation process with prompt tuning can be represented as
follows:

-
oo (YI[B:X]) = [| oo (yily<is [P X)), 6)
i=1
where 0 represents the frozen parameters of the pretrained LLM, ®
is the learnable prompt mapping network, P is the prompt, X is the
input sequence, and Y = {y1,y2, ..., yr} is the output sequence.

4 Methodology

We propose NT-LLM, which can seamlessly integrate graph-structure
knowledge with LLMs through two key components: Graph Node
Tokenizer and Task-Specific LLM Tuning. The node tokenizer

1126

leverages carefully selected anchor nodes to encode the spatial posi-
tion of each node, and positional embedding pretraining to preserve
geometric relationships between nodes. The task-specific LLM tun-
ing integrates our node position embedding with prompt tuning
and low-rank adaptation, which allows LLMs to effectively leverage
both textual and graph-based information. Figure 1 illustrates the
overall framework of NT-LLM.

4.1 Graph Node Tokenizer

In large language models, it is straightforward to inject information
about the relative or absolute position of tokens in a sequence
via their index. However, this approach is not feasible for graphs
due to two key differences. First, graphs do not have an inherent
linear ordering of nodes, unlike sequences, where tokens follow
a clear order. Nodes in a graph are interconnected in a complex,
multidimensional structure, where relationships are defined by
edges, and there is no natural start or end. Second, the neighborhood
of each node can vary significantly in size and shape, which makes
the concept of a relative or absolute “position” less meaningful. To
address this challenge, we propose a novel graph node tokenizer,
which consists of three key steps: anchor node identification, node
encoding, and Euclidean projection.

4.1.1 Anchor Node Identification. Prior works [11, 66] have demon-
strated that using anchor nodes can well capture the position of a
given node with respect to all other nodes in a graph. In particu-
lar, the position of a node can be described in terms of its relative
distance (e.g., shortest path distance) to these anchor nodes. For effi-
cient identification of anchor nodes, we implement a greedy anchor
selection algorithm with a coverage ratio threshold. The details of
this greedy selection procedure are shown in Algorithm 1. Given a
coverage ratio CR and coverage radius ¢, we start with an empty
set A of anchor nodes and an empty set N¢oper of covered nodes
(Line 1). Here, we define that a node u is covered by a node v only
if u is in the c-hop subgraph of node v; otherwise, u is considered
uncovered by v. Then, we iteratively select a new anchor node that
covers the maximum set of uncovered nodes in its c-hop subgraph
Nc(v) (Line 3) and add these covered nodes to N¢oyer (Line 8) until
the size of N¢opper is no less than CR * |V| (Line 2).

The identified anchor nodes enable us to provide a unique node
description for other nodes in terms of their relative distance, cap-
turing both global and local structures within the graph.

4.1.2 Node Encoding. Given the identified anchor nodes A =
{a1,az,...,ax}, we encode the position of each node v with re-

spect to these anchors:
do = (v, do, ..., dg),

Vie{l,...,K},

(6)

d; = dist(v, a;), (7)

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Yanbiao Ji et al.

[Large Language Model

i A

Node Textual

Descriptions - '
given categories.

Task Instructions
Classify this node into

Language

[LoRA]]" Response
* .

Task Loss

Node Tokens

A

0

Anchor Node Euclidean Graph
Graph Data Identification Encoding Projection Tokenizer | () Tareet
2 Node
< 53
—> —> 1-hop—>E—> =l >3 2 Anchor
T @2 Node
Discrete Continuous

= 2-hop

Figure 1: Overview of our proposed NT-LLM approach. It consists of two steps: (1) Graph Tokenizer: We select key nodes as
anchors with a greedy algorithm and compute relative distances between nodes and these anchors to encode the graph structure.
The relative distances are then projected into a continuous Euclidean space while preserving the partial ordering of node
distances. (2) Task Tuning: We integrate the pretrained embeddings with a large language model using LoRA for task-specific
fine-tuning of the LLM, enhancing the performance of downstream graph understanding tasks.

Algorithm 1 Greedy Algorithm for Anchor Node Selection

Require: Graph G(V, &), target coverage ratio CR, coverage ra-
dius ¢
Ensure: Set of anchor nodes A
1: Initialize A « 0, Neoper < 0
2: while [N¢oger| < CR % |V| do

3: anchor « arg maX,e 4\ |Nc(0) \ Neover|
4: if |[Nc(anchor) \ N¢over| = 0 then

5: break

6: end if

7: A — AU {anchor}

8: Neover <= Neover U Ne(anchor)
9: end while
10: return A

where dist(v, a;) denotes the number of hops in the shortest path
between node v and anchor node a;.

Utilizing relative distance, we can approximate the shortest dis-
tance between any two nodes u and v in the graph defined as:

).

where &u [k] means the k-th element of &u. This approximation
estimates the distance by identifying the anchor node that provides
the minimal combined distance between u and v.

Note that our approximated shortest path distance may not be
the actual shortest path distance. However, d (u, v) actually serves
as an upper bound for the true shortest path distance between u
and 0. More formally, the error between the estimated distance and
real distance is bounded by the parameters c and CR:

d(w0) = (&u (k] + dy [K] ®)

min
ke{L..K}

LEMMA 4.1. Given any two nodes u,v from a graph, the error of
the estimated shortest path distance can be bounded by 2c with a
probability no smaller than 1 — (1 — CR)?, where c is the coverage
radius and CR is the coverage ratio.

1127

PROOF. Given node pair u,v from graph and a set of anchor
nodes A = {ay,ay,...,ax}, assume u is covered by an anchor
node, denoted as a*, then the shortest path distance between them
d(u,a*) < c. Without loss of generality, we assume d(u,a*) <
d(a*,v). Note that the following error bound still holds if d(u, a*) >
d(a*,v). The error of the estimated shortest path distance between
u, v is bounded by

err(u,v) = J(u, v) —d(u,v)
= minge a(d(u, a) +d(a,0)) — d(u,0)
<d(u,a") +d(a*,0) — d(u,0)
<d(u,a*) +d(a*,0) — |d(u,a*) — d(a*,v)|
=2d(u,a*) < 2¢

The error bound holds when either u or v are covered by anchor
nodes. When neither u nor v is covered, this error is unbounded. The
probability for this case is (1—CR)?2. Therefore, the probability that
the error of our estimated distance is bounded is 1 — (1 - CR)%. O

4.1.3 Euclidean Projection. While anchor-based encoding enables
the representation of spatial positions for nodes in a graph, it is
not directly applicable for positional embeddings in LLMs. This is
because shortest path distances in graph space do not correspond
to distances in Euclidean space, potentially distorting actual spatial
relationships. Next, we first elaborate on this argument and then
present our solution.

Mismatch between Shortest Path Distance and Euclidean
Distance. In LLMs, positional embeddings reflect the linear order of
tokens, where proximity in the sequence corresponds to closeness in
the embedding space, adhering to Euclidean-like assumptions. This
enables the model to capture local relationships: tokens near each
other in the input sequence are also close in the learned embedding
space, preserving context and meaning. However, as demonstrated
in Figure 2, when nodes 2 and 4 are set as anchor nodes, the shortest
path distances between nodes 2 and 3, as well as between nodes 1

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

Non-Eucilidean Space Eucilidean Space

(1,2)

(1,2) (1,1) doy=min(14+0,14+1)=1 . dys=V1+0=1
: dip=min(1+0,1+2) =1|| &f-----@ dis—VITI= V3
(0,1) (1,1)

d1,z = dz,a dl,z > dz,x

(0:1) (1,0)

1 o(1:0)

Figure 2: A toy example illustrating the discrepancy between
relative distance encoding in non-Euclidean graph space and
the required Euclidean space for LLM positional embeddings.

and 2, are both 1 in the graph’s non-Euclidean space. In contrast, the
corresponding Euclidean distances would be 1 and V2, respectively.
This discrepancy in relative distances between node pairs leads to
a mismatch between shortest path and Euclidean distances.

To address this issue, we propose a pretraining approach that
maps the distance encoding from non-Euclidean to Euclidean space,
aiming to preserve geometric relationships between nodes. The ne-
cessity of this mapping is further justified through ablation studies
in Section 5.6. The pretraining process involves a learnable func-
tion ¢ : RK — RN that projects the anchor-based encoding into
Euclidean space:

eo = ¢(dy) € RY ©)
where e, represents the transformed node embedding for node v.

To preserve geometric relationships among nodes in the embed-
ding space, we propose a rank-preserving training objective based
on maximum likelihood estimation. The objective is to maximize
the posterior probability p(®| >), where ® denotes the parameters
of the mapping function ¢, and > represents the desired order of
distances. Assuming independence for the ordering of each pair of
distances, we formulate the likelihood function as:

; ; 1(d(w,0)>d(i,])
p1= [p(dswo) > dyli o)
(u,0),(i,j) €&
; N H(d(u0)<d(0,])
(1-p(dpwo) > dyi io)) (10)

where d (u,v) denotes the estimated distance between nodes u and
v, and a?¢,(u, v) represents the Euclidean distance between their
corresponding mapped embeddings e, and e,. We can model the
probability of one distance being greater than another using the
logistic function o:

p (dg(w0) > dy(i DID) = 0 (huuiy(@), (1)

where %y, j(®) denotes the difference between the Euclidean
distances of the two pairs of mapped embeddings.

By maximizing the log-posterior, which is equivalent to mini-
mizing the negative log-likelihood function, we derive the rank-
preserving training objective:

D1 1d(w0) > d(i,) In (0, (©)
(u,0),(i,j) €&
+1(d(u,0) < d(i, /) In(1 = 0(%u,0,7(D))) (12)
This objective function encourages the ranking of distances be-

tween nodes in the embedding space to align with the ranking of
their corresponding shortest path distances in the graph.

min L =-—
(]

1128

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

To facilitate practical implementation, we reformulate the objec-
tive as a binary cross-entropy (BCE) loss:

2

(w,0),(i,j) €&

where y captures the relative ordering of distances:

min £ = BCE (0 (llex — eoll2 — llei —ejll2) ,y), (13)

1, ifd(wo) > d(, j),

0 (14)

otherwise.

y=1(d(u,0) > d(i, j)) = {

This pretraining approach ensures that the positional embed-
dings derived from graph structures are compatible with the Eu-
clidean assumptions of LLM architectures while preserving the
essential spatial relationships between nodes.

4.1.4 Time Complexity Analysis. The time complexity of the greedy
algorithm for anchor node selection can be analyzed in two parts:

Initialization. Each node performs a BFS to construct its c-hop
neighborhood, requiring O(|V|-|E|) time, where |V| is the number
of nodes and |&] is the number of edges in the graph. The c-hop
neighborhoods are stored for each node.

Anchor Selection. In each iteration, the algorithm selects an an-
chor and updates the coverage for remaining nodes. The worst-case
time complexity for this part is O(|'V|?). This is because:

1. Selecting an anchor requires examining all uncovered nodes
in each candidate’s c-hop neighborhood (O(|V|) in the worst case).

2. After selecting an anchor, the algorithm must update the un-
covered node counts for all other nodes’ c-hop neighborhoods that
overlap with the newly covered area (O(|V|) nodes to update, each
potentially affecting O(|V|) other neighborhoods).

The total time complexity is thus O(|V| - |&] + |V|?.

4.2 Task-Specific LLM Tuning

We now focus on adapting LLMs to leverage graph-based knowl-
edge for specific downstream tasks. Our approach integrates prompt
tuning with Low-Rank Adaptation (LoRA) for efficient and effective
task-specific fine-tuning.

4.2.1 Prompt Tuning. We employ prompt tuning to incorporate
pretrained graph-based knowledge into the LLM. This technique
introduces a small, trainable adapter layer that transforms our
pretrained anchor-based node embeddings to soft prompts. These
soft prompts serve as a learned prefix to the input, guiding the
model’s attention and output generation.

The generation process, including our prompt tuning adapter,
can be formally expressed as:

.
P00 (Y1G.q) = | | p(yily<i. lecs ers eq), (15)
i=1
where 0 denotes the frozen LLM parameters, ® represents the train-
able parameters of the prompt tuning adapters, eg is the pretrained
positional encoding derived from the graph structure, et is the
textual embeddings, and e4 represents the question designed for
corresponding graph tasks. The prompt tuning adapter is a shallow

neural network that maps the input embeddings to a sequence of

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Yanbiao Ji et al.

OGBN-arxiv OGBL-ddi OGBG-molhiv ExplaGraph
S Women | {Women |
Title:The Vector... IDTUQ 2 /Nitrogen (Oxygen and meny) bl
Abstract:We interact Atom | Atom | N isa rof
“ \ descr... - Carbon p N
Title:An Enha... (Drug 1 —rteract — Prug 5 bond ‘Atom ” Help the
Abstract:We Cite) p bon: L) Citizen cause;
i interact interact Carbon § country
descr... e — interac Atom ond
h . g Title:Toward... I Drug 3 \ (Drug4 \ﬁén (Carbon causes\ (4ove same| [Bein desire
cite Abstract: Work Atom rights combat
{ flow... \ = 5 &
Q B — f@) Q
G AP , Argument 1: ... Argument 2: ...
Classify this paper into List top 20 drug ids that may interact, Does this molecule inhibit HIV virus el
- Question: Do argument 1 and argument 2
ArXiv CS categories. with the given drug. replication or not?
support or counter each other?

) G2
ArXiv CS LG.

3,5,18,21... ‘

3

Counter. ‘

Figure 3: Illustration of dataset characteristics and LLM-based processing workflow for diverse graph-related tasks employed

in our experimental setup.

continuous prompt tokens. These tokens are prepended to the input
sequence before being processed by the LLM.

4.2.2 Low-Rank Adaptation (LoRA). To further enhance the LLMs’
adaptability to graph-structure data, we implement Low-Rank Adap-
tation (LoRA) [21] in conjunction with prompt tuning. LoRA mod-
ifies the weight update mechanism of the LLM by introducing
low-rank decomposition, allowing for efficient fine-tuning of the
model. For each weight matrix W € RAimixdim; i the LLM, we
introduce a low-rank update:

W’ =W +BA, (16)
where B € RU™MXT and A € R"™*4™2 are low-rank matrices with
rank r < min(dimj, dimy). This decomposition significantly re-
duces the number of trainable parameters, as r is typically much
smaller than dim; and dims.

During the training process, only A and B are updated while the
original weights W remain frozen. The update rule for the LoRA
parameters can be expressed as:

Ats1 = Ar —nVaL(0,As,By), (17)
Bir1 =B: —nVBL(6, A, By), (18)
where 7 is the learning rate, £ is the task-specific loss function,
and ¢ denotes the training iteration.
The combination of prompt tuning and LoRA in our approach
enables the model to effectively incorporate graph-structural knowl-
edge while adapting to various downstream tasks.

5 Experiments

We conduct extensive experiments to demonstrate the effectiveness

of our NT-LLM by investigating the following research questions:

e RQ1: Can NT-LLM outperform state-of-the-art methods in vari-
ous graph-related tasks?

e RQ2: What does node position encoding learn? Does it capture
the spatial information as intended?

e RQ3: How do different anchor selection strategies influence the
performance of NT-LLM?

e RQ4: What influence do different design choices have on NT-
LLM?

e RQ5: How does our tokenizer compare in efficiency to conven-
tional message-passing GNNs and graph transformers?

1129

5.1 Experimental Settings

5.1.1 Datasets. We evaluate our approach on diverse graph-based
tasks using benchmark datasets from Cora [55], the Open Graph
Benchmark (OGB) [22], and ExplaGraphs [54]. Our experiments
cover node classification with Cora and OGBN-arxiv, edge predic-
tion using OGBL-ddi, and graph property prediction employing
OGBG-molhiv?. Additionally, we assess knowledge graph question
answering tasks using the ExplaGraphs dataset. These datasets en-
compass a wide range of graph structures and task complexities,
allowing for a comprehensive evaluation of our method. Table 2
presents key statistics for each dataset, while Figure 3 illustrates
their characteristics in detail 3

Table 2: Dataset statistics and evaluation metrics. For OGBG-
molhiv and ExplaGraphs, #Nodes and #Edges counts repre-
sent averages across all graphs in the dataset.

Dataset #Nodes #Edges #Graphs Metric
Cora 2,708 10,556 1 Accuracy
OGBN-arxiv 169,343 1,166,243 1 Accuracy
OGBL-ddi 4,267 1,334,889 1 Hits@20
OGBG-molhiv 25.5 27.5 41,127 ROC-AUC
ExplaGraphs 5.17 4.25 2,766 Accuracy

5.1.2 Baselines. We evaluate our proposed method against various
baselines, including both traditional graph learning approaches and
LLM-based methods:

o GNN-based methods: We incorporate widely-adopted GNN ar-
chitectures, including Graph Convolutional Networks (GCN) [31],
Graph Attention Networks (GAT) [60], and GraphSAGE [19].
Besides, we also evaluate two graph transformer models: Graph-
Formers [65] and Heterformer [28].

o LLM-only methods: We consider approaches that process graph
information directly as textual sequences using LLMs. This cat-
egory includes implementations utilizing zero-shot inference,
prompt tuning [32], and Low-Rank Adaptation (LoRA) [21].

2For OGBG-molhiv, we use the SMILES strings representing molecules as textual
attributes, which are not directly provided by OGB.

3Cora, being a similar citation network to OGBN-arxiv, was omitted from Figure 3 to
avoid redundancy.

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Table 3: Main results on benchmark datasets. The best performance is highlighted in bold and the second best is underlined.
Aprompt and Apora represent the improvements over LLM prompt tuning and LoRA baselines, respectively. * indicates the
statistically significant improvements (i.e., two-sided t-test with p<0.05) over the compared baseline.

Method Cora OGBN-arxiv OGBL-ddi OGBG-molhiv ExplaGraphs
(Accuracyl) (Accuracyl) (Hits@20) (ROC-AUCT) (Accuracy?)
GCN [31] 0.8147 0.7360 0.3707 0.7606 -
GAT [60] 0.8352 0.7366 0.4133 0.7520 -
GraphSAGE [19] 0.8265 0.7295 0.5390 0.7558 -
GraphFormers [65] 0.8910 0.7431 0.5538 0.7414 -
Heterformer [28] 0.8761 0.7390 0.5482 0.7505 -
zero-shot 0.6490 0.5406 0.3384 0.6321 0.6679
prompt tuning [32] 0.7903 0.6971 0.3592 0.6554 0.8224
LoRA [21] 0.8194 0.7323 0.3918 0.7529 0.9296
GraphGPT [57] 0.9085 0.7637 0.5011 0.7851 0.9052
GraphTranslator [67] 0.9351 0.7748 0.5425 0.7764 0.9273
G-Retriever [20] 0.9148 0.7521 0.4573 0.6920 0.9231
G-Retriever LoORA 0.9350 0.7580 0.5296 0.7635 0.9240
GRAG [23] 0.9296 0.7492 0.4617 0.6698 0.9242
GRAG LoRA 0.9473 0.7554 0.5386 0.7309 0.9422
NT-LLM 0.9478 0.7525 0.5904 0.7531 0.9332
Aprompt 1 19.93%* 17.95%" 1 74.47%* 1 14.91%* 1 13.47%*
NT-LLM LoRA 0.9531 0.7752 0.6375 0.8045 0.9603
ALora 116.32%* 13.02%* 162.71%* 16.85%" 1 3.30%"

o GNN-LLM hybrid methods: We compare our approach with
state-of-the-art methods that integrate GNNs and LLMs. Specif-
ically, we include GraphGPT [57] and GraphTranslator [67],
which focus on text-attributed graph representation learning
with language models. Additionally, we compare our method
with G-Retriever [20] and GRAG [23], which are Graph Retrieval-
Augmented Generation (RAG) methods that combine GNNs and
LLMs for graph-based text generation tasks.

5.2 Implementation Details

We implement all models and experiments using PyTorch [47],
PyTorch Geometric [16], and the HuggingFace Transformers [64]
libraries. All experiments are conducted on two NVIDIA RTX 6000
Ada GPUs, each with 48GB memory.

5.2.1 Text and LLM Components. For encoding textual attributes,
we employ SentenceBERT [51]. The LLM component of all experi-
ments is based on the pretrained LLaMA3-8B [59]. We use LLaMA3-
8B in zero-shot (no fine-tuning), as well as in prompt-tuning and
LoRA-based fine-tuning settings. During LLM fine-tuning with
LoRA, we set the low-rank dimension to 8 and the scaling factor
to 16. Optimization uses AdamW [42] with a learning rate of le-4
and weight decay of 0.05. Fine-tuning runs for a maximum of 10
epochs with an early stopping patience of 3. The batch size is set
to 32 for OGBN-arxiv and OGBL-ddi, and to 2 for OGBG-molhiv
and ExplaGraphs, according to dataset size.

5.2.2 GNN-based Methods. Our baseline and hybrid GNN models
use a 4-layer architecture with hidden dimensions of 256, ReLU
activation, and a dropout rate of 0.5. Graph transformer baselines
utilize nested GAT architecture combined with transformer layers,
where each node uses 5 uniformly sampled neighbors as context.
Training runs using the AdamW optimizer for 500 epochs with

1130

an early stopping patience of 10, learning rate of 1e-3 and weight
decay of 5e-4.

5.2.3 NT-LLM Implementation. In the node tokenizing stage, we
set the anchor identification parameters as ¢ = 1 and CR = 0.7,
and map node encodings via a 3-layer MLP. In the LLM fine-tuning
stage, we following the settings in 5.2.1.

5.24 GNN-LLM Hybrid Baselines. For GNN-LLM hybrid methods,
we combine a 4-layer GAT with LLaMA3-8B, following the archi-
tecture and hyperparameter settings as described in their papers.

5.3 Main Results (RQ1)

Table 3 compares the performance of our proposed NT-LLM method
against baselines on five benchmark datasets on the corresponding
task, respectively.* We have the following key findings:

o NT-LLM consistently outperforms all baseline methods
across various tasks and datasets. This observation justifies
the superiority of NT-LLM and demonstrates its effectiveness
and broad applicability in graph learning.

e NT-LLM effectively addresses the challenge of enabling
LLMs to understand graph structures. In other words, NT-
LLM leverages the strengths of LLMs in understanding textual
attributes while benefiting from our proposed node position en-
coding to capture the graph topology. First, NT-LLM outperforms
pure LLM and GNN baselines on all datasets. This observation
demonstrates that understanding textual attributes and topology
are equally important for graph learning tasks. Second, when
fine-tuning NT-LLM with LoRA (fine-tuned NT-LLM), its perfor-
mance surpasses LLM-GNN hybrid approaches. This suggests
that NT-LLM is more effective at enabling LLMs to understand

4GNNs are unable to perform complex graph reasoning tasks in the ExplaGraphs
dataset, thus the corresponding cells are marked with -.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

(a) Before Pretraining (b) After Pretraining

Feature 2
Feature 2

-60 -40 -20 0 20
Feature 1

40 60 -30 -20 -10 0 10

Feature 1

40

Figure 4: Embeddings visualized before and after the transfor-
mation in pretraining on Cora dataset. The colors represent
the ground truth labels of nodes.

graph structures compared to intermediate solutions, i.e., LLM-
GNN hybrid approaches.

e The superiority of NT-LLM in graph understanding comes
from our proposed node position encoding. In particular,
the OGBL-ddi dataset lacks textual attributes. As we can see,
LLM methods perform worse than GNN baseline methods, which
highlights their limitations in capturing topological information
from graph data. Unlike LLM methods, our proposed NT-LLM,
despite not using GNNs, outperforms all baselines with over
60% improvement compared to LLM methods, demonstrating its
ability to effectively encode graph structure.

In conclusion, NT-LLM shows superior performance and adapt-
ability across various graph-related tasks and datasets. The improve-
ments over state-of-the-art baselines, even in the absence of textual
attributes, highlight the effectiveness of our proposed method in
capturing both textual and structural information.

5.4 Understanding Node Position Encoding
(RQ2)

To understand what node position encoding learns, in this section,
we provide visualization for the learned node position embedding
on the Cora dataset to gain further insights. We select this dataset
because, in Cora, nodes from the same class tend to be naturally
closer in the graph structure. This property allows us to directly
evaluate the quality of the node position embeddings by observing
how well they align with the class labels.

Figure 4 illustrates the embeddings before and after the transfor-
mation in positional embedding pretraining, shown against class la-
bels. Prior to the transformation, nodes belonging to the same class
can be separated distantly in the embedding space. However, after
applying the transformation, these nodes are effectively projected
into the same region, highlighting the efficacy of our pretraining ap-
proach in capturing the underlying semantic relationships among
nodes. For instance, the green dots, which are dispersed before the
transformation, become densely clustered afterward.

5.5 Anchor Selection Strategies Impact (RQ3)

Since anchor nodes offer a comprehensive view of the graph struc-
ture, different strategies for identifying anchor nodes may impact
NT-LLM’s ability to comprehend the graph. In this section, we con-
duct an extensive evaluation of various anchor selection strategies,
on three datasets, i.e., Cora, OGBN-arxiv and OGBL-ddi, using a

1131

Yanbiao Ji et al.

fixed seed and the NT-LLM architecture. Subsequently, the posi-
tional embeddings are pretrained following the same procedure
outlined in Section 4.1.3.

Table 4: Comparison of anchor selection strategies across
three datasets. The highest performance for each dataset is
shown in bold.

Strategy Cora OGBN-arxiv OGBL-ddi
Degree 0.9172 0.7312 0.5731
Random 0.8891 0.6783 0.5019
Closeness [3] 0.8931 0.6392 0.4852
Eigenvector [6] 0.8424 0.6105 0.4736
PageRank [46] 0.8703 0.6641 0.5127
Betweenness [17] 0.8539 0.6428 0.4967
HPLC [29] 0.9174 0.7411 0.5613
Ours 0.9478 0.7525 0.5904

Table 4 presents the experimental results. Our method achieves
the best performance among all evaluated strategies, surpassing
traditional centrality-based approaches (such as Degree and PageR-
ank [46]), random selection, and the landmark-based HPLC [29].

To provide a clearer insight into the advantage of our anchor se-
lection strategy, we compare the anchor nodes selected by different
strategies on Cora dataset in Figure 5. The anchor nodes selected by
our method are more evenly distributed across the graph structure.
In contrast, methods such as Degree, HPLC, Closeness, PageRank,
and Eigenvector focus on selecting “important” nodes but fail to pro-
vide broad coverage, particularly of nodes located at considerable
distances from the graph’s central area.

Closeness

PageRank Eigenvector Ours

Figure 5: Distribution of anchor nodes (marked in red) se-
lected by different strategies on the Cora dataset. Our method
achieves a more even distribution, effectively covering the

peripheral regions of the graph.
5.6 Ablation Studies (RQ4)

In this section, we conduct extensive ablation studies to investigate
the effectiveness of each component in NT-LLM, and justify our
model design choices.

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

Table 5: Performance comparison of NT-LLM variants across
four datasets. Best results for each dataset are in bold.

Variant Cora arxiv ddi molhiv ExplaGraphs
NT-LLM 0.9478 0.7525 0.5904 0.7531 0.9332
w/o PE 0.8070 0.6971 0.3592 0.6554 0.8224
w/o Pre 0.8195 0.6538 0.3791 0.6419 0.7671
w/o PT 0.7864 0.5904 0.3460 0.5834 0.7024

5.6.1 Impact of Model Components. NT-LLM has specific design
features, including the node position encoding, its corresponding
pretraining task, and two different strategies for LLMs to leverage
node position encoding, i.e., prompt tuning and low-rank adaptation.
We evaluate the performance of each variant of our model on five
datasets as follows:

e w/o PE: The NT-LLM without positional encoding, using raw
node features as input to the LLM.

e w/0 Pre: The NT-LLM without the distance transformation pre-
training module, using concrete anchor-based distances as node
position embeddings.

o w/0 PT: The NT-LLM without the prompt tuning module, directly
inputting all embeddings into the LLM.

Table 5 presents the results of the ablation study, which evaluates
the impact of removing individual components from the proposed
method. The observed performance drop across all datasets con-
firms the importance and complementary nature of each component
within the method. In particular, we observe that node position
encoding pretraining is critical for NT-LLM. The variant without
pretraining (w/o Pre) experiences a significant performance drop
when the pretraining module is removed, supporting our argument
in Section 4.1.3. This is due to the mismatch between shortest path
and Euclidean distances, which distorts actual spatial relationships.
Therefore, positional embedding pretraining is an indispensable
component of NT-LLM.

5.6.2 Impact of Hyperparameters. We investigate the impact of
two key hyperparameters in NT-LLM: the coverage radius ¢ and
the coverage ratio CR. Figure 6 presents the relationships between
these hyperparameters, model accuracy and the number of anchor
nodes. The results demonstrate that smaller values of ¢ and larger
values of CR generally lead to a better performance. This trend
aligns with the error bound established in Lemma 4.1. Notably, we
observed that the number of anchor nodes increases exponentially
as ¢ decreases and CR increases. This relationship underscores the
importance of carefully selecting these hyperparameters to balance
computational complexity and model performance.

5.7 Tokenizer Efficiency (RQ5)

The only trainable component in our proposed graph tokenizer is a
simple MLP, making it intuitively much more efficient than conven-
tional message-passing GNNs or graph transformers. To validate
this, we compare the efficiency of various graph tokenizers, includ-
ing our own, across multiple datasets. The results are summarized
in Table 6. The consistently lower number of trainable parameters
and training time demonstrate the efficiency of our tokenizer.

1132

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

(a) Cora Dataset (b) OGBN-arxiv Dataset

0955 0.760
0.950 0.755
> 0.945 L0750
9
© 0.940 ©
5 E 0.745
g 0.935 2 0740
0.930 —— c=1 —— c=1
— =2 0.735 — =2
0.925 —— c=3 0.730 == c=3
0.6 0.65 0.7 075 0.8 0.85 0.9 0.95 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio Coverage Ratio
600 | —&— c=1 35000 [—&— c=1
—— = —— c=
. =2 30000 =2
© 500 [—— =3 5 —— c=3
2 9 25000
g 400 g
> 2 20000
+ 300 =
<} 2 15000
5 5]
c 200 £ 10000
<
100 5000
0 0

0.6 065 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

0.6 065 0.7 0.75 0.8 0.85 0.9 0.95
Coverage Ratio

Figure 6: Effects of coverage radius (c) and coverage ratio
(CR) on model accuracy and the number of anchor nodes for
the Cora and OGBN-arxiv datasets. The top row shows the
impact on model accuracy, while the bottom row illustrates
the changes in the number of anchor nodes as c and CR vary.

Table 6: Comparison of different tokenization methods based
on the number of trainable parameters and training time.

Dataset Tokenizer Trainable Parameters Training Time

GAT 1.4M 2min
Cora GraphFormer 3.6M 10min
NT-LLM 0.3M <1min

GAT 21.7M 4h

OGBN-arxiv GraphFormers 49.2M 6h
NT-LLM 0.7M 10min
GAT 2.6M 3min
OGBL-ddi ~ GraphFormers 6.1IM 13min
NT-LLM 0.5M 1min

6 Conlusion

In the paper, we propose NT-LLM, an anchor-based graph posi-
tional encoding approach that enables efficient graph tokenization
for LLMs. Our method preserves crucial structural information
through anchor nodes selection without requiring extensive tex-
tual descriptions or complex GNNs. Evaluations across diverse
benchmarks demonstrate significant improvements across diverse
tasks from node classification to complex reasoning, confirming
the effectiveness and efficiency of our proposed NT-LLM method.

Acknowledgments

This paper is supported by NSFC (No. 62176155), Shanghai Munici-
pal Science and Technology Major Project, China, under grant No.
2021SHZDZX0102.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

GenAlI Usage Disclosure

This work utilizes Copilot to accelerate coding processes through
intelligent code suggestions, auto-completion, and boilerplate gen-
eration, while Large Language Models (LLMs) are employed ex-
clusively for spelling and grammar checks in paper writing. All
Al-generated content has undergone thorough human review.

References

[1] Ralph Abboud, Ismail ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2021.
The Surprising Power of Graph Neural Networks with Random Node Initializa-
tion. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, [JCAI-21. International Joint Conferences on Artificial Intelligence
Organization.

[2] Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. 2023. LLM Based Gen-
eration of Item-Description for Recommendation System. In Proceedings of the
17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore,
September 18-22, 2023. ACM.

[3] Alex Bavelas. 1948. A mathematical model for group structures. Human organi-
zation 7, 3 (1948), 16-30.

[4] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele
Corso, and Pietro Lié. 2021. Directional Graph Networks. In Proceedings of
the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR.

[5] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele
Corso, and Pietro Li6. 2021. Directional Graph Networks. In Proceedings of the 38th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 748-758.

[6] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering (NIPS’01). MIT Press.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation. Neural Computation (2003).

[8] Sudhanshu Chanpuriya and Cameron Musco. 2020. InfiniteWalk: Deep Network
Embeddings as Laplacian Embeddings with a Nonlinearity. Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2020).

[9] Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang.
2024. LLaGA: Large Language and Graph Assistant. In Proceedings of the 41st
International Conference on Machine Learning. PMLR.

[10] Sitao Cheng, Ziyuan Zhuang, and et al. 2024. Call Me When Necessary: LLMs
can Efficiently and Faithfully Reason over Structured Environments. In Find-
ings of the Association for Computational Linguistics ACL 2024. Association for
Computational Linguistics.

[11] Jeroen den Boef, Joran Cornelisse, and Paul Groth. 2021. GraphPOPE: Retain-

ing Structural Graph Information Using Position-aware Node Embeddings. In
DL4KG@ISWC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. 2024. Recurrent
Distance Filtering for Graph Representation Learning. In Proceedings of the 41st
International Conference on Machine Learning (Proceedings of Machine Learning
Research). PMLR, 11002-11015.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Ga Chechik,
and Haggai Maron. 2023. Graph positional encoding via random feature propa-
gation. In Proceedings of the 40th International Conference on Machine Learning
(ICML’23).

[15] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 2024. Talk like a Graph:
Encoding Graphs for Large Language Models. In The Twelfth International Con-
ference on Learning Representations.

Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. ArXiv abs/1903.02428 (2019).

[17] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.
Social Networks 1 (1978), 215-239.

Jiayan Guo, Lun Du, and Hengyu Liu. 2023. GPT4Graph: Can Large Language
Models Understand Graph Structured Data ? An Empirical Evaluation and Bench-
marking. CoRR abs/2305.15066 (2023).

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on

Neural Information Processin, Sg/stems (NIPS’17).
[20] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann

LeCun, Xavier Bresson, and Bryan Hooi. 2024. G-Retriever: Retrieval-
Augmented Generation for Textual Graph Understanding and Question An-
swering. arXiv:2402.07630 [cs.LG] https://arxiv.org/abs/2402.07630

[12

[13

[14

[16

[18

[19

Yanbiao Ji et al.

[21] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG] https://arxiv.org/
abs/2005.00687

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. 2024.
GRAG: Graph Retrieval-Augmented Generation. arXiv abs/2405.16506 (2024).
Yuntong Hu, Zheng Zhang, and Liang Zhao. 2023. Beyond Text: A Deep Dive
into Large Language Models” Ability on Understanding Graph Data. In NeurIPS
2023 Workshop: New Frontiers in Graph Learning.

Chao Huang, Xubin Ren, Jiabin Tang, Dawei Yin, and Nitesh Chawla. 2024.
Large Language Models for Graphs: Progresses and Directions. In Companion
Proceedings of the ACM on Web Conference 2024. 1284-1287.

Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei Chai,
and Qi Zhu. 2024. Can GNN be Good Adapter for LLMs?. In Proceedings of the
ACM Web Conference 2024 (WWW °24). Association for Computing Machinery.
Tomoki Ito and Shun Nakagawa. 2024. Tender Document Analyzer with the
Combination of Supervised Learning and LLM-based Improver. In Companion
Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, Singapore,
May 13-17, 2024. ACM.

Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2023. Heterformer: Transformer-
based Deep Node Representation Learning on Heterogeneous Text-Rich Net-
works. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (Long Beach, CA, USA) (KDD °23). Association for Computing
Machinery, New York, NY, USA, 1020-1031. https://doi.org/10.1145/3580305.
3599376

Minsang Kim and Seung Baek. 2024. Hierarchical Position Embedding of Graphs
with Landmarks and Clustering for Link Prediction. In Proceedings of the ACM
Web Conference 2024 (WWW °24).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale
for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for
Computational Linguistics.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-
ing: design provably more powerful neural networks for graph representation
learning. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS "20).

Yichuan Li, Kaize Ding, and Kyumin Lee. 2023. GRENADE: Graph-Centric
Language Model for Self-Supervised Representation Learning on Text-Attributed
Graphs. In Findings of the Association for Computational Linguistics: EMNLP 2023.
Association for Computational Linguistics, Singapore.

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Wai
Kin (Victor) Chan, and Jia Li. 2024. GLBench: A Comprehensive Benchmark for
Graph with Large Language Models. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang (Eds.).

Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning
Liu, and Jianyong Wang. 2024. FlexKBQA: A Flexible LLM-Powered Frame-
work for Few-Shot Knowledge Base Question Answering. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada. AAAI Press.

Xinyu Lin, Wenjie Wang, Yonggqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-
Seng Chua. 2024. Data-efficient Fine-tuning for LLM-based Recommendation.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Washington DC, USA) (SIGIR *24).
Guangyi Liu, Yongqi Zhang, Yong Li, and Quanming Yao. 2025. Dual Reasoning: A
GNN-LLM Collaborative Framework for Knowledge Graph Question Answering.
arXiv:2406.01145 [cs.CL] https://arxiv.org/abs/2406.01145

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved Baselines
with Visual Instruction Tuning. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 26286-26296. https://doi.org/10.1109/CVPR52733.

https://arxiv.org/abs/2402.07630
https://arxiv.org/abs/2402.07630
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1145/3580305.3599376
https://doi.org/10.1145/3580305.3599376
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://doi.org/10.1109/CVPR52733.2024.02484
https://doi.org/10.1109/CVPR52733.2024.02484

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

[40]

[41]

[42

[43]

[44]

[45

[46

[47]

(48]

[49]

[50]

[51]

[53

[54

[55]

[56]

2024.02484

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang,
Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi. 2025. Graph
Foundation Models: Concepts, Opportunities and Challenges. IEEE Transactions
on Pattern Analysis and Machine Intelligence 47, 6 (2025), 5023-5044. https:
//doi.org/10.1109/TPAMI.2025.3548729

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan. 2024. Reasoning on Graphs:
Faithful and Interpretable Large Language Model Reasoning. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024.

Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Lio. 2020. Path
integral based convolution and pooling for graph neural networks (NIPS "20).
OpenAl 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.
org/abs/2303.08774

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking : Bringing Order to the Web. In The Web Conference.
Adam Paszke and et al Gross. 2019. PyTorch: an imperative style, high-performance
deep learning library.

Bryan Perozzi, Rami Al-Rfou, and Steven S. Skiena. 2014. DeepWalk: online learn-
ing of social representations. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (2014).

Miao Qiao, Hong Cheng, and Jeffrey Xu Yu. 2011. Querying shortest path distance
with bounded errors in large graphs. In Proceedings of the 23rd International
Conference on Scientific and Statistical Database Management (SSDBM’11).

Hua Xuan Qin, Shan Jin, Ze Gao, Mingming Fan, and Pan Hui. 2024. Char-
acterMeet: Supporting Creative Writers’ Entire Story Character Construction
Processes Through Conversation with LLM-Powered Chatbot Avatars. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems, CHI 2024,
Honolulu, HI, USA, May 11-16, 2024. ACM.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, and Chao Huang. 2024. A
Survey of Large Language Models for Graphs. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Barcelona, Spain)
(KDD °24). Association for Computing Machinery, New York, NY, USA, 6616-6626.
https://doi.org/10.1145/3637528.3671460

Joshua Robinson and David Wingate. 2023. Leveraging Large Language Models
for Multiple Choice Question Answering. In The Eleventh International Conference
on Learning Representations.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit Bansal. 2021. Expla-
Graphs: An Explanation Graph Generation Task for Structured Commonsense
Reasoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
lagher, and Tina Eliassi-Rad. 2008. Collective Classification in Network Data. Al
Magazine 29, 3 (2008), 93-106.

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. 2024. WalkLM: a
uniform language model fine-tuning framework for attributed graph embedding.
In Proceedings of the 37th International Conference on Neural Information Processing
Systems (NIPS "23).

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

[57] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin,

and Chao Huang. 2024. Graphgpt: Graph instruction tuning for large language
models. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 491-500.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang.
2024. Higpt: Heterogeneous graph language model. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2842-2853.
Hugo Touvron, Louis Martin, and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. 2022. Power-
ful Graph Convolutional Networks with Adaptive Propagation Mechanism for
Homophily and Heterophily. In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAT
Press.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khy-
athi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, and
Hannaneh Hajishirzi. 2023. How Far Can Camels Go? Exploring the State of
Instruction Tuning on Open Resources. In Advances in Neural Information Pro-
cessing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 74764-74786.

Zhihao Wen and Yuan Fang. 2023. Augmenting Low-Resource Text Classification
with Graph-Grounded Pre-training and Prompting. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR "23). Association for Computing Machinery.

Thomas Wolf, Lysandre Debut, and et al. 2019. HuggingFace’s Transformers:
State-of-the-art Natural Language Processing. CoRR abs/1910.03771 (2019). http:
//arxiv.org/abs/1910.03771

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,
Amit Singh, Guangzhong Sun, and Xing Xie. 2021. GraphFormers: GNN-nested
transformers for representation learning on textual graph. In Proceedings of the
35th International Conference on Neural Information Processing Systems (NIPS °21).
Curran Associates Inc., Red Hook, NY, USA, Article 2206, 13 pages.

Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural
Networks. In International Conference on Machine Learning.

Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu,
Hong Liu, Cheng Yang, and Chuan Shi. 2024. GraphTranslator: Aligning Graph
Model to Large Language Model for Open-ended Tasks. In The Web Conference
2024.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi, Linyong Nan, Lyuhao Chen,
Yixin Liu, Xiangru Tang, Rui Zhang, and Arman Cohan. 2024. DocMath-Eval:
Evaluating Math Reasoning Capabilities of LLMs in Understanding Financial
Documents. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024. Association for Computational Linguistics.

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
graph embedding for asymmetric proximity. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI'17).

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. 2024. Efficient Tuning
and Inference for Large Language Models on Textual Graphs. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, I[JCAI-24.

https://doi.org/10.1109/CVPR52733.2024.02484
https://doi.org/10.1109/TPAMI.2025.3548729
https://doi.org/10.1109/TPAMI.2025.3548729
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3637528.3671460
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Positional Encoding
	2.2 LLMs in Graph-Related Tasks

	3 Preliminary
	4 Methodology
	4.1 Graph Node Tokenizer
	4.2 Task-Specific LLM Tuning

	5 Experiments
	5.1 Experimental Settings
	5.2 Implementation Details
	5.3 Main Results (RQ1)
	5.4 Understanding Node Position Encoding (RQ2)
	5.5 Anchor Selection Strategies Impact (RQ3)
	5.6 Ablation Studies (RQ4)
	5.7 Tokenizer Efficiency (RQ5)

	6 Conlusion
	Acknowledgments
	References

