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ABSTRACT
It is critical for a large telecommunications company such
as Singtel to truly understand the behavior and preference
of its customers, in order to win their loyalty in a highly
fragmented and competitive market. In this paper we pro-
pose a novel graph edge-clustering algorithm (DGEC) that
can discover unique behavioral groups, from rich usage data
sets (such as CDRs and beyond). A behavioral group is a
set of nodes that share similar edge properties reflecting cus-
tomer behavior, but are not necessarily connected to each
other and therefore different from the usual notion of graph
communities. DGEC is an optimization-based model that
uses the stochastic proximal gradient method, implemented
as a distributed algorithm that scales to tens of millions of
nodes and edges. The performance of DGEC is satisfactory
for deployment, with an execution time of 2.4 hours over a
graph of 5 million nodes and 27 million edges in a 8-machine
environment (32 cores and 64GB memory per machine). We
evaluate the behavioral groups discovered by DGEC by com-
bining other information such as demographics and customer
profiles, and demonstrate that these behavioral groups are
objective, consistent and insightful. DGEC has now been
deployed in production, and also shows promising potential
to extract new usage behavioral features from other data
sources such as web browsing, app usage and TV consump-
tion.
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1. INTRODUCTION
The telecommunications industry is undergoing a signif-

icant digital transformation globally. The market is highly
competitive, not only among the mobile operators them-
selves, but also with popular (and mostly free) Over The Top
(OTT) service providers. Human communications, particu-
larly among the younger generation, are moving away from
traditional calls (especially international calls) and text mes-
sages to alternatives such as FaceTime, Google Hangout,
Skype, instant messaging and social media. Mobile opera-
tors are therefore under real revenue threats as well as the
danger of losing relevance in the consumers’ mind, and ur-
gently need to increase their capabilities in understanding
customer needs, behavior patterns and preferences, in or-
der to stay competitive, win customer loyalty and continue
revenue growth in the long run.
Solving this real business problem would have significant

impact to mobile operators, yet classic analysis methods
such as demographic profiling, micro segmentation and churn
prediction [4, 18] (to name a few) — as useful as they are
— lack the ability to discover new/emerging and often very
fragmented behavior patterns, in an unsupervised and au-
tomated fashion from hundreds of millions of service and
network data events that are automatically registered on a
telco network when mobile devices are connected. Moreover,
while there has been substantial research into generating in-
telligence from alternative, feature-rich data sources [6, 15]
— such as customer profiles collected during sign-up, social
media, mobile applications — these sources tend to suffer
from noise and missing data (such as when customers do not
disclose, or provide misleading information). In contrast,
service and network data events — which include call detail
records (CDRs), signal strength and network type (4G/LTE,
3G, 2G), cell towers connected, application launched, data
volume, connection speed, success or failure of the connec-
tion, etc. — are reliable due to being automatically reg-
istered, anonymized and encrypted by the network, where
anonymization and encryption are carried out in streaming
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mode at the mobile operators in order to protect data pri-
vacy and security. Furthermore, the data do not include
any personal information such as registration details, prod-
uct subscription or billing. The opportunity here is to find
a scalable and unsupervised learning algorithm that can un-
cover behavior patterns from large amounts of service and
network data.
Service and network data is frequently relational, i.e., graph-

structured, because the data events usually involve two con-
nected entities — e.g., caller and callee, or subscribers con-
necting to cell towers and internet hosts. In this work, we
would like to extract unique behavioral groups (subscribers
with similar behavior) from such relational data in a fully-
unsupervised manner, which can later be combined with
other data sources (customer profiles, etc.) to discern fur-
ther insights about each behavioral group. To give an ex-
ample, we may find a group made up of young dating men,
characterized by calls placed during weekend nights (deter-
mined from service and network data), by male subscribers
in the 20-30 age group (determined from other data such as
customer profiles). Without the call behavior inferred from
service/network data, we could still be finding “young men”
from the gender and age recorded in customer profiles, but
not necessarily “young dating men” (which is a behavior).

As a starting point to ground our work, we use Call De-
tail Records (CDRs) of Singtel subscribers as the empiri-
cal data in this study — while noting that our proposed
method can be applied to other relational service and net-
work data events. The CDR dataset is also highly repre-
sentative of Singapore’s entire population as Singtel is the
largest telecommunications company in Singapore. Previ-
ous works [12, 7, 13] on CDR data analyzed macroscopic
properties of CDR graphs, but did not directly address the
problem of extracting behavioral groups. As a first attempt,
given the CDR graph data, one might turn to community
detection algorithms from the social networks literature [19];
however, we observe that the CDR graph communities gen-
erated by such algorithms are unlikely to correspond to be-
havioral groups at a useful resolution — for example, some
algorithms only return 2-3 communities, while others return
thousands of communities with less than 10 nodes. In our
view, this issue stems from the mismatch between classi-
cal graph community detection, which finds sets of nodes
with strong homophily and inter-connectivity, and our task
of finding groups of nodes with similar behavior, which may
not necessarily be well-connected in the graph. For exam-
ple, the group of young dating men are unlikely to call each
other, but potential dates instead. One might consider local
community detection algorithms [10] that discover commu-
nities centered around a seed node, but this introduces a
difficult alignment problem, where the outputs from differ-
ent seed nodes need to be reconciled into coherent behavioral
groups, which renders this approach impractical.
Motivated by this challenge, we develop an effective method

to discover behavioral groups within service and network
data, such as CDR graphs. Our method, which we call Dis-
tributed Graph Edge Clustering (DGEC), discovers behav-
ioral groups by using not only the graph’s connectivity, but
also the features of each data event (which corresponds to an
edge in the graph), such as timestamp, duration, location,
connection speed, data volume, etc. The idea is that nodes
within the same behavioral group exhibit similar behaviors,
so their actions (corresponding to edges) should have similar

feature values as well. However, simply clustering the edge
attributes (e.g. via a typical clustering algorithm) will not
solve the problem reliably, because many calls may simply
happen to resemble a behavioral group by chance — con-
sider how a business call occurring during a weekend night
does not qualify as behavior of “young dating men”, even
though it may have similar timestamp, duration and loca-
tion by chance. In order to ensure DGEC is robust against
this issue, we also incorporate the graph’s connectivity to
choose only the most significant behavioral groups per sub-
scriber, which typical clustering algorithms do not perform.
This also has the benefit of making DGEC’s output easier
to visualize and interpret.
More formally, DGEC is an optimization model that dis-

covers (1)K behavioral groups within service/network graphs
(which are directed, multi-edge, and have features on each
edge), and (2) which of the K behavioral groups each edge
and node is affiliated with (where nodes can belong to mul-
tiple groups). We derive a stochastic proximal gradient al-
gorithm to solve for the model, and an efficient data-parallel
strategy that we implement on a distributed Machine Learn-
ing framework (Petuum [21]). The resulting implementation
can easily process graphs with tens of millions of nodes and
edges on a small cluster in a few hours; with this level of
efficiency, we are able to analyze weeks to months worth of
data in a single day. In addition, our method takes edge
features as real-valued vectors, and therefore admits feature
engineering to bolster its sensitivity to behavioral groups.
Finally, we conclude with an application and visualization
on CDR data, in which we combine our method’s output
with other data sources such as customer profiles, in order
to discover and analyze interesting behavioral groups.

2. EXPERIMENTAL GRAPH DATA SET
To ground our method on a real telco service and net-

work dataset, we consider data from Singtel that consists
of all anonymized CDR records in January 2015. These
CDR records span millions of subscribers and tens of mil-
lions of calls. Each raw CDR record contains 5 attributes:
date, time of day, call duration, caller ID, and receiver ID.
Before converting the CDR records into a graph, we per-
formed basic outlier removal by removing calls whose du-
ration exceeded 3 hours (2 orders of magnitude above the
mean/median call duration). The pruned calls made up
< 0.1% of the calls, and < 0.01% of the subscribers were
removed as a result of the pruning (because they had no
calls left).
We converted the CDR records into a directed simple

graph (with attributes on the edges), by placing a directed
edge e for each CDR record from caller u to receiver v; we
permit multiple edges between a caller-receiver pair (u, v).
Each edge e is associated with a feature vector, generated
from the attributes of the corresponding CDR record. We
performed light feature engineering to generate the following
edge features: hour of day, day of week, duration of the call,
time period of day (e.g., morning, afternoon, and evening),
total number of calls between the two subscribers, and the
degrees of the two subscribers on the CDR graph. The re-
sulting graph exhibits the following notable properties:

• Node degrees, call frequencies and call durations fol-
low a power-law distribution. Most calls were made
during working hours (9am to 6pm); the mean call du-
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ration was approximately 170s, while the median call
duration was roughly 50s.

• The graph is very sparse — the median outdegree and
indegree are 0 and 3 respectively, and the mean degree
(indegree plus outdegree) is 4.9.

• The maximum outdegree is 1885, and the maximum
indegree is 148160.

• The graph is well-connected: 25% of nodes belong to a
giant strongly connected component, and 99% of nodes
are in a giant weakly connected component.

• Node local clustering coefficients (which measure the
community strength around a node) fall off quickly
with increasing node degree. In other words, sub-
scribers that send or receive many calls do not belong
to clear communities, because they are hub-like struc-
tures in the graph (e.g. call centers).

2.1 Related Work: Community Detection
We ran a variety of community detection algorithms on

our CDR graph, in order to see if they could detect interest-
ing behavioral groups amongst the subscribers. All of the
implementations are single-machine (non-distributed). In
the process, we made the following observations:
Linkcomm [1] partitions edges by performing hierarchi-
cal clustering on the Jaccard Similarity computed between
edges. Because Linkcomm needs to instantiate a size-M2

matrix (where M is the number of edges), it was unable to
run on graphs with tens of millions of edges (including our
CDR graph), even on machines with 128GB memory.
METIS [9] is a large-scale graph partitioning algorithm that
produces non-overlapping communities through a multilevel
algorithm. METIS finished execution within half an hour on
our graph, but produced K communities of roughly equal
size. As such, we were not able to associate these communi-
ties with meaningful subscriber behaviors.
Louvain [5] is a non-overlapping community detection algo-
rithm, based on a greedy bottom-up hierarchical approach
that uses modularity to test for good communities. The al-
gorithm finished execution in only 5 minutes, but generated
over 23000 communities, of which 90% contained < 4 sub-
scribers. Due to the large number of tiny communities, we
were not able to easily interpret the output.
Com2 [2] is a tensor decomposition method that is able to
incorporate edge attributes (different from most other algo-
rithms described here). We ran Com2 under two scenarios:
(1) using the original adjacency matrix (with no edge fea-
tures); (2) using a tensor that includes the adjacency ma-
trix as well as the call duration feature. In the former case,
the algorithm outputs only 3 tiny communities (size < 50
nodes), while in the latter case, the algorithm outputs zero
communities.
OSLOM [10] is a local expansion method that grows com-
munities from seed nodes. OSLOM took over one week to
finish execution, and returned zero communities.
SPAEM [14] is an expectation-maximization algorithm based
on a probability model, which measures the strength of as-
sociation between all nodes and all communities. Unfortu-
nately, we were not able to run the algorithm as it exceeded
our servers’ available memory (128GB).
GANXiSw [20] is an agent-based algorithm that uses label
propagation to find communities. GANXiSW took approxi-
mately one week to finish execution, and returned < 10 very
small communities with ≤ 20 subscribers.

Combo [16] is an optimization-based algorithm that moves
nodes between communities until a high objective value is
achieved. Combo required more than one week to finish,
and returned zero communities.
In general, we found that the algorithms were not able

to return useful behavioral groups — either the algorithms
failed to execute (due to running out of memory), or they
returned tiny communities with at most tens of subscribers,
or (in the case of METIS) returned communities of roughly
equal size. These observations motivate us to design a new
approach to detecting behavioral groups, which can take ad-
vantage of additional information in service and network
data — such as multiple edges between nodes, and edge
features (date, time, etc.) — that is neglected by classical
community detection approaches. Such information greatly
helps in discovering behavioral groups, because it allows us
to more easily distinguish between (for example) calls placed
during working hours, and calls placed late at night in a bar
or nightclub.

3. A MODEL OF BEHAVIORAL GROUPS
Motivated by the challenges facing classical community

detection algorithms, we propose our own model of behav-
ioral groups, which we define as subgraphs (edges and their
adjacent nodes) that share similar edge features. The intu-
ition is that behavioral groups can be readily distinguished
when we consider edge features — for example, in CDR
data, office calls are expected to fall into the time range be-
tween 9AM-5PM, while home calls would take place outside
office hours. However, different from classical clustering al-
gorithms, we also use the graph’s connectivity to improve
our model’s robustness to data outliers. More specifically,
we wish to balance two criteria:

1. Behavioral groups have similar edge features:
we want to group edge features aroundK well-separated
centroids, with each edge being assigned to its clos-
est centroid. We shall use “centroid” and “behavioral
group” interchangeably, when the context is clear.

2. Nodes have few behavioral groups: at the same
time, we use the local graph connectivity around each
node to make the centroids robust to chance, isolated
edges that happen to resemble a behavioral group (e.g.
weekend business calls may happen to look like calls
from young dating men, but are not part of that behav-
ioral group). This is accomplished by penalizing nodes
whose adjoining edges are assigned to a large number
of centroids; the effect is that every node (and its ad-
joining edges) may only be associated with a small
number of behavioral groups.1

Because of these criteria, our algorithm will output behav-
ioral groups that are markedly different from the communi-
ties produced by classical community detection algorithms
— Figure 1 provides an intuitive illustration.

3.1 Minimization Problem
We formally express the above criteria as a minimization

1We note that this idea can be further generalized to en-
compass each node’s egonet or even neighbors-of-neighbors,
though at the cost of increased computational complexity
— such investigation is left as future work.
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Community 
Subgraph of well-connected nodes 

Behavioral group 
Nodes that have some edges with similar features 

Figure 1: Difference between classical graph community detection and our method (behavioral group detec-
tion). Whereas communities are well-connected subgraphs, behavioral groups are sets of nodes and edges
that share similar edge features — such as call timestamps and durations, which are indicative of behavior.
In the example on the right, the red edges have similar features (e.g. calls placed on Friday night), and the
red nodes are part of this behavioral group (e.g. dating men). Behavioral groups do not have to be strongly
or weakly connected.

Variable Type Description

N Input Number of nodes. Nodes are indexed as i ∈ {1, . . . , N}
M Input Number of edges. Edges are indexed as j ∈ {1, . . . ,M}
D Input Number of features in each edge

u1, . . . , uM ∈ R
D Input Feature vectors for each of the M edges

(x1, y1), . . . , (xM , yM ) Input Source node xj and destination node yj for each of the M edges
E1, . . . , EN Input Set of incoming and outgoing edges (integers j ∈ {1, . . . ,M}) touching node i

K Parameter Desired number of behavioral groups. Each group is indexed as k ∈ {1, . . . ,K}
α, β, γ Parameter Tuning parameters that control the algorithm’s sensitivity

c1, . . . , cK ∈ R
D Output Feature centroids for each of the K behavioral groups, in D-dim edge feature space

a1, . . . , aM ∈ {1, . . . ,K} Output (Integer-valued) behavioral group assignments for each of the M edges

θ1, . . . , θN ∈ ΔK−1 Output Behavioral group participation vectors (probability distributions) for each node

Table 1: Inputs, parameters, and outputs for our DGEC, our behavioral group detection algorithm.

problem, whose quantities are defined in Table 1:

min
c,a,θ

M∑
j=1

K∑
k=1

I(aj = k)||uj − ck||22

+ α

N∑
i=1

‖θi − 1

|Ei|
∑
j∈Ei

Vector(aj)‖22 +
N∑
i=1

K∑
k=1

(1− β) ln(θik)

s.t. θi ∈ ΔK−1, (1)

where I(x) is the indicator function equal to 1 when condi-
tion x is true (or 0 otherwise), and the function Vector(x)
converts an integer x ∈ {1, . . . ,K} into a K-dimensional
indicator vector, i.e.

[Vector(x)]k =

{
1 if k = x

0 otherwise.
(2)

In Eq. 1, the first term corresponds to criteria 1 (behav-
ioral groups have similar edge features), and the second and
third terms correspond to criteria 2 (nodes have few behav-
ioral groups) — Figure 2 provides helpful visual intuition.
Criteria 1 is a least-squares penalty that requires each be-
havioral group centroid ck to be close to its assigned edge
features uj (where aj is the variable assigning edges to be-
havioral groups). Criteria 2 is composed of two terms: the
first term, which involves α, θi, aj , tightly associates every
node i with the behavioral groups assigned to adjacent edges
(note that Ei is the set of edges adjacent to i). This asso-
ciation is represented by the probability vector θi, where
element θik denotes how much node i is associated with
behavioral group k. The second term encourages θi to be
sparse (few non-zeros), by penalizing elements θik as they
approach zero (observe that ln(1) = 0, and ln(0)→ −∞) —
the effect is to zero out elements θik that are already near

zero. Finally, the parameters α, β, γ are used to control the
relative importance of the three terms; in our experiments,
we found that the optimization was insensitive to the exact
values, and setting α = 1, β = γ = 0.1 sufficed to output
good-quality behavioral groups.

3.2 A Tractable Algorithm via Relaxation
The minimization Eq. 1 involves discrete variables a1, . . . , aM

with an exponentially large state space, and is therefore com-
putationally intractable. In order to achieve a practical so-
lution, we relax each discrete variable aj to a real-valued
simplex vector zj ∈ ΔK−1 (i.e. probability vectors over K
choices2). For example, if K = 3, then aj = 2 would be
relaxed to the vector zj = [0, 1, 0]� — but note that zj
can also take values that do not correspond to any value of
aj ∈ {1, . . . ,K}, such as zj = [0.1, 0.8, 0.1]�. By applying
this relaxation, we obtain a modified minimization problem

min
c,z,θ

L(c, z, θ)

=

M∑
j=1

K∑
k=1

zjk||uj − ck||22 + α
N∑
i=1

‖θi − 1

|Ei|
∑
j∈Ei

zj‖22

+

N∑
i=1

K∑
k=1

(1− β) ln(θik) +

M∑
j=1

K∑
k=1

(1− γ) ln(zjk)

s.t. zj ∈ ΔK−1, θi ∈ ΔK−1, (3)

where we have also added a new penalty term (the fourth
term involving γ, zjk) that encourages zj to be sparse and
thus close to a legitimate value of aj . If we ignore this fourth
term for the moment, we see that Eq. 3 is indeed a relaxation
of Eq. 1, because they take the same objective value when

2That is, zj ∈ R
K such that zjk ≥ 0 and

∑K
k=1 zjk = 1.
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1pm @ (15,9) 
4pm @ (14,10) 

10am @ (15,10) 

10pm @ (20,30) 

8am @ (19,29) 
7pm @ (21,30) 

8pm @ (5,40) 

9pm @ (5,39) 7pm @ (6,41) 

Behavioral 
groups have 
similar edge 

features 

1pm @ (15,9) 
4pm @ (14,10) 

10am @ (15,10) 

10pm @ (20,30) 

8am @ (19,29) 
7pm @ (21,30) 

8pm @ (5,40) 

9pm @ (5,39) 
7pm @ (6,41) 

Edges with similar 
features go into the 

same group 

Nodes have 
few behavioral 

groups 

1pm @ (16,9) 

10am @ (15,10) 

8am @ (20,30) 

7pm @ (19,29) 

8pm @ (5,40) 

9pm @ (6,41) 

10pm @ (10,50) 

9am @ (10,15) 
10am @ (11,16) 

1pm @ (16,9) 

10am @ (15,10) 

8am @ (20,30) 

7pm @ (19,29) 

8pm @ (5,40) 

9pm @ (6,41) 

10pm @ (10,50) 

9am @ (10,15) 
10am @ (11,16) 

Associate each node 
with fewer 

behavioral groups, as 
much as possible 

Figure 2: Two criteria for our behavioral group model: “behavioral groups have similar edge features” and
“nodes have few behavioral groups”. In this example, each edge j represents a phone call in a CDR graph,
and has a 2-attribute feature vector uj: “hour of day” and “location”. Edge colors denote assignment to
different behavioral groups. The first criteria assigns edges with similar feature values to the same behavioral
group; the second criteria prevents nodes from associating with too many behavioral groups — this means
that behavior must be significantly repeated (i.e. many similar calls) before a node and its edges can be assigned
to a behavioral group.

zj = Vector(aj) for all j (i.e. where every zj corresponds to
a legitimate value of aj).
Having obtained a real-valued constrained minimization

problem Eq. 3 in the variables c, z, θ, we may now solve it via
the proximal gradient method. The algorithm proceeds by
iterating the following update equations until convergence:

ck ← ck − η∇ckL(c, z, θ)

= ck − η

[
−

M∑
j=1

2zjk(uj − ck)

]
(4)

z̃jk ← zjk − η
∂

∂zjk
L(c, z, θ)

= zjk − η
[‖uj − ck‖22

−α
⎛
⎝ ∑

i∈{xj ,yj}

2

|Ei|
(
θik − θedgeik

)⎞⎠+
1− γ

zjk

⎤
⎦

zj ← proxsimplex(·)
(
[z̃j1, . . . , z̃jK ]�

)
(5)

θ̃ik ← θik − η
∂

∂θik
L(c, z, θ)

= θik − η

[
2α

(
θik − θedgeik

)
+

1− β

θik

]

θi ← proxsimplex(·)
(
[θ̃i1, . . . , θ̃iK ]�

)
(6)

where θedgeik =
1

|Ei|
∑
j′∈Ei

zj′k, (7)

and where η is the gradient descent step size. The function
proxsimplex(·) is the proximal operator for the simplex (i.e.
probability vector) constraint — it projects θ, z to the closest
point within the probability simplex ΔK−1; we use the im-

plementation in [17]. Note that the summation
∑

i∈{xj ,yj}
simply selects the two nodes i touching the j-th edge. Once
the proximal gradient descent has converged, we convert
each vector zj back to a discrete-valued aj (which is one
of the outputs of our method), by simply choosing the max-
imal element of zj .

The proximal gradient equations Eqs. 4, 5, 6 are efficient
and enjoy time complexity that is linear in N,M (i.e., num-
ber of nodes and edges respectively), because the quantity

θedgeij can be pre-computed at the beginning of each iteration.
This ensures that, given a suitable distributed implementa-
tion over a cluster, our algorithm can scale to graphs of
arbitrary size. The overall time complexity for the proximal
gradient equations is O(M(KD+K log(K))+NK log(K)),
where the K log(K) terms come from the proximal operator
proxsimplex(·)() (which requires a sort). For practical values
of K, the log(K) cost is negligible.

4. DISTRIBUTED IMPLEMENTATION
In order to efficiently and quickly process graphs with tens

of millions of nodes and edges (if not more), we want to
parallelize the proximal gradient steps Eqs. 4, 5, 6, with
a distributed implementation that scales to any number of
machines. The distributed setting introduces new consider-
ations, such as how best to partition the input data uj , as
well as how to partition and efficiently synchronize the vari-
ables ck, zj , θi across the network. In particular, we note
that the graph’s connectivity may need to be considered in
the data and variable partitioning strategy — observe that
the second term in Eq. 3, as well as Eq. 7, are dependent on
the edge neighborhood of node i.

While sophisticated partitioning strategies are certainly
possible, we found that a data-parallel strategy suffices to
achieve good performance. In this strategy, each paral-
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lel worker p ∈ {1, . . . , P} is assigned a disjoint subset of
edges3 Ep ⊂ {1, . . . ,M}, as well as a disjoint subset of nodes
Vp ⊂ {1, . . . , N}— that is to say, we partition the edges and
nodes across the parallel workers.4 On each parallel worker
with edges Ep and nodes Vp, we split the proximal gradient
computations into 2 main loops per iteration: EdgeLoop(),
which iterates over edges to update c, z via Eq. 4, 5, and
NodeLoop(), which iterates over nodes to update θ via Eq.
6; Algorithm 1 provides detailed pseudocode. In order to
compute the objective function Eq. 3 in parallel, the im-
plementation maintains a set of global variables L1, . . . , Lp,
which store each machine p’s contribution to the objective.
Recent work has shown that ML algorithms can exhibit

better performance when running in a“bounded-asynchronous”
fashion [21], as contrasted with synchronous execution in
MapReduce or Spark [22]. We choose to implement our algo-
rithm using the bounded-asynchronous JBösen system [21]
(http://petuum.org), while noting that MapReduce or Spark
implementations are also feasible (though we do not explore
them). JBösen automatically synchronizes model variables
between machines, via a distributed shared memory (DSM)
programming interface that resembles single-machine multi-
core programming.5 Specifically, in Algorithm 1, the vari-
ables ck, θi are treated as global and accessed through the
JBösen API,6 while the variables zj are stored locally on
each machine (via standard arrays). Compared to alter-
native distributed ML systems such as [11], an additional
benefit to JBösen is convenience — it uses the Java pro-
gramming language, and packages all code and dependen-
cies into a single jar file that can be readily deployed to any
machine with a Java Runtime Environment installation or
the Hadoop YARN scheduler.

4.1 Initialization Strategies for ck, zj, θi
It is commonly accepted that optimization-based algo-

rithms may be sensitive to the choice of initial values. In
order to ensure our algorithm outputs consistent and re-
producible results, we adapt the Kmeans++ initialization
procedure [3] to our needs — essentially, we initialize the be-
havioral group centroids ck to randomly-chosen edge feature
vectors uj , selected such that they are (with high probabil-
ity) far apart from each other. Our initialization procedure
follows three high-level steps:

1. Generate K well-spaced initial centroids ck, by run-
ning the Kmeans++ initialization strategy on the edge
attributes uj .

2. Assign each zj to its closest cluster centroid ck, plus a
small amount of random noise.

3. Initialize θi = 1
Ei

∑
j∈Ei

zj , plus a small amount of

random noise.

Empirically, we observed that this initialization procedure
yields reproducible outputs; furthermore, it greatly reduced

3Ep is not to be confused with Ei (edges touching node i).
4In our current implementation, the partitions are random
and of equal size. One might fairly ask if pre-partitioning
the graph via a graph cut algorithm (or similar method) may
lead to improved performance, and we intend to investigate
this in future work.
5A DSM interface allows the programmer to read/write to
distributed model variables as if they are local arrays.
6The JBösen API allows global variables x to be either read,
or incremented by a value y. In Algorithm 1, we represent
increments via the notation x← x+ y (i.e. “add y to x”).

Algorithm 1 Distributed algorithm for solving Eq. 3

1: Inputs: N,M,K,D, uj , xj , yj , Ei and P (num. parallel workers)
2: Outputs: ck, zj , θi

3: Declare global variables ck, θi, θ
edge
i , Lp on JBösen system

4: Partition M edges into P disjoint subsets E1, . . . , EP , and assign
Ep to parallel worker p

5: Partition N nodes into P disjoint subsets V1, . . . , VP , and assign
Vp to parallel worker p

6: Declare local variables zj , z
old
j on worker p, for all edges j ∈ Ep

7: Initialize global variable ck
8: Initialize local variables zj on each worker
9: for each worker p ∈ {1, . . . , P} in parallel do

10: // Initialize θedge
i with the contribution from each edge j

11: for each edge j ∈ Ep do

12: θedge
xj

← θedge
xj

+
zj

|Exj
|

13: θedge
yj

← θedge
yj

+
zj

|Eyj
|

14: zold
j ← zj

15: end for
16: clock() // JBösen API function to signal next iteration
17: // Begin Stochastic Proximal Gradient (SPG) algorithm
18: for iterations t = 1 to T do
19: Lp ← Lp − Lp // Zero out objective function variables
20: EdgeLoop()
21: NodeLoop()
22: for each edge j ∈ Ep do

23: // Update contribution of zj to θedge
i

24: θedge
xj

← θedge
xj

− zoldj
|Exj

| +
zj

|Exj
|

25: θedge
yj

← θedge
yj

− zoldj
|Eyj

| +
zj

|Eyj
|

26: zold
j ← zj

27: for each community k ∈ {1, . . . , K} do
28: // update objective fn: add 1st term from Eq. 3
29: Lp ← Lp + zjk‖uj − ck‖22
30: end for
31: end for
32: print(

∑P
p=1 Lp) // Print objective function

33: clock() // JBösen API function to signal next iteration
34: end for
35: end for
36:
37: function EdgeLoop()
38: // Iterate over edges to update c, z
39: for each edge j ∈ Ep do
40: for each community k ∈ {1, . . . , K} do
41: // update c: send gradient terms for edge j to ck
42: ck ← ck + η [2zjk(uj − ck)]
43: // update z: perform gradient step on zjk
44: z̃jk ← zjk − η‖uj − ck‖22
45: +

∑
i∈{xj,yj}

2ηα
|Ei| (θik − θedge

ik )− η 1−γ
zjk

46: end for
47: // update z: apply simplex prox operator

48: zj ← zj +
(
−zj + proxsimplex(·)

(
[z̃j1, . . . , z̃jK ]�

))

49: end for
50: end function
51:
52: function NodeLoop()
53: // Iterate over nodes to update θ
54: for each node i ∈ Vp do
55: for each community k ∈ {1, . . . , K} do
56: // update θ: perform gradient step on θik
57: θ̃ik ← θik − 2ηα(θik − θedge

ik )− η 1−β
θik

58: end for
59: // update θ: apply simplex prox operator

60: θi ← θi +
(
−θi + proxsimplex(·)

(
[θ̃i1, . . . , θ̃iK ]�

))

61: // update objective fn: add 2nd, 3rd terms from Eq. 3

62: Lp ← Lp + α‖θi − θedge
i ‖22 +

∑K
k=1(1− β) ln(θik)

63: end for
64: end function
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Figure 3: Scalability of DGEC implementation ver-
sus ideal linear scaling, from 2 through 8 machines,
on a CDR graph with 5 million nodes and 27 million
edges. DGEC required 15.3, 6, 2.4 hours to com-
plete on 2, 4, 8 machines respectively (using K = 20
behavioral groups and 20 iterations, which were suf-
ficient for convergence), demonstrating super-linear
scalability going from 2 to 8 machines.

the number of iterations required for convergence — we
found that 20 iterations sufficed to get ck, zj , θi to stabilize
to 3 significant figures.

4.2 Scalability
Our implementation of DGEC processes our CDR graph

(to be analyzed in Section 5), using K = 20 behavioral
groups7 in just 2.4 hours on 8 machines, each of which has 32
CPU cores and 64GB RAM, while Figure 3 shows that our
implementation enjoys good scalability as more machines
are added. In particular, we observed super-linear scalabil-
ity going from 2 to 8 machines8; this is because JBösen au-
tomatically partitions the global model variables c, θ across
the machines, and having more machines provides more to-
tal bandwidth to communicate variables and their updates.

5. APPLICATION AND VISUALIZATION

5.1 Statistics and differences with K-means
DGEC discovered K = 20 distinct behavioral groups on

our sample data of approximately 5 million nodes and 27
million edges. Figure 4 plots the size of each group, ranging
from the low hundreds of subscribers to about 2 million. We
note that only 15 groups had significant mass (> 500, 000
subscribers), and this suggests that K = 20 groups is suffi-
cient for this dataset. In Figure 5, we also plot a histogram
of the number of groups each subscriber belongs to, which
ranges from 1 to 8 groups per subscriber; that is to say, each
subscriber exhibits up to a maximum of 8 distinct calling
patterns (with the majority having 5 or fewer).
The penalty terms in Eq. 3 distinguish DGEC from clus-

tering algorithms that do not consider graph structure, such
as K-Means. On the same dataset with K = 20 groups, we
compare the statistics of K-means (using the K-means++

7We also tried using more behavioral groups, e.g. K = 100,
but found the output to be qualitatively similar to K = 20,
likely because we used mainly time and duration features.
In future work, we intend to add more service and network
data features, such as location information, which should
allow more specific behavioral groups to be discovered.
8We do not include results for 1 machine, because it had
insufficient memory to handle our experimental graph.
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Figure 4: Size of behavioral groups.
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Figure 5: Histogram of the number of behavioral
groups each subscriber belongs to.

initialization [3]) against DGEC: Figure 4 shows that groups
output by DGEC have more similar sizes than K-means,
and Figure 5 shows that DGEC assigns subscribers to fewer
groups than K-means — whereas K-means assigns 26% of
subscribers to more than 5 groups, DGEC assigns only 12%
of subscribers to more than 5 groups. These observations
align well with the modeling criteria for DGEC in Section 3;
in particular, they confirm that DGEC is robust to noisy
or insignificant group assignments (Figure 2), making the
results more reliable and easier to interpret.

5.2 Interpretation of Behavioral Groups
A particular benefit of DGEC is that it is able to cap-

ture different behavioral patterns of a single individual under
varying scenarios, e.g. at work vs. social gatherings. One
node (person) can thus belong to multiple behavioral groups
depending on the circumstance. In explaining and validating
these behavioral groups, we first selected the unique charac-
teristics of an edge group, extracted the nodes (subscribers)
belonging to the group, and then extracted other existing
node attributes such as demographics, profiling and frequent
locations. This allows us to construct a complete picture of
a group in terms of their characteristics and behavioral pat-
terns. Consistency in results across the various types of data
extracted serves as validation of a behavioral group. For
demonstration purposes, we selected 3 behavioral groups,
referred to as Groups 3, 8, and 12.
The first example, Group 8, displays a unique calling pat-

tern in terms of both time of day and days of the week which
calls are most frequently made (Figure 6). Majority of calls
were made by this group on Friday and Saturday nights,
peaking from 9PM till midnight. The degree of incoming
and outgoing connections is among the lowest (mean = 5)
of all groups discovered. These findings indicate social ac-
tivity among a small group of people.
We then studied in Figures 7 and 8 the demographics and

customer profile of Group 8 to gain a deeper understanding
of their behavioral pattern. Comparison of age distribution
against a random sample of the general population indicated
a much higher proportion of 20-29 year old subscribers in
Group 8. Comparison of other subscriber characteristics,
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Figure 6: Number of calls per hour for behavioral
Groups 3, 8, and 12.
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Figure 7: Age distribution of Group 8.

such as gender, race and nationality indicates that Singa-
porean, Chinese males have a higher likelihood of exhibiting
this behavioral pattern. Due to commercial sensitivity of the
data, this paper only displays indexed differences between
the behavioral group against the general population.
Moreover, spatial information of this behavioral group

captured during the peak call activity period further strength-
ens the assumption that calls made by this group serve a
more social function as opposed to fulfilling business or fam-
ily commitments. Figure 9 shows a concentration of the sub-
scribers at late-night hotspots in Singapore such as Beach
Road, Clarke Quay, Chinatown and River Valley. The sup-
porting evidence leads us to draw the conclusion that sub-
scribers in Group 8 largely make calls for leisure purposes,
especially during weekends, and we thus name them “Social
Weekenders”.
The Social Weekender group is comprised largely of digitally-

native Millennials, typically students or young adults; they
are fluent in technology and spend a large amount of time
on their mobile devices. They are more comfortable com-
municating through digital mediums like social media and
messaging apps, as opposed to using phone calls, and this is
evident in the low average call volume of this group. Phone
calls are made mostly by a Social Weekender to establish
more immediate plans or to contact friends upon their ar-
rival at a pre-determined location. This pattern of behavior
coincides with the peak call activity recorded for the group,
which is a common timeframe within which late night week-
end plans are typically made.
As for Groups 3 and 12, they exhibit clear similarities

in their calling patterns: subscribers in both groups tend
to make calls between 8-9AM and 5-6PM, which are just

Postpaid 
Subscriber

Male Singaporean Chinese

Social Weekender Sample Average

35% 

20% 
30% 

3

2

30% 

Figure 8: Demographic comparison for Group 8.

Figure 9: Group 8 hangouts on Saturday evening.

before and after typical working hours in Singapore(Figure
6). Subscribers in both clusters made calls mostly during
weekdays, although a distinctly higher call volume was ob-
served in Group 12 on Fridays and Saturdays. The variance
observed could be attributed to differences in job require-
ments or individual sociability.
Similarly, subscriber characteristics were mapped against

a random sample. Comparisons indicated that people in
both groups were largely spread over the 20-29 and 30-39
year age groups(Figure 10), engaged in more routine work
patterns and had a higher proportion of females and con-
dominium dwellers than the sample. These findings lead us
to conclude that individuals in Groups 3 and 12 are mostly
young professionals of slightly higher income, who utilize
their commuting time to make family arrangements. This
is supported by the high proportion of Postpaid subscribers
(93%) that make up these two groups, as Postpaid subscrip-
tions are characteristic of higher income individuals as well
as corporate mobile subscriptions(Figure 11). Spatial map-
ping of their work locations also indicated a high concentra-
tion in Singapore’s Central Business District and surround-
ing areas, where most major financial and legal institutions
are situated(Figure 12).
By combining these results with our internal “traffic mon-

itoring module”, we were able to discern the regular mode
of transport utilized by 70% of individuals in Groups 3 and
12 [8]. Results indicate that three quarters of these individ-
uals frequently utilized the Mass Rapid Transit (i.e. sub-
way) system, further corroborating our earlier findings as
this mode of transport allows individuals to easily make calls
while commuting. Consequently, we jointly termed Groups
3 and 12 the “Productive Commuters” based on their calling
patterns identified.
The behavioral groups can also be visualized within the

local neighborhood of each node. Figure 13 shows a ran-
domly chosen seed node from Groups 3 and 12, as well as its
neighbours and neighbors-of-neighbors. The color of each
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Figure 11: Demographics of Group 3 versus 12.

node v corresponds to its dominating behavioral group (i.e.,
the group with the maximum value in its behavioral group
participation vector), and we color each edge e by the be-
havioral group that e belongs to. The size of a node re-
flects the number of neighbors it connected to, and the width
of an edge represents the volume of calls between the two
nodes. As shown in Figure 13, the seed node is connected to
two large communities and a couple of smaller communities.
The interesting observation is that, these two communities
have different behavioral patterns, dominated by Group 12
(green) and Group 3 (light blue) respectively. Based on
the behavioral description of Groups 3 and 12 shown ear-
lier, these two groups are both likely to be work colleagues
of the seed node, with the Group 12-dominated community
exhibiting more weekend calls. We observe few other colors
in this plot (save a few red nodes), indicating that the local
neighborhood around the seed node is made up of similar
types of subscribers.

5.3 Applications
By incorporating CDR data into customer profile analyt-

ics, mobile operators are able to identify more complete and
robust customer profiles (including behavioral patterns), as
well as to dynamically monitor the changing landscape. This
allows for sharper targeting of customers, based on a more
holistic understanding of customer preferences and needs.
Such analysis adds value to mobile operators by provid-
ing the insight required for creation of products and ser-
vices better suited to specific customer needs, as well as
for a more targeted marketing and communications strat-
egy based on customers’ lifestyle patterns (by identifying
optimal methods, timings and locations to engage customers
with increased effectiveness).
For example, Social Weekenders are best engaged through

experiential, relevant content over digital mediums such as
app and web based platforms, due to the large proportion of
Millennials that make up this group. Weekday afternoons
are an ideal time to digitally target this group as they are
less likely to be socially occupied and hence more receptive
to digital mobile content. Understanding the preferences
and needs of this group is especially applicable to Mobile
Operators in maximizing revenue and preventing churn, as
Millennials place high priority on product relevance and rep-

Figure 12: Working locations for Groups 3 & 12.

Figure 13: Local neighborhood of a random sub-
scriber, tagged with behavioral groups.

resent the group most likely to discover OTT services that
cater better to their needs.
Apart from commercial applications, DGEC can also serve

as an additional resource for profiling customers internally.
When subscriber information is collected during signup, cer-
tain fields pereceived as insignificant or sensitive tend to suf-
fer from missing data, resulting in an incomplete customer
profile. The extraction of behavioral clusters in this paper
has enabled the prediction of missing data across several de-
mographic categories. In the Productive Commuters group,
the proportion of ”NA” values was reduced from 47% in the
random sample to 7% after clustering in the ”Subscriber
Type” category and from 69% to 25% in the ”Gender” cat-
egory. For example, if subscribers with incomplete profiles
are identified to be Productive Commuters from their CDRs
and available demographics, we can assume with high con-
fidence that they are Postpaid subscribers due to the high
proportion of Postpaid subscribers within the group (93%).

5.4 Deployment
We deploy DGEC in our analytic platform production en-

vironment as part of the“people module”. This module aims
to understand the unique behaviors of people and groups,
based on their “digital footprints” from telco data, such as
geo-spatial data, social data, and content. Other function-
alities in the people module include home/work detection,
top hang outs, inbound trips, outbound trips extraction, de-
mographics predictions, web profiling, to name a few.
DGEC is run monthly as an offline batch job to extract

customer behavioral groups from CDR data. As mentioned
in Section 2, we perform light feature engineering by con-
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Figure 14: Snapshot of application interface.

verting raw CDR attributes into the following features: hour
of day, day of week, duration of the call, time period of
day (e.g., morning, afternoon, and evening), total number
of calls between the two subscribers, and the degrees of
the two subscribers on the CDR graph. Each customer is
tagged with his/her behavioral group IDs, and the result is
stored in SOLR, our internal big data store. Our Appli-
cation Programming Interface (API) interacts directly with
the database, and allows business intelligence users to make
queries to generate new insights. Figure 15 shows the gen-
eral workflow of the deployment.
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Figure 15: Deployment workflow including DGEC.

6. CONCLUSION
Graph approaches are fundamental to improving our un-

derstanding of consumer relationships and behaviors. We
believe the combination of graph connectivity (between nodes)
and behavior (through edge features) offers a significant im-
provement in discovering meaningful behaviour as well as re-
lationships. The next step would be to expand the method
to other data sources: for example, locations are another
key aspect by which people form significant relationships,
and telcos indeed have rich location information in service
and network data. DGEC can be applied to identify different
visiting patterns (edges) between people and places (nodes),
and we expect that it can reveal features such as “purpose of
visit”, “likelihood to stay”, “predicted next place”, etc. An-
other valuable extension would be to hierarchically organize
the behavioral groups, enabling business intelligence units
to “drill down” from coarser groups to finer-grained ones.
The ultimate goal is to have an unified and scalable learning
method that can discover unique behavioral characteristics
through the graph edge clustering method, in any service
and network data. The business benefit of this capability
could be a game changer to mobile operators.
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