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Abstract
User recommendation systems enhance user engagement by encour-

aging users to act as inviters to interact with other users (invitees),

potentially fostering information propagation. Conventional rec-

ommendation methods typically focus on modeling interaction will-

ingness. Influence-Maximization (IM) methods focus on identifying

a set of users to maximize the information propagation. However,

existing methods face two significant challenges. First, recommen-

dation methods fail to unleash the candidates’ spread capability.

Second, IM methods fail to account for the willingness to interact.

To solve these issues, we propose two models named HeteroIR and

HeteroIM. HeteroIR provides an intuitive solution to unleash the

dissemination potential of user recommendation systems. HeteroIM

fills the gap between the IM method and the recommendation task,

improving interaction willingness and maximizing spread cover-

age. The HeteroIR introduces a two-stage framework to estimate

the spread profits. The HeteroIM incrementally selects the most

influential invitee to recommend and rerank based on the num-

ber of reverse reachable (RR) sets containing inviters and invitees.

RR set denotes a set of nodes that can reach a target via propa-

gation. Extensive experiments show that HeteroIR and HeteroIM

significantly outperform the state-of-the-art baselines with the p-

value<0.05. Furthermore, we have deployed HeteroIR and HeteroIM

in Tencent’s online gaming platforms and gained an 8.5% and 10%

improvement in the online A/B test, respectively. Implementation

codes are available at https://github.com/socialalgo/HIM.

CCS Concepts
• Information systems→ Social networks; Social recommen-
dation.
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1 Introduction
Recommendation systems operated by providing a list of candi-

dates to users are widely deployed, from social media [2, 16, 32] to

e-commerce [18, 23, 36] and online gaming platforms [25, 26, 37, 40–

42]. User recommendation systems, as one of the existing manners,

primarily focus on encouraging more users (inviters) to invite other

users (invitees) to increase overall engagement. For instance, team

recommendations in online gaming platforms, which suggest po-

tential friends for collaborative gameplay, can significantly enhance

user engagement and retention [20, 22].

In addition to the aforementioned benefits, user recommendation

systems can significantly foster the propagation of information [16,

29]. To promote up-to-date gameplay mechanics, online gaming

platforms frequently employ both external advertisements [13] and

in-game events with incentives [17]. External advertising, however,

is often costly and may yield insufficient returns on investment [1].

In contrast, in-game activities that motivate users to invite friends

can effectively propagate information across social networks, as

users aremore inclined to accept information from acquaintances [3,

5, 11]. In in-game activities, recommendation systems assist users

in deciding whom to invite, facilitating easier participation for

users and improving engagement. As a result, the recommendation

tailored to user preferences can achieve broader dissemination

without incurring additional advertising costs.

To make the recommendations align with user preferences, ex-

tensive click-through rate (CTR) models have been developed [12,

31, 35, 43, 44]. These methods mainly focus on designing different

feature interaction methods to improve prediction accuracy. For

instance, AutoInt [31] employs an attention mechanism to learn

and weigh the importance of different features dynamically, and
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Eulernet [35] learns feature interactions in a complex vector space

by conducting space mapping according to Euler’s formula. All

these recommendation models perform well in scenarios where

only the user’s click action is required. However, in user recom-

mendation, a broader information propagation is significant. The

aforementioned models fail to unleash the spread potential. Specif-

ically, invitees have the potential to become inviters themselves

and subsequently dominate further invitation activities, leading to

broader dissemination.

To fully leverage the capabilities of user recommendation sys-

tems in information dissemination, it is essential for the recommen-

dation to consider the invitees’ spread capability. Zhang et al. [40]

propose a model RR-OPIM+, which incrementally selects invitees

with the highest spread capability and recommends them to in-

viters. While this approach can recommend the invitees with the

highest spread capability, it fails to take into account the inviters’

willingness to interact, which may lead to ineffective recommenda-

tions. Indeed, the solution to maximize the spread coverage while

maintaining interaction willingness remains a significant obstacle,

highlighting a critical area for improvement.

Figure 1: Schematic presentation of the optimal recom-
mended list of user 𝑎. Recommending users 𝑐 and 𝑓 to user
𝑎 fosters the largest spreading coverage if each user only
shares information with up to two friends. The thickness of
the edges signifies the likelihood of interaction occurring.

To overcome such a challenge, it is essential to account for spread

capability and interaction willingness simultaneously. As illustrated

in Figure 1, we present the optimal recommendation candidates

(orange) for user 𝑎, which includes users 𝑐 and 𝑓 . The reasons are

as follows: (i) user 𝑎 has the potential to interact with user 𝑐 and 𝑓 ,

(ii) users 𝑐 and 𝑓 possess strong spread capability, and (iii) users 𝑐

and 𝑓 can spread to different groups of people which can maximize

the secondary spread coverage in global.

Contributions. In light of the aforementioned limitations, we

aim to empower the conventional recommendation methods with

spread potential and bridge the gap between the IMmethods and the

recommendation task. To accomplish this, we propose two models

called HeteroIR (Heterogeneous Influence-based Recommendation)

and HeteroIM (Heterogeneous Influence-Maximization Recommen-

dation), which achieve the goals above, respectively. The core idea of

HeteroIR is to integrate the spread capability into the quantification

of recommended profits, while HeteroIM takes the heterogeneous

interaction willingness into the ranking of the candidates. Our new

recommendation algorithms aim to introduce a broader informa-

tion propagation while preserving the accuracy and efficiency of

the recommendations. To begin, we present a spread influence algo-

rithm, HeteroInf (Heterogeneous Influence), to estimate the spread

capability. Furthermore, we introduce a model-agnostic framework,

HeteroIR, to quantify the spread profits of the recommendations

given. Moreover, we develop an IM framework empowered by

shared RR sets to quantify the likelihood of each user pair inter-

acting, which fulfills the recommendation with both high spread

capacity and interaction willingness.

We experimentally evaluate the HeteroIR and HeteroIM pro-

posed against seven representative competitors on three datasets.

The results show our algorithms outperform the competitors in

terms of the spread metric NSpread@K and the recommendation

metric Recall@K and NDCG@K. Furthermore, we deploy our so-

lutions in two real-world scenarios on Tencent’s online gaming

platforms. Here, we estimate the number of invitees in secondary

spread times, secondary spread ratio, and retain ratio. Compared

with the baseline model, relative improvements of up to 10%, 9.64%,

and 14.83% are achieved in corresponding evaluation metrics, re-

spectively.

To summarize, we make the following contributions in this work:

• We propose HeteroIR, an intuitive recommendation algorithm

that effectively integrates the spread influence with interaction

willingness.

• We introduce HeteroIM, a recommendation algorithm grounded

in influence maximization, designed to fill the gap between influ-

ence maximization and recommendation tasks.

• We validate the performance of the HeteroIR and HeteroIM in

three datasets, which outperforms the state-of-the-art baselines

in both the spread task (NSpread@K) and the recommendation

tasks (Recall@K and NDCG@K).

• We have deployed the HeteroIR and HeteroIM to two user rec-

ommendation events in Tencent’s online games, achieving sig-

nificant improvements compared with the baseline model.

2 PRELIMINARIES
This section introduces the in-game user recommendation task and

the problem formulated in the work.

2.1 In-Game User Recommendation
On Tencent’s online gaming platforms, the service provider regu-

larly organizes invitation-based activities to foster user interactions

and enhance user engagement. Before an event, the service provider

selects a set of users V𝑖 as the inviters and a set of users V𝑒 as

the invitees. For each inviter 𝑢 ∈ V𝑖 , a limited number of friends

are selected in terms of specific recommendation algorithms. As

the event commences, each inviter receives the event details and a

recommendation list that includes invitees encouraged to interact.

Since receiving the invitation from the inviter 𝑢, the invitee 𝑣 is

notified and has a chance to decide whether to accept the invitation.

Once accepted, a valid recommendation from 𝑢 to 𝑣 is conceived.

2.2 PROBLEM FORMULATION
In a directed and weighted attributed Graph𝐺 = (𝑉 , 𝐸, P,U), let𝑉 =

{𝑣1, 𝑣2, ..., 𝑣𝑁 } be a set of nodes and 𝐸 be a set of edges. P ∈ R𝑁×𝑁

represents the weighted adjacency matrix where 𝑃𝑢𝑣 denotes the

probability user 𝑢 invites user 𝑣 and U ∈ R𝑁
represents the node

attribute vector where 𝑈 𝑗 denotes the probability user 𝑗 accept the

invitation from any inviters.
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Figure 2: The overall framework of our proposed methods. Panel (A) illustrates the diffusion process in user recommendation,
which consists of the invite and accept stages. Panel (B) shows the learning of user behaviors, where the invite rate and accept
rate are modeled independently. Panel (C) depicts the details of the HeteroIR and HeteroIM. In HeteroIR, we first estimate the
spread influence by HeteroInf, which is further extended to the ranking function 𝛽. For HeteroIM, we estimate the spread
influence based on the RR sets and further rerank the candidates based on the number of Shared RR sets (SRR) 𝜌 .

Problem 1 (Recommendation With Influence Maximization

(RIM)). The task of RIM involves giving a capacity-limited recom-

mend list to gain a broader spread coverage while maintaining

interaction willingness in attributed graph 𝐺 = (𝑉 , 𝐸, P,U).

User recommendation plays a pivotal role in information propa-

gation as information can propagate on the social network through

interactions among users. These activities foster interactions and

enable the exchange of information among users, enabling those

who are unfamiliar with the information to be informed. Besides

the direct interactions between inviters and invitees, invitees also

possess the potential to become inviters themselves, motivated by

incentives. The invitees’ potential in dissemination generates a

ripple effect, enabling information to propagate swiftly throughout

the social network and ultimately culminating in a viral market-

ing campaign. By optimizing the recommendation algorithms, we

can propagate information more efficiently while maintaining the

effectiveness of the recommendations given.

3 FRAMEWORK
In this section, we introduce two methods to cope with the RIM

problem, and the framework is shown in Figure 2. Section 4.1 briefly

illustrates the diffusion model under the user recommendation and

corresponding spread probability modeling. Section 4.2 delves into

the recommendation algorithm that integrates spread influence.

Section 4.3 elaborates on the recommendation with influence maxi-

mization.

3.1 Spread Probability Modeling
Diffusion Model. In game-social scenarios, the completion of a

spread involves both an invitation from the inviter and the invitee’s

acceptance, as shown in Figure 2A. We abstract this two-stage task

as a diffusion model as follows:

(1) Inviter 𝑢 sends an invitation to friend 𝑣 with probability 𝑃𝑢𝑣 .

(2) Invitee 𝑣 accepts an invitation from any inviters with𝑈𝑣 .

(3) The probability of social diffusion happens 𝑆𝑢𝑣 among (𝑢, 𝑣) is
characterized by 𝑃𝑢𝑣𝑈𝑣 .

User Behavior Learning. By collecting the inviting and accepting
data from the dataset, two models are trained for the prediction of

invite probability 𝑃𝑢𝑣 and accept probability𝑈𝑣 respectively. The

heterogeneous spread probability 𝑆𝑢𝑣 among the user pair (𝑢, 𝑣)
equals 𝑃𝑢𝑣𝑈𝑣 .

3.2 Recommend With Spread Influence
Based on the diffusion model and spread probability predicted

above, we can estimate the spreading influence 𝐼 (𝑢) of each user 𝑢

in the network. We first define the spread influence as follows:

Definition 1 (Spread Influence 𝐼 ). Given a social network

𝐺 = (𝑉 , 𝐸). For any user 𝑢 ∈ 𝑉 , the spread influence 𝐼 (𝑢) is defined
as the expected number of users influenced by user 𝑢.

We collect user logs from two incentive propagation events in

Tencent’s first-person shooter game. Specifically, we find that each
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user has 50 friends on average, while the spread influence on av-

erage is 16 times smaller. Moreover, we observe that the user’s

friend number and spread influence share a low correlation, with a

Pearson correlation [6] equal to 0.06.

Observation 1 (Low spread influence). The spread influence

of the user in the game social network is far less than the number

of friends, while sharing a low correlation.

The observation above indicates that the spread capability is

limited compared to the friend number in game social networks

where the methods [19, 38, 39] fully considering the local structure,

overestimate the spread influence in real scenarios.

Heterogeneous Influence Algorithm. Motivated by this obser-

vation, we design a heterogeneous influence algorithm, HeteroInf,

to evaluate the spread influence of each user with interaction ca-

pability𝑤 limited. Firstly, we select a set of out-neighbors 𝑁𝑤
𝑢 of

user 𝑢 with the spreading probability 𝑆𝑢,𝑣 ranked top𝑤 among all

the neighbors. Secondly, the influence of user 𝑢 is characterized by

the sum of the spread probability from 𝑢 to the user in 𝑁𝑤
𝑢 . The

HeteroInf for the node 𝑢 aggregating𝑤 neighbors is formulated as

Equation 1:

𝐼𝐻 (𝑢) =
∑︁

𝑣∈𝑁𝑤
𝑢

𝑃𝑢𝑣𝑈𝑣 (1)

where 𝑃𝑢𝑣 denotes the invite probability and𝑈𝑣 denotes the accept

probability of user 𝑣 .𝑤 is the interaction capability.

Heterogeneous Influence-based Recommendation. By taking

the spread influence of the invitees and the personalized behavior

from both parties, we introduce an algorithm named HeteroIR.

The ranking function 𝛽𝑢𝑣 is shown in Equation 2. This equation

illustrates the profits of recommending candidate 𝑣 to user𝑢, which

consists of two components: 𝑃𝑢𝑣𝑈𝑣 represents the probability of

first-order influence from 𝑢 to 𝑣 happens, while 𝑃𝑢𝑣𝑈𝑣𝐼 (𝑣) captures
the profit of secondary influence facilitated by candidate 𝑣 . 𝐼𝐻 (𝑣)
denotes the spread influence of user 𝑣 estimated by HeteroInf.

𝛽𝑢𝑣 = 𝑃𝑢𝑣𝑈𝑣︸︷︷︸
1st-IF

+ 𝑃𝑢𝑣𝑈𝑣𝐼𝐻 (𝑣)︸        ︷︷        ︸
2nd-IF

(2)

3.3 Recommend With Influence Maximization
Despite HeteroIR’s incorporation of spreading influence, it over-

looks the issue of spreading overlap among the suggested invitees,

as the invitees 𝑏 and 𝑐 recommended spread to the same person

shown in Figure 2C. Moreover, existing IM methods fail to consider

the interaction willingness. To further maximize the spread cover-

age while maintaining interaction willingness, we propose a het-

erogeneous influence-maximization recommendation, HeteroIM,

making the IM framework cater to the demands of recommendation

tasks. Prior to HeteroIM, we first define the Reverse reachable set

(RR set) proposed by Borgs et.al [4].

Definition 2 (RR set). Given a graph𝐺 = (𝑉 , 𝐸) and a diffusion
model𝑀 , a random RR set 𝑅𝐺,𝑀 is a set of nodes, generated by (𝑖)
randomly selecting 𝑣 ∈ 𝑉 as source node; (𝑖𝑖) reversly sampling

the set 𝑅𝐺,𝑀 of nodes that can spread to 𝑣 in terms of𝑀 .

In the maximization framework based on the RR set, the spread

capability of user 𝑢 can be gauged by the number of RR sets cov-

ering 𝑢 [40]. Firstly, we generate a number of RR sets R𝐺,𝑀 with

Algorithm 1: HeteroIM (𝐴, 𝑁,R𝐺,𝑀 , 𝑘)
1 while 𝑁 ≠ ∅ do
2 calculate the covered times of each node 𝑐𝑖 by R𝐺,𝑀 ;

3 𝑢 ← argmax𝑢∈𝑁 𝑐𝑢 ⊲ select the most influential user;

4 foreach neighbor 𝑣 of 𝑢 do
5 𝐿[𝑣] ← 𝑢 ⊲ recommend 𝑢 to the user 𝑣 ;

6 𝑆 [𝑣] ← [𝜌𝑢𝑣, 𝑐𝑢 ] ⊲ 𝜌𝑢𝑣 : # SRR of 𝑢 and 𝑣 ;

7 𝑁 ← 𝑁 \𝑢; R𝐺,𝑀 ← R𝐺,𝑀\R′G,M ;

8 foreach 𝑢 ∈ 𝐴 do
9 sort 𝐿[𝑢] by 𝑆 [𝑢] [0] then 𝑆 [𝑢] [1] descending ⊲ Rerank;

10 select top 𝑘 user in 𝐿[𝑢] as the recommended of user 𝑢;

IC model [10] and heterogeneous spread probability (HSP) 𝑆𝑢𝑣
elaborated in Section 4.1. HSP considers the personalized interac-

tion probability instead of homogeneous probability [4, 40]. The

RR set number generated 𝑅𝑁 follows the RR-OPIM+ [40] as shown

in Equation 3:

𝑅𝑁 = 2
𝑖𝑚𝑎𝑥 · 𝜃, (3)

where

𝑖𝑚𝑎𝑥 =

⌈
log

2

𝑛𝑝

𝑘 · 𝜒 · 𝜖2

⌉
(4)

𝜃 = 2 ·
(
1

2

√︃
ln

6

𝛿
+
√︂

1

2
·
(
ln

(∏
𝑢∈𝐴

( |𝐶𝑢 |
𝑘

) )
+ ln 6

𝛿

))2
(5)

𝐴 denotes the inviter set, 𝑛𝑝 denotes #nodes in 𝐺 , 𝑘 denotes

recommendation length, 𝛿, 𝜖 denotes error constant, 𝜒 denotes the

size of inviter set, and 𝐶𝑢 denotes the out-degree of the user 𝑢.

Definition 3 (Shared RR set). Given a set of RR sets R𝐺,𝑀 ,

the subset R′𝐺,𝑀 ⊆ R𝐺,𝑀 containing both node 𝑖 and node 𝑗 is

denoted as the shared RR sets (SRR) of node 𝑖 and node 𝑗 .

To avoid sampling bias introduced by source nodes. We utilize

a uniform sampling (US) strategy. Specifically, we select each
node as the source node to perform RR sets generation for

⌊
𝑅𝑁
𝑁

⌋
times. Moreover, we select the first-order neighbor of 𝐴 to get the

candidate set 𝑁 . Subsequently, we take the RR sets R𝐺,𝑀 as input

for the following HeteroIM algorithm. HeteroIM can be divided into

two steps: (𝑖) Generate recommendation lists 𝐿 based on R𝐺,𝑀 ; (𝑖𝑖)
Rerank the recommendations based on the number of shared RR

sets. The pseudocode for HeteroIM can be shown in Algorithm 1.

The graphic representation for the HeteroIM algorithm is de-

picted in Figure 2C. After the sample of R𝐺,𝑀 , user 𝑏 is the most

influential candidate as it is covered by the most RR sets. Hence,

we first recommend user 𝑏 to 𝑎 and remove the RR sets covering 𝑏

to decrease the spread overlap. Further, we recommend the user 𝑑

to user 𝑎 based on the RR sets remained.

To align the recommendations given by IM methods with in-

teraction willingness, we rerank the recommendations based on

the quantity of shared RR sets 𝜌 . The user pair shares more RR

sets, exhibiting a higher interaction probability. Hence, we first

recommend user 𝑑 to user 𝑎, then recommend user 𝑏 to user 𝑎.

4 EXPERIMENTS
This section presents the experimental evaluation of HeteroIR and

HeteroIM on multiple datasets to answer the following questions:
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• RQ1: Do our proposed HeteroIR and HeteroIM improve upon

existing state-of-the-art recommenders considering recommen-

dation and IM methods across various experimental settings?

• RQ2: Are the key components in our HeteroIR and HeteroIM

delivering the expected performance gains?

• RQ3: Does the Influence algorithm HeteroInf perform better

compared with the existing influence methods?

• RQ4: Do HeteroIR and HeteroIM gain improvement when de-

ployed online?

4.1 Experimental Setups
Datasets. We conduct evaluations of HeteroIR and HeteroIM on

three datasets as shown in Table 1. TXG: This dataset contains
user relationships in the Tencent game platform and corresponding

invite and accept behavior among these relationships and users.

Twitter [7]: This dataset is a widely used spread dataset which con-

sists of user relationships in Twitter platforms and corresponding

interaction behaviors among users, such as mention.

Table 1: Dataset statistics (𝑴 = 106).

Dataset #nodes (n) #edges (m) #spreads (s)

TXG-A 109.1𝑀 177.1𝑀 62.4𝑀

TXG-B 131.6𝑀 211.4𝑀 43.2𝑀

TXG-C 115.5𝑀 179.4𝑀 35.2𝑀

Twitter 0.46𝑀 14.9𝑀 0.15𝑀

Dataset Cleaning. For TXG datasets, we collect logs from the

friendship-centric social event in Tencent’s first-person shooter

game. The dataset is bifurcated into two parts: (𝑖) An Exposure-

Invitation dataset comprising tuples (𝑢, 𝑣,𝑇𝑢,𝑣, 𝑃𝑢,𝑣), which signifies
that the invitee 𝑣 was exposed to the inviter 𝑢 at timestamp 𝑇𝑢,𝑣
with an invitation from 𝑢 to 𝑣 issued if 𝑃𝑢,𝑣 = 1; (𝑖𝑖) An acceptance

dataset containing tuples (𝑣,𝑈𝑣), indicating that the target user 𝑣
received the invitation from one of the inviters end with acceptance

if𝑈𝑣 = 1. For the Twitter dataset, we take the mentioned action as

the spread process, once user 𝑢 mentions 𝑣 in a tweet, the spread

from 𝑢 to 𝑣 is conceived.

Spread Probability Modeling. For TXG datasets, we trained two

EulerNet [35] models on the TXG-A dataset to predict 𝑃𝑢𝑣 and𝑈𝑣

based on the user profile features. Further, we validated on the

TXG-B and TXG-C datasets. We divided the TXG-A dataset into

training, validation, and testing sets using an 8:1:1 ratio.

For the Twitter dataset, we first split the spreader into training

and testing using an 8:2 ratio. Further, we sample the effective

spread trajectory originating from the user in the training set as

positive samples, the edges originating from the node in the training

set without spread as negative samples, keeping a 1:1 ratio. Finally,

we utilize EulerNet to fit the spread probability 𝑆𝑢𝑣 based on the

pre-trained network embedding, Deepwalk [27, 28], with 64-dim.

Evaluation Protocols and Metrics. To ensure a comprehensive

evaluation, we conduct an evaluation on both the spread and rec-

ommendation tasks. For the spread task, we introduce a metric,

Spread@K, which denotes the effective spread coverage for the

given candidates. Specifically, this metric evaluates the effective

first-order spread from the inviter to the top 𝑘 candidates, plus

the spread coverage originating from the top 𝑘 candidates recom-

mended. Noticeably, the spread coverage is deduplicated. To make

the value comparable, we normalized the Spread@K by ISpread@K,

which denotes the upper limit of the spread coverage given 𝑘 can-

didates, as NSpread@K. Here, we select 𝑘 friends generating the

largest spread coverage for each user. The spread coverage origi-

nated from the sets comprising all these 𝑘 friends as the ISpread@K.

The graph representation for the calculation of NSpread@K is

illustrated in Figure 3. For example, considering 𝐾 = 1, the optimal

recommended friends for users X and Y are X-#3 and Y-#3 as X-

#3 and Y-#3 spread broader compared with other neighbors. The

ISpread@1 first contains X-#3 and Y#3 as they are spread by X and

Y successfully. Furthermore, X-#3 spreads to B, C, and D while Y-#3

spreads to F and G. Hence, ISpread@1 equals to 7. In the Tencent

Games recommendation scenario, the average click times of a user

with a click action is 3. Hence, we consider 𝐾 = 1, 2, 3.

X

Recommend list# 1 # 2 # 3 # 1 # 2

A B C D GF

Inviter

Secondary Spread

Y

# 3

S@1 = |{X-#1,A}∪{Y-#1,D}| = 4

IS@1 = |{X-#3,B,C,D}∪{Y-#3,F,G}| = 7

NS@1 = S@1 / IS@1 = 4/7

S@2 = |{X-#1,A,X-#2}∪{Y-#1,D}| = 5

IS@2 = |{X-#3,B,C,D,X-#1,A}∪{Y-#3,F,G,Y-#1,D}|=10

NS@2 = 5/10

E

Figure 3: Graphical representation for the calculation of
NSpread@K. #𝑖 denotes the invitee in the 𝑖-th exposure po-
sition. The orange denotes the invitee who was invited and
accepted the invitation. The green denotes the invitee who
was not invited or was being invited, but without acceptance,
which should not be taken into account for Spread@K. The
NSpread@K is a normalized value of the Spread@K that
compares the actual secondary spread coverage of a recom-
mendation list to the Ideal spread coverage ISpread@K.

For the recommendation task, we use twowidely adopted ranking-

basedmetrics: Recall@N andNDCG@N,whichmeasure themodel’s

effectiveness in user ranking.

Baselines. We evaluate the effectiveness of our HeteroIR and Het-

eroIM in the spread and recommendation tasks with the state-of-

the-art IM and recommendation methods. The IM methods focus

on identifying a small number of influential users to maximize

the information propagation, and we adopt widely-used IMM [34],

OPIM-C [33], RR-OPIM+ [40] as the IM-based baselines. The rec-

ommendation methods focus on modeling the interaction probabil-

ity between each user pair, and we adopt Personalized PageRank

(PPR) [24], and supervised methods such as AutoInt [31], Final-

Net [44], EulerNet [35] as recommendation baselines.

To validate the HeteroInf proposed, structural-based influence

methods (Degree [38], Coreness [21], Windex [39]), simulation-

based methods (MC influence [19]), and learning based methods

(LR influence [9], TOPSIS [8], DeepInf [28]) are adopted as baselines.

For fair comparison, we set HeteroIM, OPIM-C [33], and RR-

OPIM+ [40] with 𝜖 = 0.1 and 𝛿 = 1/𝑛. We determine the hyperpa-

rameters𝑤 for HeteroIR through grid search.
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Table 2: Recommendation performance Improvement of all models on different datasets in terms of NSpread@K, Recall@K,
and NDCG@K. The best performances are highlighted in bold, and the second-best are underlined. The superscript * indicates
the Improvement is statistically significant where the p-value is less than 0.05.

Dataset TXG-B TXG-C Twitter

Model NS@1 NS@3 R@1 R@3 N@1 N@3 NS@1 NS@3 R@1 R@3 N@1 N@3 NS@1 NS@3 R@1 R@3 N@1 N@3

IMM [34] 0.3457 0.5254 0.1654 0.4599 0.2255 0.3008 0.3952 0.5711 0.2849 0.5805 0.3465 0.4232 0.1846 0.2876 0.0938 0.1833 0.1173 0.1537

OPIM-C [33] 0.3480 0.5269 0.1724 0.4653 0.2322 0.3087 0.3976 0.5732 0.2902 0.5861 0.3534 0.4302 0.1818 0.2955 0.0972 0.1906 0.1212 0.1594

RR-OPIM+ [40] 0.3520 0.5310 0.1798 0.4659 0.2399 0.3154 0.3999 0.5767 0.2977 0.5871 0.3606 0.4368 0.1792 0.2991 0.0946 0.1922 0.1188 0.1595

PPR [24] 0.3255 0.4688 0.1453 0.3193 0.1924 0.2798 0.3742 0.5134 0.2632 0.4396 0.3141 0.4022 0.1640 0.3372 0.1121 0.3395 0.1359 0.2520

AutoInt [31] 0.3879 0.5548 0.1922 0.4935 0.2500 0.3375 0.4369 0.6022 0.3102 0.6149 0.3711 0.4596 0.2234 0.4007 0.2721 0.4894 0.3140 0.4142

FinalNet [44] 0.3925 0.5579 0.1986 0.5037 0.2578 0.3487 0.4411 0.6054 0.3166 0.6260 0.3791 0.4704 0.2249 0.4071 0.2817 0.4985 0.3261 0.4244

EulerNet [35] 0.3949 0.5598 0.2021 0.5117 0.2619 0.3532 0.4435 0.6081 0.3202 0.6325 0.3832 0.4758 0.2258 0.3973 0.2849 0.4944 0.3302 0.4237

HeteroIR 0.4253
∗

0.5813
∗

0.2278
∗

0.5254
∗

0.2959
∗

0.3822
∗

0.4712
∗

0.6295
∗

0.3466
∗

0.6477
∗

0.4173
∗

0.5034
∗

0.2432
∗

0.4185
∗

0.2933
∗

0.5095
∗

0.3402
∗

0.4375
∗

HeteroIM 0.4398∗ 0.5979∗ 0.2303∗ 0.5478∗ 0.2998∗ 0.3878∗ 0.4849∗ 0.6443∗ 0.3505∗ 0.6701∗ 0.4204∗ 0.5065∗ 0.2445∗ 0.4222∗ 0.3655∗ 0.5721∗ 0.4284∗ 0.5102∗

Best Imprv. ↑11.39% ↑6.79% ↑13.96% ↑7.06% ↑14.50% ↑9.80% ↑9.33% ↑5.94% ↑9.47% ↑5.94% ↑9.71% ↑6.45% ↑8.28% ↑3.71% ↑28.29% ↑14.76% ↑29.73% ↑20.22%

4.2 Performance Comparison (RQ1)
To validate the proposed recommendation models, we compare the

performance of each model in spread and recommendation task.

Spread Evaluation. Table 2 shows the NSpread@K of different

algorithms. The recommendations given by the HeteroIR spread

broader than the probability given by recommendation models

since the HeteroIR takes the spreading capability of candidates into

consideration. By leveraging the spreading overlap among candi-

dates, HeteroIM gets the best performance, consistently showing

the spread overlap among the candidates.

Recommendation Evaluation. For the evaluation of the rec-

ommendation task, Recall@K and NDCG@K were used. In TXG

datasets, we regard interaction undergone both the inviter’s click

and the invitee’s acceptance as the ground truth for the calculation

of Recall@K and NDCG@K. For the Twitter datasets, the mention

interaction serves as a valid recommendation. The results are pre-

sented in Table 2. Our model demonstrates superior performance,

suggesting that HeteroIR and HeteroIM leverage both enhanced

spreading capability and improved performance on recommenda-

tion tasks simultaneously.

4.3 Ablation Study (RQ2)
To study the impact of the main components of HeteroIR and Het-

eroIM, we conduct ablation studies as follows.

HeteroIR. In HeteroIR, we consider both first-order (1st-IF) and

second-order influence (2nd-IF) to calculate the spread profits. The

result of the ablation study on these two parts is shown in Table 3.

We observe that by removing the 1st-IF, the Recall and NDCG de-

crease significantly, as 1st-IF considers the interaction willingness

of the recommendation. Moreover, by removing the 2nd-IF, the

Spread metric NS@K decreases significantly as the 2nd-IF incorpo-

rates the spread capability of the candidates into consideration.

Table 3: Ablation study about the 1st-IF and 2nd-IF of the
HeteroIR on Twitter dataset.

Ablation R@1 R@2 N@1 N@2 NS@1 NS@2

w/o 1st-IF 0.2503 0.3837 0.2933 0.3540 0.2342 0.3298

w/o 2nd-IF 0.2849 0.4070 0.3302 0.3816 0.2258 0.3166

HeteroIR 0.2933 0.4244 0.3402 0.3969 0.2432 0.3425

HeteroIM. In HeteroIM, we utilize heterogeneous spread prob-

ability (HSP) and introduce a uniform sampling (US) strategy in

RR set generation. Further, we rerank the candidates based on the

shared RR sets (SRR). The results show that the rerank significantly

improves the performance. As traditional IM methods [4, 33, 40]

mainly focus on reranking based solely on the spread influence,

regardless of the interaction willingness. Moreover, we find that in-

corporating the HSP and US into the generation of RR-sets improves

the performance of our algorithm, as they introduce interaction

willingness and lower the sampling bias in the sampling stage,

respectively.

Table 4: Ablation study about HeteroIM on Twitter dataset.

Ablation R@1 R@2 N@1 N@2 NS@1 NS@2

w/o Rerank 0.1176 0.2342 0.1416 0.2030 0.1845 0.2843

w/o HSP 0.3487 0.4643 0.4082 0.4475 0.2247 0.3199

w/o US 0.3598 0.4731 0.4221 0.4581 0.2439 0.3297

HeteroIM 0.3655 0.4997 0.4284 0.4780 0.2445 0.3543

4.4 Influence Algorithm Comparision (RQ3)
To validate the HeteroInf algorithm, we assess the performance of

various algorithms in evaluating nodes’ spreading influence.Within

the game scenario, our objective is to identify a subset of highly

influential users from the entire pool of users, encouraging them

to invite their friends to participate in the activity. Consequently,

we use Hit@K to evaluate the effectiveness of different algorithms

in finding the influential users.

Hit@K quantifies the percentage of top-k selected users whose

actual propagation ability ranks within the true top-k, reflecting the

algorithm’s capability to identify high-influence users. As shown

in Figure 4, HeteroInf achieves the highest Hit@K values across

varying K values while maintaining robust performance on different

datasets. Notably, its superior performance at smaller K values

demonstrates strong capability in selecting influential spreaders.

Despite node selection, we further perform a comparison on

the recommendation task. The ranking function for the HeteroInf

is described as 𝑃𝑢𝑣𝑈𝑣 + 𝑃𝑢𝑣𝑈𝑣𝐼𝐻 (𝑣) while the 𝐼𝐻 (𝑣) denotes the
influence estimated byHeteroInf. Here, we compare different spread

influence algorithms by shifting 𝐼𝐻 (𝑢) to other algorithms, such as

Monte Carlo influence 𝐼𝑀𝐶 (𝑢).
Figure 5 shows the comparison of the Linear Regression Influ-

ence [9], the Monte Carlo Influence [19], and the HeteroInf. We

notice that the spread influence from the HeteroInf performed best

among NSpread@K and NDCG@K, which is consistent with the

performance in spread influence estimation.
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Figure 4: The performance of various influence algorithms
on Hit@K in the TXG-B and C datasets.
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Figure 5: Comparison among spread influence algorithms
in recommendation tasks from LR, MC, and HeteroInf algo-
rithm on TXG-B dataset.

4.5 DEPLOYMENT (RQ4)
We deployed HeteroIR and HeteroIM on two propagation events in

Tenctnt’s first-person shooting game, referred to as X1 and X2. The

treatment group of X1 and X2 contains 15.6 and 16.4 million users.

We implement HeteroIR and HeteroIM based on the invite prob-

ability 𝑃𝑢𝑣 and the accept probability𝑈𝑣 predicted. Then aggregate

the HeteroInf with interact capability𝑤 = 4, which corresponds to

the average spread capability in the game platform. We follow [30]

and partition users into communities with high connectivity and

profile homophily.We then conduct the online A/B test by randomly

assigning users in the same communities to the same treatment

group. We evaluated the performance based on three indicators:

(i) Secondary Invite Rate (Sec-IR) : Sec-IR describes the ratio of

invitees invited with secondary spread.

(ii) Secondary Invite Times (Sec-IT) : Sec-IT describes the average

secondary spread times of the invitees.

(iii) Reach Retain Rate (RRR) : RRR describes the ratio of invitees

invited who log in to the game the next day.

Table 5 shows the A/B test performance on Event X1 and X2.

The results demonstrate that HeteroIR and HeteroIM perform best

among all the events. Specifically, HeteroIM gained the relative

improvement of 10%, 9.64%, and 14.83% for SIR, SIT, and RRR, re-

spectively, compared with intimacy in event X2.

Table 5: Performance on Tencent’s propagation event X1 and
X2. The bold value indicates the best performance.

Event X1 X2

Model Sec-IR (%) Sec-IT RRR (%) Sec-IR (%) Sec-IT RRR (%)

Intimacy 8.095 0.184 17.109 5.911 0.197 30.644

HeteroIR 11.029 0.249 25.018 6.414 0.210 35.160

HeteroIM - - - 6.502 0.216 35.191

5 RELATEDWORK
Influence Maximization. Identifying influential nodes that drive

rapid and widespread propagation within social networks is of sig-

nificant theoretical and practical importance. Intuitive structure

methods such as Degree centrality [38], Coreness [21] are widely

used to quantify the spread influence of each user. However, directly

using these metrics to rerank might lead to a high overlap among

users. To overcome such challenges, Influence-Maximization algo-

rithms are proposed to select a set of nodes to maximize the spread

coverage [4, 14, 15, 33, 34]. Borges [4] proposed RIS to select the

nodes based on the RR sets iteratively. IMM [34] grounded on the

martingale theory, estimates that the lower bound of the RR sets

leads to significant improvement in running time. OPIM-C [33]

introduces adaptive bound tightening using intermediate greedy

selection results, enabling both high flexibility and superior offline

performance. Zhang [40] proposed RR-OPIM+ to generate capacity-

limited candidates for the spread maximization. Even though the

IM methods above can select a set of nodes with a high spread

potential. However, these methods did not consider interaction

willingness, which might lead to a setback in satisfying the basic

requirement of the recommendation, such as click rate.

Recommendation Algorithm. Recommendation algorithms have

predominantly focused on modeling the interaction willingness

between the user and the candidates. In user recommendation

tasks, the closeness of the relationship can be estimated by the

local structure. Graph-based random-walk algorithm, personalized

PageRank (PPR) [24], was proposed to calculate the correlation

between the users in the social networks. To extend the estimation

more precisely, the supervised method [31, 35, 44] was proposed to

directly model click-through rates with parameters 𝜃 to predict the

likelihood 𝑃 (𝑦𝑖 = 1|𝑥𝑖 , 𝜃 ) that a user will interact with a particular

candidate 𝑥𝑖 , which achieve great performance on the click rate

prediction. However, existing methods fail to consider the spread

potential of the candidates, which leads to limitations in spread

maximization.

6 CONCLUSION AND FUTUREWORK
To fully unleash the potential of user recommendation systems in

information dissemination while preserving interaction willing-

ness, we introduce HeteroIR, an influence-based algorithm tailored

to optimize both criteria. Additionally, we propose HeteroInf for

improved estimation of personalized spread influence. To further

mitigate the spread overlap among candidates while guarantee-

ing interaction willingness, we present HeteroIM, an algorithm

grounded in the influence maximization framework. Extensive ex-

periments validate the superiority of our methods in both spread

and recommendation tasks. Moreover, deploying HeteroIR and Het-

eroIM in in-game propagation events has yielded notable enhance-

ments. As a future direction, we desire to expand the personalized

interaction capacity in HeteroInf and explore more efficient algo-

rithms to end-to-end model invitation and acceptance probabilities.
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