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ABSTRACT
Measuring the closeness of friendships is an important problem

that finds numerous applications in practice. For example, online

gaming platforms often host friendship-enhancing events in which

a user (called the source) only invites his/her friend (called the

target) to play together. In this scenario, the measure of friendship

closeness is the backbone for understanding source invitation and

target adoption behaviors, and underpins the recommendation of

promising targets for the sources. However, most existing measures

for friendship closeness only consider the information between the

source and target but ignore the information of groups where they

are located, which renders inferior results. To address this issue,

we present new measures for friendship closeness based on the

social identity theory (SIT), which describes the inclination that a

target endorses behaviors of users inside the same group. The core

of SIT is the process that a target assesses groups of users as them

or us. Unfortunately, this process is difficult to be captured due to

perceptual factors. To this end, we seamlessly reify the factors of

SIT into quantitative measures, which consider local and global

information of a target’s group. We conduct extensive experiments

to evaluate the effectiveness of our proposal against 8 state-of-

the-art methods on 3 online gaming datasets. In particular, we

demonstrate that our solution can outperform the best competitor

on the behavior prediction (resp. online target recommendation) by

up to 23.2% (resp. 34.2%) in the corresponding evaluation metric.
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1 INTRODUCTION
Consider a social network G = (V, E), where each node 𝑣𝑠 ∈ V
represents the user 𝑣𝑠 and each edge (𝑣𝑠 , 𝑣𝑡 ) ∈ E represents the

friendship of two users 𝑣𝑠 and 𝑣𝑡 . Measuring the closeness of the

friendship (𝑣𝑠 , 𝑣𝑡 ) is an important problem and finds numerous

applications in real-world scenarios, where a user 𝑣𝑠 (called the

source) only interacts with the friend 𝑣𝑡 (called the target). For

example, online gaming platforms often host friendship-enhancing

events, which encourage the source 𝑣𝑠 to invite the target 𝑣𝑡 to

return to the game or play together [26, 27]. In this scenario, the

friendship closeness measure is the backbone for understanding the

invitation (resp. adoption) behavior of 𝑣𝑠 (resp. 𝑣𝑡 ). Furthermore,

this measure can be applied in recommending promising targets

for the sources because the number of targets of a source could

be considerable. Analogously, in the instant messaging platform

WeChat, a source’s post can only be liked and commented on by the

target in contacts [56], thus the friendship closeness measure can

also be leveraged to predict corresponding activities [17, 37, 55].

In the present work, we focus on the topological friendship close-
ness (TFC) measure that reflects the closeness of a source-target pair

(𝑣𝑠 , 𝑣𝑡 ) on G rather than labels associated with them. In particular,

most existing TFCmeasures [1, 13, 18–20, 30, 31, 36, 48, 51, 54] adopt

the structural information between two users 𝑣𝑠 and 𝑣𝑡 . For exam-

ple, [13] directly employs the tie strength of (𝑣𝑠 , 𝑣𝑡 ), which is mea-

sured by the times of historical interactions; [1] proposes several

measures in terms of the common neighborhood of (𝑣𝑠 , 𝑣𝑡 ). Further-
more, some measures preserve long and intricate paths between

(𝑣𝑠 , 𝑣𝑡 ) based on random walks, e.g., personalized PageRank [30].

Unfortunately, the above-said measures may render compromised

results, as they ignore the group information and the potential
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group effect related to (𝑣𝑠 , 𝑣𝑡 ), which says a user’s belonging group

can influence his/her decision.

Even though some TFC measures [2, 8, 11, 43, 45, 50] attempt to

take the group effect into consideration, the involved information

is still inadequate. To explain, we find that these measures typically

require (i) first representing the affiliation relationship between

users and groups as a bipartite graph, where users and groups

are two disjoint sets of nodes and affiliation relationships are a

set of edges, and (ii) then exploiting information on this bipartite

graph. For example, [50] proposes structural diversity to measure

the number of adjacent groups for a given user; [2, 8, 43] utilize

edge weights between users and groups; [11, 45] measures the

commonality of groups between two users on this bipartite graph.

However, in these works, contracting a group into a node makes

more detailed group information imperceptible, e.g., connectivity.
To mitigate the deficiencies of existing measures, we propose to

explore the group effect by leveraging the social identity theory

(SIT), which is a fundamental concept in social psychology and is

widely applied in domains of human health [38], team sports [35],

computer-supported cooperative works [39] and fake news detec-

tion [40]. SIT describes that a target 𝑣𝑡 tends to endorse attitudes

and behaviors of groups of users, who are assessed as us in 𝑣𝑡 ’s

cognition. In other words, given a target 𝑣𝑡 and an identified group

C of 𝑣𝑡 , 𝑣𝑡 is more likely to adopt the invitation from the source

𝑣𝑠 ∈ C. Unfortunately, the identification process is difficult to be

quantified due to perceptual factors. To this end, we seamlessly

reify the factors of SIT into TFCmeasures, which consider a group’s

local and global information. For example, by modeling the social

network as a physical system, we propose to measure the attractive

spring-like force related to a group, in which the information of

group connectivity and in-group user homogeneity are naturally

incorporated. In contrast, previous TFC measures only consider

similarities of group memberships [11, 45].

We experimentally evaluate the proposed SIT-based solution

against 8 representative competitors on 3 real-world online game

datasets. In particular, we demonstrate that the proposed solution

outperforms all competitors in terms of AUC, accuracy, and F1 score

while predicting target adoption and source invitation behaviors

on the tested dataset. Besides, we detailedly analyze the relations

between user behaviors and SIT factors, and the importance of

these factors. At last, we deploy our solution to the online target

recommendation, which achieves up to 34.2% improvement over

the best treatment in the corresponding evaluation metric.

To summarize, we make the following contributions in this work:

• We propose new TFCmeasures based on SIT in social psychology,
which preserve both local and global information of groups.

• We conduct extensive experiments and analysis to demonstrate

the superiority of proposed SIT-based TFC measures over state-

of-the-art competitors while predicting user behaviors.

• We deploy the presented solution to the online target recom-

mendation, which achieves significant improvement.

2 PRELIMINARIES
In this section, we first elaborate on the problem of measuring the

topological friendship closeness (TFC), followed by the illustration

of main competitors and downstream tasks that TFC measures are

to solve in this work. At last, we introduce the background of the

social identity theory.

2.1 Problem Formulation
LetG = (V, E) be a social network, whereV is a set of users (called

nodes) and E is a set of friendships (called edges). We assume that

the friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E is directed and is associated with an edge

weight𝑤𝑠,𝑡 ∈ (0, 1]. Given a directed edge (𝑣𝑠 , 𝑣𝑡 ) ∈ E, we call 𝑣𝑠
(resp. 𝑣𝑡 ) the source (resp. target) neighbor of 𝑣𝑡 (resp. 𝑣𝑠 ). Given a

node 𝑣𝑡 ∈ V , the source neighborhood of 𝑣𝑡 consists of: (i) 𝑣𝑡 itself;

(ii) the node set N𝑡 , which contains sources of 𝑣𝑡 ; (iii) the edge set

E𝑡 , which contains the edge (𝑣𝑠 , 𝑣𝑡 ) ∈ E; (iv) the edge set R𝑡 , which

contains the edge (𝑣𝑠 , 𝑣𝑘 ) ∈ E between sources 𝑣𝑠 , 𝑣𝑘 ∈ N𝑡 .

Recall in Section 1 that, given an input social network G, the
TFC measure reflects the topological closeness for each (𝑣𝑠 , 𝑣𝑡 ) ∈ E.
Given a source-target pair (𝑣𝑠 , 𝑣𝑡 ) ∈ E, the goal of our present

work is to design the TFC measure, which leverages the structural

information of the group C, where 𝑣𝑠 , 𝑣𝑡 ∈ C. For simplicity, we

assume that 𝑣𝑠 and 𝑣𝑡 are only co-located in one group C. As for
the partitioning of groups, it relies on the social identity theory and

will be illustrated in Section 3.

2.2 Main Competitors
In what follows, we briefly elaborate on the main ideas of com-

peting TFC measures in the present work. For better clarity, we

call a measure as the group-level TFC measure if considering the

group information, and the individual-level TFC measure otherwise.

Specifically, we select 5 representative individual-level measures:

tie strength [13, 48], number of common neighbors [1, 48], person-

alized PageRank [30], cosine and euclidean similarity of Node2Vec

vectors [19]; 3 commonly-used group-level measures: structural

diversity [50], user-group tie strength [43] and group edge den-

sity [32]. It is worth noting that the selected individual-level mea-

sures are also known as proximities [5, 48], which can reflect the

topological closeness for all node pairs. Furthermore, these TFC
measures are widely applied in Tencent gaming platforms [26, 27].

Tie strength. Given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E, the tie strength

equals to the edge weight𝑤𝑠,𝑡 [13, 48].

Number of common neighbors. Given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E,
this measure counts the number of common neighbors [1, 48] of

source 𝑣𝑠 and target 𝑣𝑡 , which can reflect the similarity of two

node’s local structure.

Personalized PageRank. Given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E, this
measure aims to preserve intricate topological relations between

nodes by performing random walks. In particular, the personalized

PageRank [30] from 𝑣𝑠 to 𝑣𝑡 is defined as the probability that a

random walk with restart (RWR) [49] originating from 𝑣𝑠 stops at 𝑣𝑡 .

The corresponding RWR starts from the source 𝑣𝑠 and, in each step,

chooses to (i) either terminate at the current node with probability

𝛼 , (ii) or navigate to a random target neighbor of the current node

with the remaining 1 − 𝛼 probability.

Similarity ofNode2Vec vectors.As a node embeddingmethod [5],

Node2Vec [19] proposes to represent each node 𝑣𝑠 ∈ G as a compact

vector, which preserves the structural information in the vicinity of

𝑣𝑠 . By this method, given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E, the TFC can be
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measured by the cosine similarity or euclidean distance between

the Node2Vec vectors of 𝑣𝑠 and 𝑣𝑡 . Compared with the prior work

DeepWalk [31], the core contribution of Node2Vec is that it takes

two-order random walks as inputs for training. Compared with the

RWR, the two-order random walk will not terminate until a pre-

defined length limit. Moreover, given the current node 𝑣 𝑗 , the target

neighbors of 𝑣 𝑗 are first divided into the following three categories:

(i) the source neighbor 𝑣𝑖 that was visited in the previous step, (ii)

𝑣𝑘 that is the common target neighbor of 𝑣𝑖 or (iii) otherwise. Then

different (resp. same) transition probabilities are assigned to nodes

across (resp. inside) each category. At last, the next node of this

walk is selected in terms of the biased probability.

Structural diversity. Ugander et al. are the first to propose the

concept of structural diversity [50], which is further applied for

influence analysis [13, 34, 46, 55]. Specifically, given a friendship

(𝑣𝑠 , 𝑣𝑡 ) ∈ E, the TFC measure based on the structural diversity

equals to the number of weakly connected components (see Defini-

tion 2.1) in a subgraph, which is derived from 𝑣𝑡 ’s source neighbors

affected by a specific event and their relationships. This work [50]

points out that a more extensive structural diversity of 𝑣𝑡 indicates

a higher probability that 𝑣𝑡 will be influenced.

Definition 2.1 (Weakly Connected Component). Given a directed

graph, a weakly connected component is a maximal subgraph,

where any inside node is connected by paths if ignoring the di-

rection of edges.

User-group tie strength. Given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E and a

group C where 𝑣𝑠 , 𝑣𝑡 ∈ C, the TFC measure based on the user-

group tie strength [2, 8, 43] equals to the summation of tie strength

between 𝑣𝑡 and other members in C.
Group edge density.Given a friendship (𝑣𝑠 , 𝑣𝑡 ) ∈ E and a group C
where 𝑣𝑠 , 𝑣𝑡 ∈ C, the TFC measure based on the group edge density

is defined as the fraction of the summation of edge weights in C
over the number of all possible edges in C, which is also applied to

analyze group dynamics [32, 34].

2.3 Downstream Tasks
Before introducing downstream tasks, we first illustrate friendship-

enhancing events in Tencent‘s online gaming platforms, whose

procedure is as follows. First, given a social network G = (V, E), a
source set S ⊆ V and a target set T ⊆ V are selected regarding

the event demand, e.g., recalling inactive targets and stimulating

interactions between friends. Then, the event is sent to each source

𝑣𝑠 ∈ S, and allows 𝑣𝑠 to invite the target neighbor 𝑣𝑡 ∈ T from a

feed window with at most 𝑘 target friends. Once a target 𝑣𝑡 adopts

the invitation from the source 𝑣𝑠 , both 𝑣𝑠 and 𝑣𝑡 will receive virtual

gifts as incentives. To summarize, there exist two types of user activ-

ities: source invitation and target adoption. In friendship-enhancing

events, TFC measures act as structural heuristics to facilitate the

understanding of invitation and adoption behaviors and recom-

mending targets for the sources, which are defined as follows.

Problem 1 (Behavior prediction). Given a graph G = (V, E)
and a source-target pair (𝑣𝑠 , 𝑣𝑡 ) ∈ E, the objective of behavior predic-
tion is to infer the likelihood that source invitation and target adoption
behaviors happen between (𝑣𝑠 , 𝑣𝑡 ).

Table 1: Factors in SIT.

Factor Meaning
Multi-membership Number of groups

Inclusiveness Number of in-group members

Satisfaction 𝑣𝑡 ’s feelings about being a group member

Solidarity 𝑣𝑡 ’s psychological bond with in-group members

Centrality Importance of a group in 𝑣𝑡 ’s cognition

Self-stereotyping Similarity of 𝑣𝑡 and group average in 𝑣𝑡 ’s cognition

In-group homogeneity Similarity within a group

Social standing Social standing of a group

Problem 2 (Target recommendation). Given a graph G =

(V, E), a budget 𝑘 , a source set S and a target set T , the objective of
target recommendation is to select at most 𝑘 target neighbors from
T for each source user 𝑣𝑠 ∈ S, such that the likelihood that both
invitation and adoption behaviors happen among all returned source-
target pairs are maximized.

2.4 Social Identity Theory

Formulation. Turner and Tajfel define social identity as ‘the in-

dividual’s knowledge that he/she belongs to certain social groups

together with some emotional and value significance to him of this

group membership’ [47]. In other words, social identity theory (SIT)
emphasizes how the target user’s belonging group affects his/her

behavior. Given a social network𝐺 and a target 𝑣𝑡 , SIT is formulated

by three cognitive processes: categorization, identification and com-
parison [47]. Specifically, the categorization is a preprocessing step,

which partitions the users of G into several candidate social groups

w.r.t 𝑣𝑡 . In the identification stage, 𝑣𝑡 will identify him/herself as a

member of a certain candidate group. Finally, the comparison stage

says that, for the sake of self-esteem, 𝑣𝑡 tends to shift the sense of

belonging based on group social standing.

Factors. After pre-partitioning candidate groups for a target 𝑣𝑡 ,

both identification and comparison stages depend on many factors.

We summarize the factors used in this paper in Table 1. Specifically,

to understand the identification stage, the statistical factors multi-

membership [41] and inclusiveness [3] are proposed. Besides, Leach

et al. [21] extensively summarize existing social perceptual factors

as: satisfaction [6, 47], solidarity [6, 9], centrality [3, 6, 9], self-

stereotyping [29, 42] and in-group homogeneity [29, 42]. Regarding

the comparison stage, by definition, the social standing of a group

is also recognized as a pivotal factor [47].

3 OVERVIEW
We illustrate the main workflow of the present work in Figure 1,

which processes the input graph by following three steps.

Step 1: categorization. For employing SIT, the first step is parti-

tioning candidate groups for each target user, i.e., the categoriza-
tion stage. To explore the group information for the source-target

pair, given a graph G = (V, E) and a target user 𝑣𝑡 , we partition

the source neighborhood of 𝑣𝑡 based on the weakly connected

components (see Definition 2.1). Specifically, following operations

in [11, 13, 50, 55], we first extract each weakly connected compo-

nent (dubbed as CC) from the ego network G𝑡 = (N𝑡 ,R𝑡 ) of 𝑣𝑡 , and
then call all sources in a given CC and the target 𝑣𝑡 as a candidate
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Figure 1: Illustration of core subroutines.

group C, since 𝑣𝑡 connects to all sources in the CC by edges in E𝑡 .
To exemplify, given an input graph as shown in Figure 1(a), the

source neighborhood of target node 𝑣1 is partitioned into two can-

didate groups (shaded in two colors in Figure 1(b)), among which

the group C is constituted by 𝑣1, 𝑣2, 𝑣3, 𝑣4. The rationale for employ-

ing CC is two-fold. First, as suggested in SIT [15], the candidate

group requires to be categorized in a more general way to mitigate

the in-group bias. For instance, employers in two departments of

the same company should be categorized into one company group

rather than split into two department groups. By definition, the

CC can satisfy this requirement, as the inside nodes of two CCs
are isolated (i.e., no path). Second, CC is a simple but effective way

to represent the community in the ego network of a user [11, 53].

As evidence, [11] finds that employing CCs for the link prediction

can achieve comparable or even slightly better performance than

employing communities detected by the state-of-the-art methods.

Step 2: SIT-based measure definition. As shown in Figure 1(c),

factors of SIT in Table 1 can be separated into two branches: (i)

user-group factors, describing the information between the target

and other members; (ii) intra-group factors, describing the stand-

alone information of other members. For example, the factors of

self-stereotyping and in-group homogeneity both focus on individ-

ual similarities, however, by definition, the former is a user-group

factor and the latter is an intra-group one. Accordingly, once the

categorization stage is accomplished, given a target 𝑣𝑡 and a can-

didate group C, the second step is to devise group-level measures

between 𝑣𝑡 and C\𝑣𝑡 (resp. among sources in C\𝑣𝑡 ) to quantify

user-group (resp. intra-group) factors of SIT. Notice that we skip
the satisfaction factor as it involves numerous human sentiments

and is difficult to be detected by employing graph topology only.

Step 3: Inclination inference. In the third step, we employ the

proposed SIT-based measures to infer the inclination that the target

𝑣𝑡 endorses each candidate group C. This inclination is defined as

𝑦C,𝑡 =

∑
𝑣𝑠 ∈C\𝑣𝑡 𝑦𝑠,𝑡
|C| − 1

,

where |C| ≥ 2 as there exist at least 𝑣𝑡 and a source, and 𝑦𝑠,𝑡
is the likelihood that 𝑣𝑡 adopts the invitation from each source

𝑣𝑠 in C (see Figure 1(d)) and can be applied in the downstream

Problem 1 and Problem 2. Without loss of generality, we derive 𝑦𝑠,𝑡
by a supervised manner, which works as follows. For each training

source-target pair (𝑣𝑠 , 𝑣𝑡 ), we first take the proposed SIT-based
measures as 𝑑-dimensional features 𝑥𝑠,𝑡 ∈ R𝑑

and 𝑦𝑠,𝑡 ∈ {0, 1}
as the label of the adoption behavior, where 𝑦𝑠,𝑡 = 1 indicates 𝑣𝑡
adopts the invitation from 𝑣𝑠 and 𝑦𝑠,𝑡 = 0 otherwise. We next train

a well-accepted XGBoost [7] model, which is finally utilized to

infer each 𝑦𝑠,𝑡 . Specifically, given a training dataset with related

tuple (𝑥𝑠,𝑡 , 𝑦𝑠,𝑡 ) and 𝑇 regression trees with the maximum depth ℎ,

XGBoost aims to find the best parameters attached on all possible

2
ℎ
leaves of each of 𝑇 trees by the following objective where all

parameters are represented by a matrix Θ ∈ R𝑇×2ℎ
,

arg min

Θ
(L(Θ) + Ω(Θ)) . (1)

In Eq.(1), the training loss term is defined as the logistic loss

L(Θ) =
∑
𝑠,𝑡

(
𝑦𝑠,𝑡 ln(1 + 𝑒−�̂�𝑠,𝑡 ) + (1 − 𝑦𝑠,𝑡 ) ln(1 + 𝑒 �̂�𝑠,𝑡 )

)
, (2)

and the regularization term Ω(Θ) considers both L0 and L2 norms

of Θ. Regarding the predicted value 𝑦𝑠,𝑡 in Eq.(2), it aggregates

the parameters by 𝑦𝑠,𝑡 =
∑
𝑖 Θ[𝑖, 𝑞𝑖 (𝑠, 𝑡)], where the 𝑖-th row of Θ

contains all parameters in the 𝑖-th tree and 𝑞𝑖 (𝑠, 𝑡) is the column

index that contains the parameter of current (𝑣𝑠 , 𝑣𝑡 ) in the 𝑖-th tree.

The reason of employing XGBoost is that (i) it is an empirically-

efficient solver [7] and is widely accepted for massive game data

in Tencent; (ii) the model is easy to be interpreted and is further

applied for related analysis in Section 5.2.

Remarks. In what follows, we focus on defining SIT-based mea-

sures in Section 4, where our key contributions come from. The

performance of two downstream tasks are evaluated in Section 5.2

and Section 5.3. As selections of community detection method in

step 1 and training model in step 3 are orthogonal to our work, we

refer the interested readers to [11] for the benchmark of different

community detection methods and [7] for the detailed training

procedure of XGBoost, respectively.

4 SIT-BASED MEASURES
In this part, we devise the formulation for SIT factors and illustrate

their rationales compared with existing group-level measures.

4.1 Multi-membership and Inclusiveness
Inspired from the structural diversity [50], we utilize the number of

candidate groups and the size of each group of a target to represent

the statistical factors of multi-membership and inclusiveness, re-

spectively. In particular, given a graph G and a target user 𝑣𝑡 , we de-

fine the multi-membership of 𝑣𝑡 as the number of candidate groups

(#CC) consisting of all source neighbors of 𝑣𝑡 , and the inclusiveness
of a given group C as the group size (GS), i.e., the cardinality |C|. In
contrast, the prior work of structural diversity [50] focuses on the

groups with source neighbors who have sent the invitation only.

The rationales are as follows. First, before the release time of

a given event, invitation behaviors of source users are unknown,

and hence corresponding ego networks fail to be extracted. Second,
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Figure 2: Distribution of averaged CC size in FPS.

even though the ego networks may be constructed by exploiting

source behaviors from historical events, however, the invitation

behaviors are only triggered by a small number of source users,

which renders a much sparser ego network with many singleton

CCs (i.e., one insidemember) [50] andmakes less group information

revealed. For example, Figure 2 shows the distributions of averaged

CC size of invited target users on FPS dataset, in which averaged

CC size of a target 𝑣𝑡 equals the fraction of the number of all (or

inviting) source neighbors over #CC of 𝑣𝑡 . Specifically, by using the

inviting source nodes, the resulting distribution in blue triangles is

highly-skewed, where singletons are over 99%. In contrast, by using

all source neighbors, the results in red circles show an improvement

w.r.t the average size, which reveals more group information.

4.2 Social Standing and Centrality
Recall in Section 2.4 that factors of social standing and centrality

in SIT describe the group importance in the whole graph and a

given target’s cognition, which can be quantified by PageRank and

personalized PageRank (PPR), respectively. Given a graph G with

|V| = 𝑛 and a restart probability 𝛼 , the PageRank vector of G
is denoted as a vector 𝚷 ∈ R1×𝑛

, where the 𝑖-the column value

𝚷[𝑖] = 𝜌𝑖 is the PageRank value of 𝑣𝑖 . The PageRank vector 𝚷

satisfies the following equation

𝚷 =

∞∑
𝑡=0

𝛼 (1 − 𝛼)𝑡 s · P𝑡 , (3)

where 𝒔 ∈ R1×𝑛
is the starting vector with the 𝑖-th column value

s[𝑖] = 1/𝑛 for each 𝑣𝑖 ∈ V . In Eq.(3), P ∈ R𝑛×𝑛
is the probability

transition matrix of 𝐺 where the value in the 𝑖-th row and 𝑗-th

column is P[𝑖, 𝑗] = 1/𝑑𝑖 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ E and P[𝑖, 𝑗] = 0 otherwise,

where 𝑑𝑖 is the number of target neighbors of 𝑣𝑖 . Correspondingly, a

PPR vector Π𝑖 ∈ R1×𝑛
w.r.t the user 𝑣𝑖 can be derived by setting the

starting vector s of Eq.(3) to an one-hot vector where s[𝑖] = 1 for 𝑣𝑖
and s[𝑖] = 0 otherwise. The value in the 𝑗-th column Π𝑖 [ 𝑗] = 𝜋𝑖, 𝑗
is the PPR value of 𝑣 𝑗 w.r.t 𝑣𝑖 .

To encapsulate PageRank and PPR into social identity features,

we bring the idea from [12] which proposed to measure the group

centrality by taking the average centrality scores of in-group mem-

bers. In particular, we define group PageRank (GPR) and group

personalized PageRank (GPPR) as follows.

Definition 4.1 (Group PageRank). Given a graph G, a target user

𝑣𝑡 and a candidate group C, the group PageRank of C is defined as

𝜌C =
1

|C| − 1

∑
𝑣𝑗 ∈C\𝑣𝑡

𝜌 𝑗 .

Definition 4.2 (Group Personalized PageRank). Given a graph G,
a target user 𝑣𝑡 and a candidate group C, the group personalized

PageRank of C w.r.t 𝑣𝑡 is defined as

𝜋𝑡,C =
1

|C| − 1

∑
𝑣𝑗 ∈C\𝑣𝑡

𝜋𝑡, 𝑗 .

To understand the intuitions behind GPR and GPPR, the PageR-
ank 𝜌 𝑗 (resp. PPR 𝜋𝑡, 𝑗 ) in Definition 4.1 (resp. Definition 4.2) can be

interpreted as measuring the global importance and social status of

in-group member 𝑣 𝑗 [44, 52] (resp. relative importance of 𝑣 𝑗 w.r.t

𝑣𝑡 [54]) by performing the RWR as illustrated in Section 2.2. More

concrete, 𝜌 𝑗 represents the probability that an RWR starting from

a randomly-selected node stops at 𝑣 𝑗 . In the meantime, 𝜋𝑡, 𝑗 also

represents the probability that an RWR stops at 𝑣 𝑗 , but the starting

node is the given node 𝑣𝑡 . Thus, GPR and GPPR can indicate the

group importance in terms of the probability that a specific RWR

terminates in a given group.

Another possible definition for group importance is to replace

(personalized) PageRank with the out-degree centrality. However,

compared with PageRank, the out-degree centrality 𝑑𝑖 of a node

𝑣𝑖 only considers the one-hop structural information surrounding

𝑣𝑖 , which fails to extensively capture the importance of 𝑣𝑖 in the

whole graph. Besides the above definitions, [12] also suggests ag-

gregating importance scores of in-group members by summation.

Nevertheless, grouping by summation imports the bias from the

group scale and yields a misleading high GPR and GPPR scores for

the group, in which many users contain but the importance of each

is tiny, as justified in Section 5.2.

4.3 Solidarity, Self-stereotyping and In-group
Homogeneity

This part proposes user-group tightness (UGT) to seamlessly en-

capsulate solidarity and self-stereotyping factors, and proposes

intra-group tightness (IGT) to quantify the in-group homogeneity

factor. More concrete, given a graph G and a node pair (𝑣𝑖 , 𝑣 𝑗 ), we
use the tie strength𝑤𝑖, 𝑗 (resp. the similarity 𝛿𝑖, 𝑗 ) as the backbone

for the solidarity factor (resp. self-stereotyping and homogeneity

factors). W.l.o.g, the similarity score 𝛿𝑖, 𝑗 ∈ [0, 1] is defined as the

cosine similarity of the Node2Vec representations [19] of (𝑣𝑖 , 𝑣 𝑗 ),
which is further normalized to the range of [0, 1] by the min-max

scaler. In what follows, we formally define UGT and IGT as follows.

Definition 4.3 (User-Group Tightness). Given a graph G, a target

user 𝑣𝑡 and a candidate group C, the UGT score of C is defined as

𝜙𝑡,C =
1∑

𝑣𝑗 ∈C\𝑣𝑡
𝑤𝑡, 𝑗

∑
𝑣𝑗 ∈C\𝑣𝑡

𝑤𝑡, 𝑗 · 𝛿𝑡, 𝑗 .

Definition 4.4 (Intra-Group Tightness). Given a graph G a target

user 𝑣𝑡 and a candidate group C, the IGT score of C is defined as

𝜓C =
1

|C| − 1

∑
𝑣𝑗 ∈C\𝑣𝑡

𝜙 𝑗,C\𝑣𝑡 .

The intuition behind UGT (resp. IGT) can be interpreted as the

averaged attractive spring-like forces between the target user and

other group members (resp. among other group members), if the
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Figure 3: Spring-like local neighborhood and attractive
force.

source neighborhood of the target user is abstracted as a force sys-

tem. This abstraction is widely adopted in graph drawing [14, 16].

Take Figure 3(a) as an example. The source neighborhood of 𝑣1 is

represented as a spring network where each edge is assumed as a

spring, then the tie strength 𝑤𝑖, 𝑗 can be regarded as the stiffness

constant (i.e., physical strength) of the spring on (𝑣𝑖 , 𝑣 𝑗 ) ∈ E. Let
𝑙𝑖, 𝑗 ∈ [0, 1] be the natural length (when no force is exerted) of

a given spring on (𝑣𝑖 , 𝑣 𝑗 ), which is equivalent to the theoretical

distance between 𝑣𝑖 and 𝑣 𝑗 on the graph, as clarified in [16]. Sup-

pose that all springs are set to initial length 1, then the similarity

𝛿𝑖, 𝑗 = 1 − 𝑙𝑖, 𝑗 indicates the displacement of the spring on (𝑣𝑖 , 𝑣 𝑗 ).
According to Hooke’s law, as shown in Figure 3(b),𝑤𝑖, 𝑗 ·𝛿𝑖, 𝑗 is equal
to the attractive force exerted by (𝑣𝑖 , 𝑣 𝑗 ). In contrast, group-level

competitors in Section 2.2 only consider the tie strength [2, 8, 43]

or the in-group connectivity by the edge density [32, 34], whereas

the homogeneity of group members is ignored.

5 EXPERIMENTS
In this part, we first elaborate on the experimental settings, and

then evaluate the performance of behavior prediction and target

recommendation tasks by employing the proposed measures. All of

our experiments are conducted on an in-house cluster consisting of

hundreds of machines, each of which runs CentOS, and has 16GB

memory and 12 Intel Xeon Processor E5-2670 CPU cores.

5.1 Experimental Settings

Datasets. We use 3 friendship-enhancing event datasets from Ten-

cent’s first person shooter (FPS) and multiuser online battle arena

(MOBA) games. A given event, whose procedure is explained in

Section 2.3, takes the snapshot of G before the release time as the

input graph, since G for a particular online game evolves when

new users are registered, or friendships are modified. We select

events FPS and MOBA-A as datasets to evaluate the performance

on target adoption and source invitation behavior predictions, and

eventsMOBA-A andMOBA-B to evaluate the performance on target

recommendation. The statistics of the graph snapshot, source, and

target sets for events are summarized in Table 2. All datasets have

been anonymized to avoid any leakage of privacy information.

Competitors.We compare the proposed SIT-based measures with

8 representative prior ones asmentioned in Section 2.2: (i) individual-
level measures: tie strength (Tie) [13], number of common neigh-

bors (COM) [1], PPR [30], cosine and euclidean similarity between

Node2Vec representations (N2V(cos) and N2V(euc)) [19]; (ii) group-
level measures: structural diversity (#CC) [50], user-group tie strength

Table 2: Dataset statistics (𝑴=106, 𝑩=109).

Dataset |V | |E | |S | |T |

FPS 77.2𝑀 1.1𝐵 33.5𝑀 43.6𝑀

MOBA-A 111.0𝑀 4.5𝐵 111.0𝑀 94.7𝑀

MOBA-B 130.2𝑀 6.5𝐵 120.5𝑀 99.7𝑀

(GT) [2] and group edge density (GD) [32]. All measures are com-

puted based on the network structure as introduced in Table 2.

Notice in Tencent’s MOBA and FPS online gaming platforms that

the edge weight between a pair of users is described by the intimacy
score, which records the number of historical activities/interactions

from one to the other, e.g., co-playing, gifting, etc. For a fair com-

parison, we employ intimacy values to measure the tie strength for

all related SIT-based measures and competitors. Furthermore, we

employ distributed frameworks in [23] and [24, 25] to compute PPR
and N2V-based measures, respectively, and set the final embedding

dimension of the latent vector to 200. To accomplish downstream

tasks, we treat our proposal called SIT (including #CC, GS, GPR,
GPPR, UGT, and IGT) or competing measures as input features

for XGBoost as mentioned in Section 3, in which the parameters

are set following the original paper [7].

5.2 Behavior Prediction
In this section, we separately train two sets of XGBoost models to

evaluate the performance of the aforementioned methods in pre-

dicting target adoption and source invitation behaviors. Notice that

user behaviors can be interfered with by the underlying exposure

strategies, which will be illustrated in Section 5.3. To eliminate the

bias, we focus on randomly exposed source-target pairs, in which

we select the pairs with invitation or adoption behaviors as posi-

tive data instances and also randomly select an equal number of

pairs without behaviors as negative data instances [55]. Finally, we

obtain 116.3 (resp. 12.5) thousands of data instances for invitation

(resp. adoption) prediction on FPS, and 776.4 (resp. 39.1) thousands

of instances for invitation (resp. adoption) prediction on MOBA-A,
where 80% are used for training and 20% for testing. To evaluate the

effectiveness, we repeat each approach 3 times and report the aver-

age result under conventional metrics: Area Under Curve (AUC),

accuracy and F1 score. In the following experiments, we compare

our proposal called SIT with each competitor, every single dimen-

sion of SIT and their variants in order, followed by analyzing each

SIT dimension. Note that we first show the results about target

adoptions and then those about source invitations, as the primary

goal of SIT to understand how targets are influenced.

Overall Performance. As illustrated in Table 3, our proposed SIT
consistently outperforms other competitors in both FPS andMOBA-
A datasets. Specifically, while predicting target adoption behaviors,

SIT is 11.8%, 3.5%, 2.5% (resp. 23.2% 12.6% 6.7%) better than the best

competitor in terms of AUC, accuracy, and F1 score in FPS (resp.
MOBA-A). For invitation behaviors, SIT is 16.2%, 12.3%, 16.7% (resp.

12.0%, 8.1%, and 8.7%) better than the best competitor in terms of

AUC, accuracy, and F1 score in FPS (resp. MOBA-A). The above

results reflect that involving group information by SIT is necessary

for understanding user behaviors in friendship-enhancing events.

Regarding competitors, Tie is the best-performing competitor in
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Table 3: Comparison of existing measures and proposed SIT measure (the best is colored and the second best is underlined).

Measure
Adoption Invitation

FPS MOBA-A FPS MOBA-A
AUC Accuracy F1 score AUC Accuracy F1 score AUC Accuracy F1 score AUC Accuracy F1 score

Tie 0.7154 0.6965 0.6554 0.6017 0.6021 0.3958 0.6072 0.5985 0.4607 0.5361 0.5353 0.2200

COM 0.5488 0.5538 0.5615 0.5667 0.5576 0.6219 0.5456 0.5323 0.4674 0.5332 0.5281 0.5565

PPR 0.6565 0.6036 0.5596 0.5562 0.5388 0.4447 0.6289 0.5972 0.5786 0.5846 0.5589 0.5467

N2V(cos) 0.6976 0.6610 0.7171 0.5808 0.5626 0.5420 0.5608 0.5537 0.5683 0.5770 0.5630 0.5426

N2V(euc) 0.7076 0.6652 0.7091 0.5664 0.5566 0.5390 0.5679 0.5588 0.5628 0.5739 0.5585 0.5375

GT 0.6985 0.6572 0.6004 0.6295 0.5959 0.5777 0.5738 0.5652 0.3988 0.5397 0.5297 0.4875

GD 0.6077 0.5736 0.5269 0.6039 0.5728 0.5908 0.5811 0.5507 0.4490 0.5674 0.5508 0.4991

SIT 0.7995 0.7206 0.7350 0.7410 0.6780 0.6638 0.7307 0.6719 0.6754 0.6550 0.6086 0.6047

Table 4: Comparison of different SIT variants (the best is colored and the second best is underlined).

Measure
Adoption Invitation

FPS MOBA-A FPS MOBA-A
AUC Accuracy F1 score AUC Accuracy F1 score AUC Accuracy F1 score AUC Accuracy F1 score

#CC 0.6153 0.5897 0.5378 0.5452 0.5288 0.4136 0.6091 0.5820 0.5392 0.5790 0.5551 0.5662

GS 0.5866 0.5703 0.5323 0.5860 0.5720 0.6182 0.5669 0.5448 0.4827 0.5655 0.5510 0.5266

GPR 0.6509 0.6071 0.6150 0.6567 0.6149 0.6403 0.6817 0.6314 0.6325 0.6382 0.5978 0.6044

-sum 0.5750 0.5538 0.5702 0.5651 0.5469 0.5798 0.6074 0.5699 0.4978 0.5783 0.5531 0.5545

GPPR 0.6337 0.5990 0.5630 0.5641 0.5405 0.4433 0.6258 0.5922 0.5747 0.5895 0.5603 0.5902

-sum 0.6230 0.5727 0.5749 0.5874 0.5671 0.6217 0.5771 0.5472 0.5634 0.5683 0.5493 0.5545

UGT 0.7427 0.6965 0.7249 0.5634 0.5482 0.5061 0.5969 0.5772 0.5793 0.5684 0.5525 0.5345

-euc 0.7233 0.6857 0.7266 0.5492 0.5345 0.5199 0.5844 0.5643 0.5761 0.5650 0.5505 0.5402

-sum 0.7374 0.6621 0.6145 0.6380 0.6035 0.5793 0.5920 0.5695 0.4477 0.5574 0.5378 0.5695

IGT 0.5622 0.5425 0.4388 0.6296 0.6047 0.5487 0.5372 0.5236 0.3694 0.5642 0.5496 0.4616

-euc 0.5645 0.5650 0.4670 0.5733 0.5569 0.6265 0.5344 0.5239 0.3617 0.5681 0.5521 0.4660

-sum 0.5638 0.5560 0.5008 0.5915 0.5708 0.6058 0.5620 0.5373 0.4605 0.5705 0.5531 0.5170

#CC-GS 0.6698 0.6180 0.6038 0.6101 0.5857 0.6252 0.6306 0.5978 0.5808 0.5972 0.5665 0.5550

SIT 0.7995 0.7206 0.7350 0.7410 0.6780 0.6638 0.7307 0.6719 0.6754 0.6550 0.6086 0.6047

terms of AUC and accuracy scores during the adoption predic-

tion, which indicates that source-target pairs with more historical

interactions (i.e., intimacy) are more likely to interact again. Cor-

respondingly, AUC and accuracy scores of GT and GD are also

comparable due to the usage of intimacy values. Furthermore, the

F1 score of other single-level measures (PPR, COM or N2V(cos))
is the second best on both datasets w.r.t. adoption and invitation

predictions. Regarding the structural diversity (#CC), we evaluate
its performance in the ablation study, as it is a dimension of SIT.

Ablation study. As illustrated in Table 4, we find that each dimen-

sion i.e., #CC, GS, GPR, GPPR, UGT, or IGT, is less effective than
SIT. For both behaviors and datasets, UGT or GPR performs as the

best competitor in all evaluation metrics, compared with both other

SIT-based dimensions and all competitors in Table 3. Regarding

IGT, it is less effective than UGT and GPR, but is still comparable

to the existing measures in Table 3. For instance, the IGT score

is 4.3%, 5.6% better than the group-level competitor GD in terms

of AUC and accuracy for adoption behaviors of MOBA-A, as IGT
additionally involves the similarities among in-group members.

Notice that both #CC and GS scores are analyzed in the work of

structural diversity [50] and can be treated as competitors of other

SIT-based measures. In particular, we assemble both measures into

XGBoost and denote the model instance as #CC-GS, whose scores
can extensively outperform those of each single measure #CC and

GS as reported in Table 4. However, #CC-GS are still worse than
some single dimensions (i.e., GPR or UGT) and the proposed SIT.
Regarding the reasons for the performance of each dimension in

SIT, we leave them in the analysis parts.

Factor formulation. As mentioned in Section 4, other possible

formulations of proposed measures exist. Thus, except for the aver-

aged aggregation operation and cosine similarity, we also evaluate

the performance of variant measures with summation operation

and euclidean similarity (denoted as sum and euc, respectively)

in Table 4. To derive the euclidean similarity, we first normalize

the euclidean distance between each node pair by the min-max

scaler as the cosine similarity does, and then take the one minus

normalized distance as the corresponding similarity. In particular,

employing the summation operation is equivalent to hybrid the
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Figure 4: Conversion probability of adoption behaviors conditioned on each SIT-based measure in FPS.
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Figure 5: Conversion probability of invitation behaviors conditioned on each SIT-based measure in FPS.

original measure with the factor of GS, which may dampen the

original measure (i.e.,GPR,GPPR,UGT or IGT) because of the weak
correlation between GS and user behaviors, which will be shown

in Figures 4-5. For example, the result quality of the summation of

GPR is consistently worse than that of GPR on both behaviors and

datasets. As for different similarity measures w.r.t node representa-

tions, the effectiveness of utilizing cosine and euclidean similarity

is comparable. In particular, the F1 scores of euclidean-based UGT
and IGT are usually better than those of cosine-based. Meanwhile,

negative results are reported regarding AUC and accuracy scores.

Conversion probability conditioned on SIT dimensions. We

investigate the relation between user behaviors and the aforemen-

tioned SIT-based measures: #CC, GS, GPR, GPPR, UGT, and IGT.
Due to space limitations, we only report the analysis results on FPS,
and the rest datasets derive similar results. Following the setting

of [13], we employ the density-based discretization to convert the

scores of SIT-based measures into five different levels, where a

higher level indicates a larger score. Moreover, we use conversion
probability [13, 50] to evaluate how the user acts. In particular,

given a level of certain SIT measure, the adoption (resp. invitation)

conversion probability is the fraction of source-target pairs existing

adoption (resp. invitation) behaviors over all pairs in this level.

We report the adoption and invitation conversion probabilities

w.r.t each measure in Figure 4 and Figure 5, respectively. We can

find an evident correlation between each behavior and each pro-

posed measure except for GS. In terms of #CC, contradicting the
well-accepted insight of structural diversity [13, 46, 50], Figures 4(a)

and 5(a) show that the target user with less number of candidate

groups (i.e., a less diverse neighborhood) is more likely to be in-

vited and further adopt this invitation. Recently, this phenome-

non also emerged from other user behaviors, especially in Tencent

instant messaging platform [34, 55], but the underlying reason

is still unclear. In contrast, SIT can explain this as that a greater

multi-membership makes the social identification phase of a target

challenging due to the potential role conflict [28]. Regarding the

effect of group size, we can find in Figures 4(b) and 5(b) that the

engagement willingness of users will be facilitated as the group

Table 5: SIT feature importance w.r.t adoption behavior.

#CC GS GPR GPPR UGT IGT

FPS 0.1413 0.1179 0.2291 0.1713 0.2191 0.1212

MOBA-A 0.1561 0.1345 0.1958 0.1733 0.2139 0.1264

Table 6: SIT feature importance w.r.t invitation behavior.

#CC GS GPR GPPR UGT IGT

FPS 0.1404 0.0809 0.2081 0.2221 0.2271 0.1214

MOBA-A 0.1522 0.1002 0.2540 0.1819 0.1907 0.1210

scale increases, but subsequently hurdled if still going up. Notice

that the source-target pair inside a medium-size group (i.e., level 3)
is more likely to send an invitation and respond.

Recall in Section 4 that GPR and GPPR measure the factors of

social standing and centrality from the global and personalized

view, respectively. The results in Figures 4(d) and 5(d) show that the

target user is more likely to choose a relatively important group,

which confirms the claim of the centrality factor in SIT. However,
Figures 4(c) and 5(c) illustrate opposing results w.r.t GPR. The rea-
son is that, by definition, a user with a high PageRank value tends to

have more neighbors, which consequently means each target friend

has less probability of being exposed by the random algorithm.

To evaluate the tie strength and similarity parts in UGT, we
separate them as UGT-𝑤 and UGT-𝛿 respectively, in which UGT-𝑤
measures the averaged intimacy values and UGT-𝛿 measures the

averaged cosine similarity between the Node2Vec representations.

The same operation is also performed for IGT. As illustrated in

Figures 4(e) and 5(e), the behavior conversion probabilities increase

as the levels of UGT-𝑤 and UGT-𝛿 go up, which match the factors

of solidarity and self-stereotyping in SIT. The same tendency for

IGT is shown in Figures 4(f) and 5(f). However, the correlation

regarding IGT is relatively weak as it fails to provide intra-group

information for the group with only one member.

Importance of SIT dimensions. XGBoost supports measuring

the importance of each input feature, where the importance in-

dicates the frequency that a feature is leveraged to split the data
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Table 7: Online performance in MOBA-A.

Measure Tie COM PPR N2V(euc) SIT

E2E rate 0.1018 0.0958 0.1066 0.0739 0.1431

Table 8: Online performance in MOBA-B.

Measure Tie PPR SIT

E2E rate 0.1152 0.1218 0.1384

across all trees. Table 5 and Table 6 report the feature importance

of each proposed SIT-based measure w.r.t adoption and invitation

behaviors, respectively. In particular, GPR, GPPR, and UGT have

the top-3 highest importance w.r.t both behaviors, which indicates

that social standing, centrality, solidarity, and self-stereotyping are

more critical SIT factors. As for GS and IGT, they perform as the

bottom-2 important features. This is because they are less correlated

with user behaviors, as illustrated in Figures 4-5. In contrast, #CC
is also less important even though it has quite strong correlation to

user behaviors. This is due to that #CC is a stand-alone measure

for the target user and hence incurs indistinguishable values for

source-target pairs with the same target user. To summarize, the

aforementioned results of the correlation and importance analysis

can explain each SIT dimension’s performance in Table 4.

5.3 Target Recommendation

Deployment setups. Recall in Section 2.3 that a source user can

only select the target users from a feed window of limited size 𝑘

during the second step of a friendship-enhancing event. Therefore,

judiciously exposing a subset of target friends for the source 𝑣𝑖 is

pivotal to the event’s performance. Motivated by this, the target

recommendation task (Problem 2) is to find 𝑘 target users w.r.t the

source to boost the overall engagement of sources and targets. Here,

we inherit the XGBoost model, which takes the aforementioned

individual measures (i.e., Tie (measured by intimacy), COM, PPR,
and N2V(euc)) or SIT measures as the input and is trained based

on the historical events. We sort the predicted value 𝑦𝑖, 𝑗 w.r.t each

source 𝑣𝑖 in a descending order and select the top-𝑘 target nodes to

recommend. To evaluate the proposed SIT measures, we conduct

the online A/B testing that randomly assigns a fraction of live traffic

to XGBoost models with individual-level measures as treatment

groups. Initially, each measure is computed based on the graph

instance ahead of the event (see Table 2). Afterward, each measure

is updated daily by using the latest graph snapshot.

Overall performance.We evaluate the effectiveness of different

online random trials by the end-to-end (E2E) rate, which considers

the overall engagement of sources and targets. In particular, E2E

rate equals the fraction of target friends adopting the invitations

over the source users seeing the event. The higher E2E rate indicates

better quality. As illustrated in Table 7, the proposed solution SIT
has the highest E2E rate onMOBA-A. Specifically, SIT is 34.2% better

than the best-performed treatment approach PPR. Furthermore, we

can find that PPR and Tie can outperform the other two competitors.

Motivated by this, we conduct another online trial on MOBA-B by

comparing SITwith the best twomeasures PPR and Tie. Specifically,

Table 8 reports that SIT is 13.6% better than the best-performed

treatment approach PPR.

6 ADDITIONAL RELATEDWORKS
This part briefly reviews other TFC measures and the related socio-

logical theory. In particular, prior TFC measures can be explained

by either selection or influence mechanism in the homophily princi-

ple [10]. The selection indicates that people tend to form friendships

with others with similar characteristics. In contrast, the influence

can be treated as the inverse of selection, claiming that people may

modify characteristics to conform to their friends. We categorize

TFC measures based on the taxonomy of selection and influence.

Regarding the selection, conventional TFC measures utilize the

variant based on common neighborhood, e.g., Adamic/Adar score [1].

Furthermore, the selection can be measured by the similarity be-

tween node embeddings, e.g., [19, 31, 36, 48, 51, 54], which essen-

tially rely on the factorization of a matrix of the TFC measure as

mentioned in Section 2.2 [33]. Regarding social influence, the re-

lated measures mainly focus on the local structure of a user. Burt [4]

proposes to model social influence from cohesion and structural

equivalence perspectives. In particular, cohesion describes the direct

influence measured by tie strength and the number of influenced

friends [13, 18]. The structural equivalence describes the indirect

influence between users and is measured by tie embeddedness [10].

Recently, many learning-based methods [17, 22, 37] are proposed

to predict the influence probability based on historical cascades,

among which [22] leverages another psychological concept called

conformity to measure the social influence.

In contrast, SIT is a group-level psychological framework, in

which each dimension can reflect either selection or influence in the

homophily principle. For instance, the factors of self-stereotyping

and in-group homogeneity are coherent with the selection mecha-

nism. Therefore, SIT can also provide theoretical support for the

aforementioned measures and their integration, e.g., [37].

7 CONCLUSIONS
In this work, we propose measures for friendship closeness based on

the social identity theory, a fundamental concept in social psychol-

ogy, and conduct extensive experiments and analysis on 3 Tencent’s

online gaming datasets. Compared with 8 state-of-the-art methods,

our proposal achieves the highest effectiveness on both behav-

ior prediction and target recommendation tasks. Regarding future

works, we will employ presented measures for other scenarios, e.g.,
modeling the cascade of social influence and suggesting strangers

to enrich users’ friendships in the who-to-follow service.
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